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ABSTRACT

In this paper, the concepts of metric space and pseudo compact tichonov space has been introduced. We have
proved some fixed point theorems for the self mapping satisfying a new contractive condition in compact metric
spaces and pseudo compact metric spaces.
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INTRODUCTION

There are several generalizations of classicalraotibn mapping theorem in Banach space [1]. InB8élstein [2]
established the existence of a unique fixed pdirt self maprl of a compact metric space satisfying the inequalit
d(Tx, Ty) < d(x,y). Which is generalization of Banach. In the pfast years a number of authors such as Iseki [3],
fisher [4] Bhardwaj [5] have proved the numbermtEresting result on compact metric space. Weiadinfy some
fixed point theorems in psedo compact tichonov spac

Recently, Park [8] introduced the notion of intoiitistic fuzzy metric spaces as a generalizatiofunfy metric
spaces. Kutukcu[2] introduced the notion of intuiistic Menger spaces with the help of t-norms aodnorms as
a generalization of Menger space due to MengerR8tently in 2009, using the concept of subcomfeatitaps,
Bouhadjera et. al. [1] proved common fixed poirgdiems in metric space. Using the concept of weeddypatible
maps in intuitionistic Menger space, Pant et. dlpfoved a common fixed point theorem for six se#ps without
appeal to continuity.

[I. PRELIMINARIES

Definition A. Pseudo-compact tichonov spack topologicalspaceX is said to be Pseudo-compact space, if every
real valued continuous function ofis bounded. It may be noted that every compaatesgmpsedo compact, but
converges may not be true. Tichonov space , we meampletely regular Housdroff space.

Now we prove, following theorems.
Definition B. Let T be a self continuous mapping.spaceX is called a fixed point space, if every continuous
mappingT of X into itself,

has a fixed point.

Theorem 1. Let P be a Psedo compact Tichonov spacedibd a non negative real valued continuous functih s
thatd : Tx T — R, satisfying the condition,

(Dd(x,x) = 0vVx €X

(i)d (x,z) <d(x,y) + d(y,2)V x,y,z € X

(@i)d (Tx, Ty) < af{d(x,Tx)} +d(y, Ty) + B{d(x,Ty) + d(y,Tx) +y d(x,y)}
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wherea Sy =0 such that

0 <a+pf+y<land 0<1-a—-pB <1

ThenT has unique fixed point iB.

Proof. We define a functior® : P — R" by @¢(P) = d(p, Tp), for all p € P, whereR" is the set of positive real
numberslt is clear that) is continuous generated by the composition of¢aatinuous functiol and d. SinceP is
psedocompact Tichonove space. Every real valuetihcmus function oveP is bounded and attend its bounds.

Thus there exists a pointe P such thatd(u) = inf [@(p) : p € P]. Now we suppose thatis a fixed point forT, if
not;

Let us@(Tu) = d(Tu, TA)

From above
d(Tu, T?u) < af{d(u,Tu) + d(Tu, T?*w)} + f{d(u, T?u) + d(Tu, Tw)} + v d(u, Tw)

1—a-pR)d(Tu,T?>u) < (a + B +y)d(u, Tu)

+B+
d(Tu, T?u) < atpry d(u, Tu)
1—a-p

O(Tu) < O(u)

uisafixed point of Tin P.

Uniqueness. Let us assume thatis another fixed poindifferent fromu in P, so that

d(u, w) =d(Tu, Tw).

From (3),

d(Tu, Tw) < a{d(u,Tu) + dw, Tw)} + B{d(w, Tw) + d(w, Tw)} + y d(u, w)d(Tu, Tw) < (28 + y)d(u,w)
which contradiction;

uisunique fixed point of T
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