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INTRODUCTION

The analysis of free convection in vertical chasn@tcurs in many industrial processes and naturah@mena.
Most of the interest in this subject is due todfplications, for instance, in the design of caplsystems for
electronic devices and in the field of solar energlfection. Some of the related papers on thigctaguch as Aung
and Worku (1986), Cheng et al. (1990), Barlettadg,2999), EI-Din (2003), Boulama and Galanis (20®4rletta
et al. (2005) deal with the evaluation of the terap&re and velocity profiles for the vertical péekflow fully
developed regime. In all the above studies of &eé mixed convection flow in vertical channels hased on the
hypothesis that the fluids are Newtonian. Howewsgause of their fundamental and technological mapoe,
theoretical studies of free, forced and mixed catige flow of non-Newtonian fluids in channels ades are very
important in several industrial processes. Szatiard Rajagopal (1985) have studied the flow difia tgrade fluid
between heated parallel plates caused by exteraasyre gradient and obtained similarity solutiohthe energy
equation, numerically. Akyildiz (2001) have studibeé flow of third grade fluid between heated patgblates.
Chamka et al. (2002) have studied the fully devetbfree connective flow of - micropular fluid bevetwo
vertical parallel plates analytically. Recentlyddigui et al. (2010) have investigated the flonaahird grade non-
Newtonian fluid between two parallel plates sepatdty a finite gap by using the Adomian decompasitnethod.
Williamson fluid is characterized as a non-Newtonfluid with shear thinning property, i.e., visaysidecreases
with increasing rate of shear stress (Dapra andp§&@007).

The use of electrically conducting fluids under thBuence of magnetic fields in various industriess led to a
renewed interest in investigating hydromagnetiavfland heat transfer in different geoemetries. Bample,

Sparrow and Cess (1961) considered the effect wfagnetic field on the free convection heat tranffem a

surface. Garandet et al. (1992) have studied buyydriven convection in a rectangular enclosuréwitransverse
magnetic field. Chamkha (1999) have investigated fronvection effects on three-dimensional flowravgertical

stretching surface in the presence of a magnatld.fBhargava et al. (2003) have studied the efféehagnetic

field on the free convection flow of micropolarifiubbetween two parallel porous vertical plates. &tat al. (2004)
have studied the Hall effects on the unsteady hydgmetic oscillatory flow of a second grade fluithzeem attia
(2005) have investigated the unsteady flow of aydasnducting fluid between parallel porous plat&anyal and
Adhikari (2006) have studied the effects of radiaton MHD fluid flow in vertical channel.

In view of these, we studied the fully developegeficonvection flow of a Williamson fluid in a vesi channel
under the effect of magnetic field. The governingn#inear equations are solved for the velocitydfiand
temperature field using the perturbation techniques effects of various emerging parameters orvéthecity field
and temperature field are studied through grapliefail.

2. Mathematical formulation

The equations governing the flow of an incomprdesigilliamson fluid are given by

2492
Pelagia Research Library



B. Aruna Kumari et al Adv. Appl. Sci. Res., 2012, 3(4):2492-2499

aov =0 (2.1)
dv
—=pf +0r 2.2
P at P (2.2)

where O denotes the constant fluid densiy,is the velocity vector and represents the body force per unit mass.
The operatord / dt denotes the material time derivative afds the stress tensor.
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Fig. 1 The physical model

The constitutive equation for a Williamson fluidgsren by

r=|n, +(m+0.)1-T)" |y 23)
Where T is the extra stress tensd},, is the infinite shear rate, viscosity, is the zero shear rate viscosify, is

the time constant ang is defined as

. 1 - 1
y:\/EZZyﬂyji :\/Eﬂ (2.4)
i

i

where 77 is the second invariant stress tensor. We considéie constitutive Eq. (2.3) the case for whigh = 0
and[ )/ <1 so we can write.

T=-n,(1+Ty)y (2.5)

The above model reduces to Newtonian ffor O

We consider the laminar free convection flow of dlimson fluid between two plates at distanbea apart, as
shown in Fig.1.We choose co-ordinates system, ¥ith axis parallel to the flow whil& - axis is normal to the

flow. A uniform magnetic fieldB, is applied in the transverse direction to the fldlie flow assume steady and

fully developed, i.e., the transverse velocity és@ It is also assumed that the walls are heatédrmly but their
temperatures may be different resulting in asymiméieating situation under these assumptions thatems that
describe the physical situation are
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du, _d|(duY
ﬂd—y2+r@ [@J —UB§U+,Og,B(T _TO):O (2.6)
2
6_12-:0 2.7)
oy

where O is the electrical conductivity.

Subject to the boundary conditions

u(0)=0, T(9=T, u(h)=0, T(h)=T, (2.8)

Introducing the following non-dimensional variables

G:E’g/:z’;(:Z’We:UF,H:T_TO ,rT:Tl_TO (2.9)
U h h noh T,-T, T,-T,
into Egs. (2.6) and (2.7), we get (after droppimg bars)
2 2
d—lZJ+Wei du —MZU+E6’=O (2.10)
dy dy|\ dy Re
2
d—g =0 (2.11)
dy
T,-T )h
where M = Boh\/E is the Hartmann number(Gr = 9,3( 2 7 O) is the Grashof number and
To 4
Uh
Re=— is the Reynolds number.
4
The corresponding dimensionless boundary conditions
u(0)=0, 6(0=r,, u(l)=0, (=1 (2.12)

3. Perturbation Solution

Eqg. (2.10) is non-linear and it is difficult to getclosed form solution. However for vanishidge, the boundary
value problem is agreeable to an easy analytidatiso. In this case the equation becomes linedrcam be solved.
Nevertheless, small suggests the use of perturbation technique teegble non-linear problem. Accordingly, we
write

u=u, +Weu, (3.1)
and
6 =6, +Wef, (3.2)

Substituting equations (2.11) and (2.12) into E88) and (2.9) and boundary conditions (2.10) #irgsh equating
the like powers o¥\Me, we obtain

3.1 Zeroth-order system (Weo)
d’u, Gr

M?u, =——@ 3.3
dy? ° Re? 53
2
c(lijzo =0 (3.9)

Together with boundary conditions
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u(0)=u,()=0 6(0)=r,, 6(1)=1 (3.5)

3.2 First-order system (We)

5 2
LUV _i[[%} ]_ﬂ (3:6)

dy’ dy| \ dy Re

d?g,

dy? =0 (3.7)
Together with boundary conditions

w(0)=u()=0 §g(0)=0, 4(1)=0 (3.8)

3.3 Zeroth-order solution
Solving Egs. (3.3) and (3.4) using the boundaryd@@ms (3.8), we get

g =r+(1-r)y (3.9)
_Gr 1 inh M
Uy —%W[Alsm My =1, costMy +( Er)y+r, | (3.10)
r, coshM - 1
h :T—'
ere Ay sinhM

3.4 First-order solution
Solving Eq. (3.7) subject to the boundary cond#ionEqg. (3.8), we get

g =0 (3.11)
Substituting the Egs. (3.10) and (3.11) into the E}6) and then solving the resulting equationhwihe
corresponding conditions, we get

_ A R
oV 1 3Mzc:oshl\/Iy+A, sintMy ~YE sinhRly

2
Ulz(%] v A A A (3.12)
+—-cosh2My+—-vy siniMy—-—-vy cosM
VE y oM y y M y y
where A, =M?(r2+A?), A =2AEM®, A =2r (1-1,)M?, A =2A(1-r)M?,

A = Asinh2M _ AicoshM _ A sinfM = A cosi
3M? 3Mm? M ™M

_ A, coshM :

= +—=——— | /sinhM .
A= Ar A
Finally, the perturbation solutions up to first erdor & and U are given by
0=6,+Tg=6,=r, +(1-r;)y (3.13)
and U=U,+lU, (3.14)

RESULTSAND DISCUSSION

Fig. 2 shows the effect of Weissenberg num¥éeon U for M =1, r; =0.5, Gr =1 and Re= 1 itis

observed that, velocityl first decreases and then increases with increadigy

The effect of Hartman numbd¥l on u for We=0.1, r, =0.5, Gr =1and Re= 1is represented in Fig.

3. Itis found that, the velocityl decreases with an increase in Hartmann nuivber
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Fig. 2. Effect of Weissenberg number W€ on U for Gr =1, M :1, = 0.5and Re=1.
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Fig. 3. Effect of Hartmann number M on U for WE = 0.1,rT = 0.5Gr =1and Re=1
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Fig. 4. Effect of Grashof number GI' on U for M =1, = 0.5We=0.1and Re= 1
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Fig. 5. Effect of Reynoldsnumber R€on U for M =1, = 05We=0.1and Gr =1.
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Fig. 6. Effect of wall temperature parameter I on U for M =1 Gr =1,We=0.1and Re=1.
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Fig. 4 depicts the effect of Grashof numder on u for M =1,r, = 0.5, We=0.1and Re=1 1t is

observed that, the velocity increases with increasing Grashof nunfbr.

The effect of Reynolds numbdR€on U for M =1,r; = 0.5,Gr =1 andWe = 0.1 s shown in Fig. 5. It is

noted that, the velocityl decreases with an increase in Reynolds nurider

Fig. 6 illustrates the effect of wall temperaturargmeterl; on U for M =1, We=0.1, Gr =1and

Re= 1 itis found that, the velocityl increases with increasink; .

Fig. 7 shows the effect of wall temperature par@mgt on @. 1tis observed that, the temperater'mcreases

with an increase irf; .
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