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ABSTRACT

Author found a simple geometrical representatiorthaf general covariant form of Maxwell's equatiamsl few
related relations. We mention here briefly anotbgquivalent way to formulate the geometrizationheffour fields,
totally need Dirac spin matrices which are usedvastors, do not required tensors knowledge butifeado
simplifications of the four vectors, three vectaygical quantities.
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INTRODUCTION

Symmetries are of fundamental importances in theerijgtion of physical phenomena. The discovery ofoa-

Euclidean geometry posed an extremely complicatethlem to physics, particularly explaining real spavas
Euclidean as have been believed earlier and ia# mot, to what type of non-Euclidean space itdggd. Thus, it is
necessary to see the validity of the axioms expeantaily or extension of Euclidean space to newspsa that the
construction of spin-geometries could be justitigtthe possibility of applying their conclusionsactually existing
object and the observation. The fact that theseclusions are expressed in term of geometry is ofrew

consequence. As to the geometry-structure of qeates comes within the domain of physics[1-3] aadnot be
resolve by means pure geometry. Present formulagtiomides a better description of actual spatitdtien than

earlier workers. It is well established that thedty of relativity uses the formulas of non-Euctidegeometry but it
never says that the Euclidean's geometry must dmadied. In the pseudo Euclidean space, time qaisdhave
different footing than the space coordinates. Bpgbhmetries are the tools for investigating spdtiains but the
non-Euclidean enables finer studies to be madeeidight of preconceived information. It is the fiomed fact that
physical phenomena do not appear same to the obsmrvers in the relative motion, with respect @acheother,
although the physical law must be same for all nkegs (inertial frame). Thus the principle of réléay asserts that
two observations/observers will describe a phygicatess by same equation whenever they are siggion in the

uniform linear motion with respect to each other.

A transformation of space-time that maps any olessra reference in four-dimensional spaces intecarivalent
one cannot affect the description of the physicatesses. Naturally such a transformation obviofwins a group.
The principal of relativity does not determine gualistinctively because an additional postulate¢gired for such
purpose. For unique identification there are thpessibilities.

1.That two observers are equivalent only if they airéeast rests with respect to each other, whiatsiso of all
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rotation and transformation in three- dimensiomace.

2.If in addition, equivalent observers are allowedbtoin relative motion and time remains absolute, have a
relativity group of Newtonian mechanics i.e. Galigroup.

3.If instead of above the two possibilities light pagates with same speed for every observer (ihdréme),

which is now incompatible with absolute time, wetaib the inhomogeneous Lorenz group also callechd@oe
group. This is the relativity group of Einsteintseory of special relativity. Relativity group adsp classical
mechanics to the symmetry properties inherenténtsdmagnetism the principle of relativity can béeaded to the
observers in gravitational field, but interpretatiof general relativity in-group theoretic term ii® longer
straightforward. Once the relativity group of thedary determined, the principal of relativity mbst put in action.
But every theory has its particular advantages @dnagivbacks. The aim of all continuum theories isiévive the
atomic nature of the electricity from the propettat the differential equations expressing the aydaw have
only discrete number of solutions which are evemgrghregular static and spherically symmetric. Irtipalar one
such solution should exist for each of positive amedjative kind of electricity. It is clear that thifferential

equations, which have this property, must have dicated structure. It seems that such complexitplofsical law
itself speaks against the continuum theory. Thisriéquired from a physical point of view that #adstence of an
atomicity is itself so simple and basic, it shoaldo be interpreted in simple and elementary mabypeheory and
should not speak, appeals as a trick in analydie. dontinuum theory forced to introduce a spedatds, which
keep the coulomb repulsive forces in the interibthe electrical elementary particle in equilibriuthsuch forces
are electrical in nature, then we have to assigabmolute meaning to the potential in the domaifoof-vector and
three-vector which leads to the different typesliffculties.

2.Four Vector Algebra:

Indifference to location of the origin of coordieasystem is called homogeneity of space and indiffee to
direction of axis is called isotropy of space. Taquirement of homogeneity of space is expressddvayiance of
equations with respect to shift of origin. The dipres are said to be invariant when they presenmed forms on
transformation to another inertial reference framfiehe value of some physical quantity remains saene after
transformation from one frame of reference to drentthen that quantity is said to be invariante Téquirement of
isotropy of space is expressed by requiring comagaof our equations with respect to the rotatibthe axis of
reference frame. The equations that describe thsigdl law must be covariant in form i.e. its foisnindependent
of the choice of the inertial frame or both theesichve the same tensor character. Thus a scalaotdas equated to
a component of a vector nor can one term in a seira tensor of second rank, while another one, soteof first
rank. If we express the physical law in four-vefttmrsor form/equivalent form, then the resultingiagpns will be
automatically be covariant with respect to a giekss of transformations.

From the relativity, we have following basic quadra&xpression as

(Py/meC)’ - (PImec)’ = 1 (N

Here we view above equation by defining any physjcantity say A,

A: =(AtA) 2

and another physical B as,

B, =(B.+B) (3)
Here we postulate that any physical vector quantitigt be represented through following mapping ryivelow

A= A6 =A,-6,+tA,. 0p+A .0 (4)

And
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B— B -6 =B,.6,+B,.6,+B..6, (5)
and any physical scalar quantity through followmgpping given below

A Ao =A, 0o, (6)

Where we have following matrix algebra.

6..6,=] 6, =-1 (7)
a,b,c are cyclic and
6,.6,=0,.0, =6.6; =6, G, =0, (8)

So that one can handle simultaneously scalar, vgatantity, scalar product and vector product gasken form
following equation.

A-B=(A -B)+j(A O B) 9)

Now we define product rule so that new physicalngit\asuch that its existence would depend upoA aad B
given by following equation

A, B =C (10)
C: = Caar T (Cpolart] " Caxial) (11)
Cscala = (Ao Bo -A- B) (12)
Cpola| = (Ao B'A'Bo) (13)
Caxia\ = (A D B) (14)

This definition show that C contain scalar, polactor and axial-vector parts whereas A and B corgealar and
vector part.

Let
lo =y

And

l=vy-B

So that we can have unitary quantity by followimgiation.
« = (b £1) (15)

I =(LF1) (16)
so that it yield well known identity given below.

|t|i =(v?- 4P oo =0 a7
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Now using above postulate we have following expogsr momentum &

P. =(R,*P)=(RB tP)=RB-06,%(P;.6,+P,.6,+P; .0¢) (18)

and if we use idea of quantum mechanics the we fudlesaving mapping

which can be used to obtain differential of physgaantity. -
2.1 Invariant Physical Scalar Quantity and Four-vetor representation:
Now with the help of above set of postulate, définis and equations only we can easily construfferdnt basic

invariant physical quantity and its correspondingrfvector representation very easily. The comptmeh four-
vector velocity can be obtained from an observedriant velocity of light ¢ as a transformationatén as

U, =l-c=(ytyB)-c=¢-c 2y-V) (20)

Similarly four-vector for momentum can be obtain as

P. =l -m -c=(yxy-p)mo-c=(R+P) (21)
It is known in the context of special relativityatha charge distribution that is static in one feamill appear to be a

current distribution in another inertial frameirtiplies that the current and charge densities atalistinct entities
and their relationship may be presented with tHp bkrest charge density as given below.

Jie=lipoC=(yty-B) po-c=(4dxJ) (22)
Lastly we would construct four-vector potentialfr@calar potential as given below.
A=l =(vxy-B)- o =(AZA) (23)

2.2 Invariant Physical Vector Quantity and Four-vedor representation:
If the momentum of a particle

P=m-V
then its four-vector would be as
P. =l mg-V=(yxy-B) mV=(x8P,P) (24)

If the force on a particle is F then Minkowski fercan be smoothly obtained as

Ki =1oF= (y£yp) F=(typFy -Fj-y (BOF)) (25)
Above equation shows that

(pUF)=0

2.3 Transformation of Four-vector Quantity:
General transformation properties of any four-vedtécharge-current) are given below.

*

e -3 =J ¢ (26)
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I = gaa T (3 pol 213 aia) (27)
J scalar =(J-Jo - -J) (28)
J o = (lo-3 =1-3) (29)
J aia =(1 0 J) (30)

2.4 Electrodynamics:

We can obtain definition of electric field, magmefield and Lorentz condition simultaneously whea @onsider
following expression for force which can be obtaingith the help of four-differentiation of four-vier potential
ie.

Fi =(0t0) (AtA)=(Gcaim = (Gpoia ] Gaia) )i 31)
Gocala =@ + Ao+ - A)=0 (32)
Gooiar = (@ - A+0- A= E (33)
Gaxias = (0LJA) =B (34)

Hence an easy path to get Lorentz condition aloitily an regular definition of electric field and nmegic field.

In the next step ,using the four-differential operave can easily obtain a set of homogeneous/iaig@meous
Maxwell's equations simultaneously from followinggle equation.

(0otd) - (2E+]B)=(4n~c - (4 H) (35)
(4n+c) - L =0-E F j-0-B (36)
(4n+c) -J=(00B- 8- E)F j-(60E+06,B) (37)

So on separating real and imaginary part we hatatament of Coulomb's Law.

(4n<c)- 3 =0- E (38)
and showing that absence of free magnetic poles.

0 -B=0 (39)

Similarly we have a statement for Ampere's law.

9; :j scala T (c- g* polal + j- c- g* aia) (52)

g* scala — Y (g) -V g) (53)
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c g* pola =Y (C 9 —B Q) (54)

C- g aa =7 -(V O 9) (55)
But for electrostatic configuration the magnetield in K is given by

B=pL E
so that
(Q-V - -9g)=(E-E-B:-B) ~81) (56)

Let the interaction between electromagnetic field #our-vector potential eld a physical quantityrbpresented as
a. =A.- B =(A, xA)- (xE+] ‘-B)=(-A-Ex(A,-E+A 0 B) (57)

and imaginary part of four-vector is

(tA-B+(A,-B-A [0 E)=0 (58)

which is zero. So that we can easily construcbofeihg very useful expression in a direction to ¢amgion of
Lagrangian density for electromagnetic field-paetioteraction as

Lt = (ao * ‘?) ' (% * a) = ( Lscalar i'(Lpolar * J ' Laxial)) (59)

Now electromagnetic Lagrangian density for fieligid and field-particle could be obtain from singlguation

Lscala =(80 : ae"'a' a)=0 (60)
along with following conditions.

I-polar :(ao cato- 80):0 (61)

L axial = (6 U a) =0 (62)
Invariant interaction between the charged particié eld is
koA =0 (63)

F

Ot O sca £ ( Opola| ij ' Oaxia) (64)

Following are the natural condition that the int#i@n between the charged particle and field tanbariant.

ODO|aI:(‘13 ‘A - J'Ao):o (66)

Oaxial = (‘] DA):O (67)
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We can define generalize momentum using superpositiinciple as

P. =(R+e-AJc)x(P+e-Alc) (68)
Taking four-differentiation of above generalize mamum we have equivalent statement of Newton's ftava

particle- field interaction where

( Po - C )
represent a potential energy and the term

0,(P-c)=F (69)
is interpreted as a rate of change of momentumpafricle
Fi =(0:%0 ) (P-¢)= (FKcaa = (Fpolw ] * Faxia) ) (70)

with additional requirements in the form of an ez i.e. equation of continuity etc.

Fscalaz(ao' (Po'c'l'er)"'a'(P'C"'e'A)):O (71)

and Newton's statement under equilibrium conditien

Foola =(0g - (P-Cc+e- A)+0 - (P, -c+e -A;)=0 (72)

Note that curl of a particle momentum and magneild are directly connected.

Faxia =(0 O (P-c+e-A))=0 (73)

The Lagrangian treatment of mechanics is basedemptinciple of least action.in a nonrelativistiechanics the
system is describe by generalized coordinate atatities i.e.(a displacement, momentum representatiThe

Lagrangian L is a functional of coordinate and eéles and the action A is de ned as the time iallegf Lagragian
L along a path of the system i.e. in integral fammhave a following definitions.

P. =((R+Q)£(P+Q)) (74)
ds. =(dx F dx) (75)
P. - ds =Ps (76)
" T T et ! 77)
PScaa = ((R+ Q) d% - (P+Q) - dx) (78)
PSoia = ((R+Qo) - dx —(P+Q) - dx) =0 (79)
PSwia = (P+Q) [ dx=0 (80)
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[L mt=-[P s,

(81)

So that we have relativistic Lagrangian for a senpédrticle as given below.
L=-m & 1-5°-(Q-c-Q - V) (82)
(Q-c-Q -v)= () -(1-B?) (83)

On similar line the Lagrangian for a single patici an electromagnetic field could be defined.
CONCLUSION

Author would like to mention that no referencegarticular are cited in the paper, and have orflgrred the well
established theoretical development reported ies@al text book[1-3]. Hence found another equinvalgay, an

interesting simple representation technique withpd® mapping to obtain covariant form of physicaantity along
with additional relations.
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