

Pelagia Research Library

Advances in Applied Science Research, 2014, 5(3):389-390

Fixed point theorem in pseudo compact space

Rajesh Shrivastava*, K. Qureshi** and Kiran Rathore*

*Department of Mathematics, Govt. Science & Commerce College, Benazir, Bhopal, (MP) **Higher Education Department, Govt. of M. P., Bhopal, (MP)

ABSTRACT

In this paper, the concepts of metric space and pseudo compact tichonov space has been introduced. We have proved some fixed point theorems for the self mapping satisfying a new contractive condition in compact metric spaces and pseudo compact metric spaces.

Keywords: Fixed point, Compact Metric space, pseudo compact Tichonov space, self mapping.

INTRODUCTION

There are several generalizations of classical contraction mapping theorem in Banach space [1]. In 196 Edelstein [2] established the existence of a unique fixed point of a self map *T* of a compact metric space satisfying the inequality d(Tx,Ty) < d(x,y). Which is generalization of Banach. In the past few years a number of authors such as Iseki [3], fisher [4] Bhardwaj [5] have proved the number of interesting result on compact metric space. We are finding some fixed point theorems in psedo compact tichonov spaces.

Recently, Park [8] introduced the notion of intuitionistic fuzzy metric spaces as a generalization of fuzzy metric spaces. Kutukcu[2] introduced the notion of intuitionistic Menger spaces with the help of t-norms and t-conorms as a generalization of Menger space due to Menger [3]. Recently in 2009, using the concept of subcompatible maps, Bouhadjera et. al. [1] proved common fixed point theorems in metric space. Using the concept of weakly compatible maps in intuitionistic Menger space, Pant et. al. [7] proved a common fixed point theorem for six self maps without appeal to continuity.

II. PRELIMINARIES

Definition A. Pseudo-compact tichonov space : A topological space X is said to be Pseudo-compact space, if every real valued continuous function on X is bounded. It may be noted that every compact space is psedo compact, but converges may not be true. Tichonov space , we mean a completely regular Housdroff space.

Now we prove, following theorems.

Definition B. Let T be a self continuous mapping. A space X is called a fixed point space, if every continuous mapping T of X into itself,

has a fixed point.

Theorem 1. Let *P* be a Psedo compact Tichonov space and *d* be a non negative real valued continuous function such that $d: T \times T \rightarrow R^+$, satisfying the condition, (*i*) $d(x, x) = 0 \forall x \in X$ (*ii*) $d(x, z) \le d(x, y) + d(y, z) \forall x, y, z \in X$

 $(iii)d(Tx,Ty) \le \alpha \{d(x,Tx)\} + d(y,Ty) + \beta \{d(x,Ty) + d(y,Tx) + \gamma d(x,y)\}$

where $\alpha \beta \gamma \ge 0$ such that $0 \le \alpha + \beta + \gamma < 1$ and $0 \le 1 - \alpha - \beta < 1$ Then *T* has unique fixed point in *P*.

Proof. We define a function $\emptyset : P \to R^+$ by $\emptyset(P) = d(p, Tp)$, for all $p \in P$, where R^+ is the set of positive real numbers. It is clear that \emptyset is continuous generated by the composition of two continuous function *T* and *d*. Since *P* is psedocompact Tichonove space. Every real valued continuous function over *P* is bounded and attend its bounds.

Thus there exists a point $u \in P$ such that $\phi(u) = \inf [\phi(p) : p \in P]$. Now we suppose that u is a fixed point for T, if not;

Let us $\emptyset(Tu) = d(Tu, T^2u)$

From above $d(Tu,T^2u) \leq \alpha \{d(u,Tu) + d(Tu,T^2u)\} + \beta \{d(u,T^2u) + d(Tu,Tu)\} + \gamma \ d(u,Tu)$

 $(1-\alpha-\beta)d(Tu,T^2u)\leq (\alpha+\beta+\gamma)d(u,Tu)$

$$d(Tu, T^{2}u) < \frac{\alpha + \beta + \gamma}{1 - \alpha - \beta} d(u, Tu)$$

 $\emptyset(Tu) \le \emptyset(u)$

u is a fixed point of T in P.

Uniqueness. Let us assume that w is another fixed point different from u in P, so that

d(u, w) = d(Tu, Tw).

From (3),

 $d(Tu, Tw) \le \alpha \{ d(u, Tu) + d(w, Tw) \} + \beta \{ d(u, Tw) + d(w, Tu) \} + \gamma d(u, w) d(Tu, Tw) \le (2\beta + \gamma) d(u, w) \}$

which contradiction;

u is unique fixed point of T

REFERENCES

[1] Banach: Fund. Math., 3: 133-181 (1922).

[2] Edekstgein M: Proc. Amer, math, soc., 12: 7-10 (1961).

[3] Iseki K: Math. Notes kobe university, 5: (1997).

[4] B.Fisher: *IJPAM* 8(4): 479-481(1977).

[5] R.Bhardwaj, *IJMA*, 2: 543-550 (2008).

[6] Pathak J.K, Indian J.Pure and Applied Math.j.15(5):180-186 (1986).