Available online at www.pelagiaresearchlibrary.com

Pelagia Research Library

Advances in Applied Science Research, 2012, 3 (3):1266-1270

Fixed Point Theorems for Mappings

Vishal Gupta and Richa Sharma

Department of Mathematics, Maharishi Markandeshwar University, Mullana, Ambala, Haryana, (India)

ABSTRACT

Some fixed point theorems for two metric spaces was proved by B.Fisher[1]. Here we also prove fixed point theorems for two pair of mappings in which one of them is continuous, on two metric space.

Key Words: complete metric space, common fixed point 2010 AMS Subject Classification: 54H25, 47H10.

INTRODUCTION

Related fixed point theorems on two metric spaces have been studied by R.K. Namdeo et al [2], P.P. Murthy et al [3], B. Fisher [1], R.K. Namdeo et al [4], L. Kikina et al [5]. In this paper, we prove a related fixed point theorem for two mappings, not all of which are necessarily continuous on two metric space. Our theorem is generalization of Theorem (2.1).

Definition 1.1 Let (X,d) be a metric space, a sequence $\{x_n\} \in X$ is said to be Cauchy sequence if $d(x_m, x_n) \to 0$ as $m, n \to \infty$.

Definition 1.2 A metric space (X, d) is said to be complete if and only if every Cauchy sequence in X converges to a point of X.

Definition 1.3 Let (X,d) be a metric space and $A \subseteq X$. Let $F = \{G_r : r \in A\}$ be collection of subsets of X. Then F is called cover of the set A if $A \subseteq \bigcup_{r \in A} G_r$. If each G_r is an open set in X. Then F is called an open cover of the set A. A cover F is called a finite cover if it has finite members. If it is many members it is called infinite cover.

Definition 1.4 Let (X, d) be a metric space and $A \subseteq X$. A is said to be compact set if every open covering of A is reducible to finite subcovering. In other words, if $F = \{G_r : r \in A\}$ be an open cover for the set A. Then

A is compact if \ni a finite many indices $\Gamma_1, \Gamma_2, \dots, \Gamma_n$. If $A \subseteq \bigcup_{i=1}^n G_{\Gamma_i}$.

The following fixed point theorem was proved by B. Fisher [1].

Pelagia Research Library

Theorem 1.1 Let (X, d) and (Y, ...) be complete metric spaces. If $T: X \mapsto Y$ and $S: Y \mapsto X$ satisfying the following inequalities, $d(Sy, STx) \leq c \max \{...(y, Tx), d(x, Sy), d(x, STx)\}$ and $...(Tx, TSy) \leq c \max \{d(x, Sy), ...(y, Tx), ...(y, TSy)\}, \forall x \in X, y \in Y$ where $0 \leq c < 1$ then *ST* has a unique fixed point $z \in T$ and *TS* has a unique fixed point $w \in Y$. Further Tz = w and Sw = z.

RESULTS

We now prove the following related fixed point theorems:

Theorem 2.1 Let (X, d_1) and (Y, d_2) be complete metric spaces. Let $A, B: X \mapsto Y$ and $S, T: Y \mapsto X$ satisfying the inequality.

$$d_1(Sy, TBx) \leqslant c \max\left\{ d_1(x, Sy), d_1(x, TBx), d_2(y, Bx) \right\}$$

$$(2.1)$$

$$d_{2}(Bx, ATy) \leq c \max \left\{ d_{2}(y, Bx), d_{2}(y, ATy), d_{1}(x, Ty) \right\}$$

$$\forall x \in X \text{ and } y \in Y, \text{ where } 0 \leq c < 1.$$

$$(2.2)$$

If one of the mappings A, B, S, T is continuous then TB has a unique common fixed point $z \in X$ and AT has unique common fixed point $w \in Y$. Further Az = Bz = w and Sw = Tw = z.

Proof. Let *x* be an arbitrary point in *X* and

$$Ax = y_1, Sy_1 = x_1, Bx_1 = y_2, Ty_2 = x_2, Ax_2 = y_3$$

and in general, let $Sy_{2n-1} = x_{2n-1}, Bx_{2n-1} = y_{2n}, Ty_{2n} = x_{2n}, Ax_{2n} = y_{2n+1}$ for $n = 1, 2, ...$
Using inequality (2.1), we get, $d_1(x_{2n}, x_{2n+1}) = d_1(Sy_{2n}, TBx_{2n})$
 $\leq c \max \{d_1(x_{2n}, Sy_{2n}), d_1(x_{2n}, TBx_{2n}), d_2(y_{2n}, Bx_{2n})\}$
 $= c \max \{d_1(x_{2n}, x_{2n}), d_1(x_{2n}, x_{2n+1}), d_2(y_{2n}, y_{2n+1})\}$
Which implies, $d_1(x_{2n}, x_{2n+1}) \leq cd_2(y_{2n}, y_{2n+1})$
Now using inequality (2.2), we have,
 $d_2(y_{2n}, y_{2n+1}) = d_2(Bx_{2n-1}, ATy_{2n})$
 $\leq c \max \{d_2(y_{2n}, y_{2n+1}), d_2(y_{2n}, ATy_{2n}), d_1(x_{2n-1}, Ty_{2n})\}$
 $= c \max \{d_2(y_{2n}, y_{2n+1}), d_2(y_{2n}, y_{2n+1}), d_1(x_{2n-1}, Ty_{2n})\}$
Which implies, $d_2(y_{2n}, y_{2n+1}), d_2(y_{2n}, x_{2n+1}), d_1(x_{2n-1}, x_{2n})\}$
Which implies, $d_2(y_{2n}, y_{2n+1}), d_2(x_{2n}, x_{2n+1})$, $d_1(x_{2n-1}, x_{2n})\}$
Which implies, $d_2(y_{2n}, y_{2n+1}) \leq cd_1(x_{2n-1}, x_{2n})$
Which implies, $d_2(y_{2n}, y_{2n+1}) \leq c^2d_1(x_{2n-1}, x_{2n})$
Which implies, $d_2(y_{2n}, y_{2n+1}) \leq c^2d_1(x_{2n-1}, x_{2n})$
Now using inequalities (2.3) and (2.4), we have
 $d_1(x_{2n}, x_{2n+1}) \leq cd_2(y_{2n}, y_{2n+1}) \leq c^2d_1(x_{2n-1}, x_{2n}) \leq \cdots \leq c^{2n}d_1(x, x_1)$ for $n = 1, 2, ...$
Since $c < 1$, it follows that $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences with limits z in X and w in Y .
Now using inequality (2.2), we have,
 $d_2(Bz, y_{2n}) = d_2(Bz, ATy_{2n-1})$
 $\leq c \max \{d_2(y_{2n-1}, Bz), d_2(y_{2n-1}, ATy_{2n-1}), d_1(z, Ty_{2n-1})\}$
 $= c \max \{d_2(y_{2n-1}, Bz), d_2(y_{2n-1}, y_{2n}), d_1(z, x_{2n-1})\}$
Letting $n \to \infty$, we get, $d_2(Bz, w) \leqslant cd_2(w, Bz)$

Pelagia Research Library

So, Bz = w = BSw. Using inequality (2.1), we have, $d_1(Sw, x_{2n+1}) = d_1(Sw, TBx_{2n})$ $\leq c \max \{d_1(x_{2n}, Sw), d_1(x_{2n}, TBx_{2n}), d_2(w, Bx_{2n})\}$ $= c \max \{d_1(x_{2n}, Sw), d_1(x_{2n}, x_{2n+1}), d_2(w, y_{2n+1})\}$ Letting $n \to \infty$, $d_1(Sw, z) \leq cd_1(z, Sw)$ So, Sw = z = SAz. Again using inequality (2.1), we have, $d_1(z, Tw) = d_1(Sw, TBz)$ $\leq c \max \{d_1(z, Sw), d_1(z, TBz), d_2(w, Bz)\}$ $d_1(z, Tw) \leq c \max \{d_1(z, z), d_1(z, Tw), d_2(w, w)\}$ $d_1(z, Tw) \leq cd_1(z, Tw)$ Thus, z = Tw or Tw = z = TBz.

The same result of course hold if one of the mappings B, S, T is continuous instead of A.

Uniqueness

To prove uniqueness, suppose that TB has a second fixed point z'. Then inequality (2.1) and (2.2), we have, $d_1(z', z) = d_1(SAz', TBz)$

$$\leqslant c \max \left\{ d_1(z, SAz'), d_1(z, TBz), d_2(Az', Bz) \right\}$$

$$= c \max \left\{ d_1(z, z'), d_1(z, z), d_2(Az', Bz) \right\}$$

$$d_1(z', z) \leqslant c d_2(Az', Bz)$$
Now, $d_2(Bz, Az') = d_2(Bz, ATAz') \leqslant c \max \left\{ d_2(Bz, Az'), d_2(Az', ATAz'), d_1(z, TAz') \right\}$
Thus, $d_2(Bz, Az') \leqslant c d_1(z, z')$
and so, $d_1(z, z') \leqslant c d_2(Az', Bz) \leqslant c^2 d_1(z, z')$ since $c < 1$, the uniqueness of z follows. Similarly w is the unique fixed point of AT . This completes the proof of the theorem.

Corollary 2.1 Let (X, d_1) be a complete metric space and let $A, B, S, T : X \mapsto X$ satisfying the inequalities,

$$d_1(Sy,TBx) \leqslant c \max\left\{d_1(x,Sy),d_1(x,TBx),d_1(y,Bx)\right\}$$
(2.5)

$$d_1(Bx, ATy) \leq c \max\left\{ d_1(y, Bx), d_1(y, ATy), d_1(x, Ty) \right\}$$

$$\forall x, y \in X \text{, where } 0 \leq c < 1.$$

$$(2.6)$$

If one of the mappings A, B, S, T is continuous then TB has a unique common fixed point z and AT has unique fixed point w. Further Az = Bz = w and Sw = Tw = z.

Theorem 2.2 Let (X, d_1) and (Y, d_2) be compact metric spaces. Let $A, B: X \mapsto Y$ and $S, T: Y \mapsto X$ be continuous mappings, satisfying the inequality,

$$d_{2}(Bx, ATy) < \max \left\{ d_{2}(y, Bx), d_{2}(y, ATy), d_{1}(x, Ty) \right\}$$

$$\forall x \in X \text{ and } y \in Y \text{ with } x \neq Ty \text{ and}$$

$$(2.7)$$

$$d_1(Sy,TBx) < \max\left\{d_1(x,Sy),d_1(x,TBx),d_2(y,Bx)\right\}$$
(2.8)

Pelagia Research Library

 $\forall x \in X \text{ and } y \in Y \text{ with } y \neq Bx$.

Then TB has a unique common fixed point $z \in X$ and AT has unique fixed point $w \in Y$. Further Az = Bz = w and Sw = Tw = z.

Proof. Suppose first of all that there exist $z \in X$ and $w \in Y$ such that either,

 $\max \{ d_2(w, Bz), d_2(w, ATw), d_1(z, Tw) \} = 0$ or, $\max \{ d_1(z, Sw), d_1(z, TBz), d_2(w, Bz) \} = 0$

Then it follows that,

$$ATw = w, z = TBz, Sw = z$$

Tw = z, Bz = w, Az = w

Now suppose that it is possible for no such z and w to exist then, $\max \{d_2(y, Bx), d_2(y, ATy), d_1(x, Ty)\} \neq 0, \forall x \in X \text{ and } y \in Y \text{ and so the real valued function}$

$$f(x, y) \text{ defined on } X \times Y \text{ by } f(x, y) = \frac{d_2(Bx, ATy)}{\max\{d_2(y, Bx), d_2(y, ATy), d_1(x, Ty)\}} \text{ is continuous.}$$

Since $X \times Y$ is compact, f attains its maximum value c_1 , because of inequality $c_1 < 1$ and $d_2(Bx, ATy) \leq c_1 \max \{ d_2(y, Bx), d_2(y, ATy), d_1(x, Ty) \} \forall x \in X \text{ and } y \in Y \}$.

Similarly there exist $c_2 < 1$ such that $d_1(Sy, TBx) \leq c_2 \max \{ d_1(x, Sy), d_1(x, TBx), d_2(y, Bx) \}$ $\forall x \in X \text{ and } y \in Y.$

It follows that the conditions of Theorem (2.1) are satisfied with $c = \max\{c_1, c_2\}$ and so once again there exist $z \in X$ and $w \in Y$ such that inequalities hold.

Uniqueness

Now suppose that TB has a second distinct fixed point z'. Then $Az' \neq Bz$ since Az' = Bz = w. This implies z' = TBz' = Tw = zGiving a contradiction. Thus on using inequality (2.8), we have,

For virg a contradiction. Thus on using inequality (2.3), we have, $d_{1}(z',z) = d_{1}(SAz',TBz) < \max \{d_{1}(z,SAz'), d_{1}(z,TBz), d_{2}(Az',Bz)\}$ $= \max \{d_{1}(z,z'), d_{1}(z,z'), d_{2}(Az',Bz)\}$ But on using inequality (2.7), we have since $z' \neq z$. $d_{2}(Az',Bz) = d_{2}(Bz,Az') = d_{2}(Bz,ATAz')$ $< \max \{d_{2}(Bz,Az'), d_{2}(Az',ATAz'), d_{1}(z,TAz')\}$ $\Rightarrow d_{2}(Az',Bz) < d_{1}(z,z')$ Thus $d_{1}(z',z) < d_{2}(Az',Bz) < d_{1}(z,z')$ giving a contradiction. The uniqueness of z follows. Similarly, w is the unique fixed point of AT.

This completes the proof of theorem.

Corollary 2.2 Let (X, d_1) be a compact metric space. If $A, B, S, T : X \mapsto X$ are continuous mappings satisfying the inequalities, $d_2(Bx, ATy) < \max\{d_1(y, Bx), d_1(y, ATy), d_1(x, Ty)\}$ $\forall x \in X \text{ and } y \in Y \text{ with } x \neq Ty \text{ and}$

Pelagia Research Library

 $d_1(Sy,TBx) < \max\left\{d_1(x,Sy), d_1(x,TBx), d_1(y,Bx)\right\}, \forall x \in X \text{ and } y \in Y \text{ with } y \neq Bx.$

Then *TB* has a unique fixed point z and *AT* has a unique fixed point w. Further Az = Bz = w and Sw = Tw = z.

REFERENCES

- [1] Fisher B., Glasnik Matem., 16(1981), no.36, 333-337.
- [2] Namdeo R.K., and Jain S., Hacettepe J. Math. Stat., 32(2003), 7-11.
- [3] Murthy P.P., and Fisher B., Kyungpook Math. J., 37(1997), 343-347.
- [4] Namdeo R.K., and Fisher B., Non-linear Analysis Forum, 8(2003), no.1, 23-27.
- [5] Kikina L. and Kikina K., Int. J. Math. Analysis, 4(2010), no.30, 1483-1489.