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INTRODUCTION 
 
The analysis of free convection in vertical channels occurs in many industrial processes and natural phenomena. 
Most of the interest in this subject is due to its applications, for instance, in the design of cooling systems for 
electronic devices and in the field of solar energy collection. Some of the related papers on this topic, such as Aung 
and Worku (1986), Cheng et al. (1990), Barletta (1998,1999), El-Din (2003), Boulama and Galanis (2004), Barletta 
et al. (2005) deal with the evaluation of the temperature and velocity profiles for the vertical parallel-flow fully 
developed regime. In all the above studies of free and mixed convection flow in vertical channels are based on the 
hypothesis that the fluids are Newtonian. However, because of their fundamental and technological importance, 
theoretical studies of free, forced and mixed convection flow of non-Newtonian fluids in channels and tubes are very 
important in several industrial processes. Szeri and and Rajagopal (1985) have studied the flow of a third grade fluid 
between heated parallel plates caused by external pressure gradient and obtained similarity solutions of the energy 
equation, numerically. Akyıldız (2001) have studied the flow of third grade fluid between heated parallel plates. 
Chamka et al. (2002) have studied the fully developed free connective flow of - micropular fluid between two 
vertical parallel plates analytically. Recently, Siddiqui et al. (2010) have investigated the flow of a third grade non-
Newtonian fluid between two parallel plates separated by a finite gap by using the Adomian decomposition method. 
Williamson fluid is characterized as a non-Newtonian fluid with shear thinning property, i.e., viscosity decreases 
with increasing rate of shear stress (Dapra and Scarpi, 2007).  
 
The use of electrically conducting fluids under the influence of magnetic fields in various industries has led to a 
renewed interest in investigating hydromagnetic flow and heat transfer in different geoemetries. For example, 
Sparrow and Cess (1961) considered the effect of a magnetic field on the free convection heat transfer from a 
surface. Garandet et al. (1992) have studied buoyancy driven convection in a rectangular enclosure with a transverse 
magnetic field. Chamkha (1999) have investigated free convection effects on three-dimensional flow over a vertical 
stretching surface in the presence of a magnetic field. Bhargava et al. (2003) have studied the effect of magnetic 
field on the free convection flow of micropolar fluid between two parallel porous vertical plates. Hayat et al. (2004) 
have studied the Hall effects on the unsteady hydromagnetic oscillatory flow of a second grade fluid. Hazeem attia 
(2005) have investigated the unsteady flow of a dusty conducting fluid between parallel porous plates.  Sanyal and 
Adhikari (2006) have studied the effects of radiation on MHD fluid flow in vertical channel.   
 
In view of these, we studied the fully developed free convection flow of a Williamson fluid in a vertical channel 
under the effect of magnetic field. The governing non-linear equations are solved for the velocity field and 
temperature field using the perturbation technique. The effects of various emerging parameters on the velocity field 
and temperature field are studied through graphs in detail.   
 
2. Mathematical formulation 
The equations governing the flow of an incompressible Williamson fluid are given by                                
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. 0V∇ =                                             (2.1) 

.
dV

f
dt

ρ ρ τ= + ∇                                            (2.2) 

where ρ  denotes the constant fluid density, V is the velocity vector and f represents the body force per unit mass. 

The operator /d dt  denotes the material time derivative and τ  is the stress tensor. 
 
 
 

 
Fig. 1 The physical model  
 
The constitutive equation for a Williamson fluid is given by 

( )( ) 1

0 1τ η η η γ γ−
∞ ∞

 = − + + − Γ
 

& &                                          (2.3) 

Where τ  is the extra stress tensor, η∞  is the infinite shear rate, viscosity oη  is the zero shear rate viscosity, Γ  is 

the time constant and γ&  is defined as   

1 1

2 2ij ji
i j

γ γ γ π= =∑∑& & &                                           (2.4) 

where π  is the second invariant stress tensor. We consider in the constitutive Eq. (2.3) the case for which 0η∞ =  

and 1γΓ <&  so we can write. 

( )0 1τ η γ γ= − + Γ & &                                            (2.5) 

The above model reduces to Newtonian for 0Γ =   
 
We consider the laminar free convection flow of a Williamson fluid between two plates at distance h a apart, as 
shown in Fig.1.We choose co-ordinates system, with X  - axis parallel to the flow while Y - axis is normal to the 

flow. A uniform magnetic field 0B  is applied in the transverse direction to the flow. The flow assume steady and 

fully developed, i.e., the transverse velocity is zero. It is also assumed that the walls are heated uniformly but their 
temperatures may be different resulting in asymmetric heating situation under these assumptions the equations that 
describe the physical situation are 
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( ) 0
d u d du

B u g T T
dy dy dy

µ σ ρ β
  

+ Γ − + − =  
   

                         (2.6) 

2

2
0

T

y

∂ =
∂

                               (2.7) 

where σ is the electrical conductivity. 
 
Subject to the boundary conditions 

( ) ( ) 10 0,    0u T T= = ,    ( ) ( ) 20,    u h T h T= =                                        (2.8) 

 
Introducing the following non-dimensional variables  

0 1 0

0 2 0 2 0

, , , , , T

T T T Tu y x U
u y x We r

U h h h T T T T
θ

η
− −Γ= = = = = =
− −

                                                    (2.9) 

into Eqs. (2.6) and (2.7), we get (after dropping the bars) 
22

2
2

0
Re

d u d du Gr
We M u

dy dy dy
θ

  
+ − + =  

   

                                      (2.10) 

2

2
0

d

dy

θ =                                           (2.11) 

where 0
0

M B h
σ
η

=  is the Hartmann number, 
( ) 3

2 0
2

g T T h
Gr

β
ν

−
=  is the Grashof number  and 

Re
Uh

ν
=  is the Reynolds number.  

The corresponding dimensionless boundary conditions  
 

( ) ( )0 0,    0 Tu rθ= = ,    ( ) ( )1 0,    1 1u θ= =                                      (2.12) 

 
3. Perturbation Solution   
Eq. (2.10) is non-linear and it is difficult to get a closed form solution. However for vanishing We , the boundary 
value problem is agreeable to an easy analytical solution. In this case the equation becomes linear and can be solved. 
Nevertheless, small Γ  suggests the use of perturbation technique to solve the non-linear problem. Accordingly, we 
write 

0 1u u Weu= +                                             (3.1) 

and   

0 1Weθ θ θ= +                                                      (3.2) 

Substituting equations (2.11) and (2.12) into Eqs. (2.8) and (2.9) and boundary conditions (2.10) and then equating 
the like powers of We , we obtain 

3.1 Zeroth-order system ( )0We  

2
20

0 02 Re

d u Gr
M u

dy
θ− = −                                           (3.3) 

2
0

2
0

d

dy

θ =                                                          (3.4) 

Together with boundary conditions 
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( ) ( )0 00 1 0u u= = ,  ( )0 0 Trθ = ,  ( )0 1 1θ =                                        (3.5) 

 

3.2 First-order system ( )We  

22
2 01

0 12 Re

dud u d Gr
M u

dy dy dy
θ

  
− = − −  

   

                                        (3.6) 

2
1

2
0

d

dy

θ =                                             (3.7) 

Together with boundary conditions 

( ) ( )1 10 1 0u u= = ,  ( )1 0 0θ = ,  ( )1 1 0θ =                           (3.8) 

3.3 Zeroth-order solution  
Solving Eqs. (3.3) and (3.4) using the boundary conditions (3.8), we get 

( )0 1T Tr r yθ = + −                               (3.9) 

( )0 12

1
sinh cosh 1

Re T T T

Gr
u A My r My r y r

M
=  − + − +                           (3.10) 

here 1

cosh 1

sinh
Tr M

A
M

−= . 

3.4 First-order solution  
Solving Eq. (3.7) subject to the boundary conditions in Eq. (3.8), we get 

1 0θ =                                                         (3.11) 

Substituting the Eqs. (3.10) and (3.11) into the Eq. (3.6) and then solving the resulting equation with the 
corresponding conditions, we get  

3 2
2 72 2

1 4
3 54

2

cosh sinh sinh 2
1 3 3

Re
cosh 2 sinh cosh

3 2 2

A A
My A My My

Gr M Mu
A AAM

My y My y My
M M M

 − + −  =   
   + + −

  

                     (3.12) 

where  ( )3 2 2
2 1TA M r A= + , 3

3 12 TA A r M= , ( ) 2
4 2 1T TA r r M= − , ( ) 2

5 12 1 TA A r M= − , 

3 52 4
6 2 2

cosh 2 coshsinh 2 sinh

3 3 2 2

A M A MA M A M
A

M M M M
= − − + , 

3
7 6 2

cosh
sinh

3
A M

A A M
M

 = +  
. 

Finally, the perturbation solutions up to first order for θ  and u  are given by 

( )0 1 0 1T Tr r yθ θ θ θ= + Γ = = + −                                        (3.13) 

and  0 1u u u= + Γ                             (3.14) 

 
 

RESULTS AND DISCUSSION 
 

Fig. 2 shows the effect of Weissenberg number We on u  for 1,M =  0.5,Tr =
  

1Gr =  and Re 1= . It is 

observed that, velocity u  first decreases and then increases with increasing We .  
 

The effect of Hartman number M  on u  for 0.1,We =
 

0.5,Tr =  1Gr = and Re 1=  is represented in Fig. 

3. It is found that, the velocity u  decreases with an increase in Hartmann numberM . 
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Fig. 2. Effect of Weissenberg number We  on u  for 1Gr = , 1,M =  0.5Tr = and Re 1= . 
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Fig. 3. Effect of Hartmann number M  on u  for 0.1, 0.5,TWe r= = 1Gr = and Re 1= . 
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Fig. 4. Effect of Grashof number Gr  on u  for 1, 0.5,TM r= = 0.1We = and Re 1= . 
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Fig. 5. Effect of Reynolds number Reon u  for 1, 0.5,TM r= = 0.1We =  and  1Gr = . 
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Fig. 6. Effect of wall temperature parameter Tr   on u  for 1,M =  1,Gr = 0.1We = and Re 1= . 
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Fig. 7. Effect of wall temperature parameter Tr  on θ  . 
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Fig. 4 depicts the effect of Grashof number Gr  on u  for 1, 0.5,TM r= =
 

0.1We =  and Re 1= . It is 

observed that, the velocity u  increases with increasing Grashof numberGr . 
 

The effect of Reynolds number Reon u  for 1, 0.5,TM r= = 1Gr =  and 0.1We =  is shown in Fig. 5. It is 

noted that, the velocity u  decreases with an increase in Reynolds number Re.  
 

Fig. 6 illustrates the effect of wall temperature parameter Tr  on u  for 1,M =  0.1,We =  1Gr = and 

Re 1= . It is found that, the velocity u  increases with increasing Tr . 

 

Fig. 7 shows the effect of wall temperature parameter Tr  on θ .  It is observed that, the temperatureθ increases 

with an increase in Tr .  
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