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ABSTRACT 
 
We analyse the effect of chemical reaction on non-Darcy convective Heat and Mass transfer flow of a viscous 
electrically conducting fluid through a porous medium in a vertical channel with  constant  heat sources.  The 
governing equations  flow, heat and mass transfer are solved by using Galerkin finite element technique with 
quadratic polynomial approximations. The approximation solution is written directly as a linear combination of 
approximation functions with unknown nodal values as coefficients. Secondly, the approximation polynomials are 
chosen exclusively from the lower order piecewise polynomials restricted to contiguous elements.  The velocity, 
temperature, concentration, shear stress and rate of Heat and Mass transfer are evaluated numerically for different 
values of G,M,D-1,N,Sc,γ and α. 
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INTRODUCTION 
 

Non – Darcy effects on natural convection in porous media have received a great deal of attention in recent years 
because of the experiments conducted with several combinations of solids and fluids covering wide ranges of 
governing parameters which indicate that the experimental data for systems other than glass water at low Rayleigh 
numbers, do not agree with theoretical predictions based on the Darcy flow model.  This divergence in the heat 
transfer results has been reviewed in detail in Cheng [5] among others.  Extensive effects are thus being made to 
include the inertia and viscous diffusion terms in the flow equations and to examine their effects in order to develop 
a reasonable accurate mathematical model for convective transport in porous media.  The work of Vafai and Tien 
[29] was one of the early attempts to account for the boundary and inertia effects in the momentum equation for a 

porous medium.  They found that the momentum boundary layer thickness is of order of ε
k .  Vafai and 

Thiyagaraja [30] presented analytical solutions for the velocity and temperature fields for the interface region using 
the Brinkman Forchheimer –extended Darcy equation.  Detailed accounts of the recent efforts on non-Darcy 
convection have been recently reported in Tien and Hong [6], Cheng [5] and Kladias and Prasad [10].  Here, we will 
restrict our discussion to the vertical cavity only.  Poulikakos and Bejan [17] investigated the inertia effects through 
the inclusion of Forchheimer’s velocity squared term, and presented the boundary layer analysis for tall cavities.  
They also obtained numerical results for a few cases in order to verify the accuracy of their boundary layer analysis 
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for tall cavities.  They also obtained numerical results for a few cases in order to verify the accuracy of their 
boundary layer solutions. This result in reversal of flow regimes from boundary layer to asymptotic to conduction as 
the contribution of the inertia term increases in comparison with that of the boundary term.  They also reported a 
criterion for the Darcy flow limit. 
 
The Brinkman – Extended – Darcy modal was considered in Tong and Subramanian [28] to examine the boundary 
effects on free convection in a vertical cavity.  While Tong and Subramanian performed a Weber – type boundary 
layer analysis, it was shown that for a fixed modified Rayleigh number, Ra, the Nusselt number; decrease with an 
increase in the Darcy number; the reduction being larger at higher values of Ra. A scale analysis as well as the 
computational data also showed that the transport term (v.∇)v, is of low order of magnitude compared to the 
diffusion plus buoyancy terms. A numerical study based on the Forchheimer-Brinkman-Extended Darcy equation of 
motion has also been reported recently by Beckerman et al [4].  They demonstrated that the inclusion of both the 
inertia and boundary effects is important for convection in a rectangular packed – sphere cavity. Ruksana Begum et 
al [24] have discussed non-darcy convective heat transfer flow through a vertical channel with constant heat flux. 
 
Also in all the above studies the thermal diffusion effect (known as Soret effect) has been neglected.  This 
assumption is true when the concentration level is very low.  Therefore, so ever, exceptions.  The thermal diffusion 
effects for instance, has been utilized for isotropic separation and in mixtures between gases with very light 
molecular weight (H2.He) and the medium molecular weight (N2, air) the diffusion – thermo effects was found to be 
of a magnitude just it can not be neglected.  In view of the importance of this diffusion – thermo effect, recently Jha 
and singh [8] studied the free convection and mass transfer flow in an infinite vertical plate moving impulsively in 
its own plane taking into account the Soret effect.  Kafousias [9] studied the MHD free convection and mass transfer 
flow taking into account Soret effect.  The analytical studies of Jha and singh and Kafousias [8,9] were based on 
Laplace transform technique.  Abdul Sattar and Alam [1] have considered an unsteady convection and mass transfer 
flow of viscous incompressible and electrically conducting fluid past a moving infinite vertical porous plate taking 
into the thermal diffusion effects.  Similarity equations of the momentum energy and concentration equations are 
derived by introducing a time dependent length scale.  Malsetty et al [15] have studied the effect of both the soret 
coefficient and Dufour coefficient on the double diffusive convective with compensating horizontal thermal and 
solutal gradients. Balasubramanyam et al [3] have discussed the effect  of heat generating heat sources on the non-
darcy convective heat and mass transfer flow of a viscous fluid in a vertical channel. Sudarsana Reddy et al[26] have 
analysed the soret and Dufour effect on the non-darcy convective heat and mass transfer flow of a viscous fluid 
through a porous medium in a circular annulus in the presence of temperature gradient heat sources. 
 
In this paper, we investigate effect of chemical reaction and thermo-diffusion on non-Darcy convective heat and 
Mass transfer flow of a viscous electrically conducting fluid through a porous medium in a vertical channel in the 
presence of constant heat source.  The equations governing the flow, heat and mass transfer are solved by using 
Galerkin finite element technique with quadratic polynomial approximations. The approximation solution is written 
directly as a linear combination of approximation functions with unknown nodal values as coefficients. Secondly, 
the approximation polynomials are chosen exclusively from the lower order piecewise polynomials restricted to 
contiguous elements.  The velocity, temperature, concentration, shear stress and rate of Heat and Mass transfer are 
evaluated numerically for different variations of parameter  
 
FORMULATION OF THE PROBLEM 
Consider a fully developed laminar mixed convective heat and mass transfer flow of a viscous, electrically 
conducting fluid through a porous medium in a vertical channel bounded by flat walls. We choose a Cartesian co-
ordinate system O(x,y,z) with  x- axis in the vertical direction and y-axis normal to the walls. The walls are taken at 
y= ± L. The walls are maintained at constant temperature and concentration .The temperature gradient in the flow 
field is sufficient to cause natural convection in the flow field .A constant axial pressure gradient is also imposed so 
that this resultant flow is a mixed convection flow. The porous medium is assumed to be isotropic and homogeneous 
with constant porosity and effective thermal diffusivity. The thermo physical properties of porous matrix are also 
assumed to be constant and Boussinesq approximation is invoked by confining the density variation to the buoyancy 
term. In the absence of any extraneous force flow is unidirectional along the x-axis which is assumed to be infinite.  
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The Brinkman-Forchheimer-extended Darcy equation which account for boundary inertia effects in the momentum 
equation is used to obtain the velocity field. Based on the above assumptions the governing equations are  
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respectively where u is the velocity, T, C are the temperature and Concentration, p is the pressure ,ρ is the density of 
the fluid ,Cp is the specific heat at constant pressure, µ is the coefficient of viscosity, k is the permeability of  the 
porous medium, δ is the porosity of the medium,β is the coefficient of thermal expansion ,kf is the coefficient of 
thermal conductivity ,F is a function that depends on the Reynolds number and the microstructure of porous 
medium, H is the magnetic field vector,σ is the electrical conductivity of the fluid,µ is the magnetic permeability of 

the medium, •β  is the volumetric coefficient of expansion with mass fraction concentration and D1 is the chemical 

molecular diffusivity ,K is the chemical reaction coefficient and Q is the strength of the heat source,k11 is the cross 
diffusivity. Here, the thermo physical properties of the solid and fluid have been assumed to be constant except for 
the density variation in the body force term (Boussinesq approximation) and the solid particles and the fluid are 
considered to be in the thermal equilibrium) . 
 
We define the following non-dimensional variables as  
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Configuration of the Problem 
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Introducing these non-dimensional variables the governing equations in the dimensionless form reduce to (on 
dropping the dashes) 
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The corresponding boundary conditions are 

10,0,011,1,0 +====−==== yonCuyonCu θθ                            (9) 
 

FINITE ELEMENT ANALYSIS 
To solve these differential equations with the corresponding boundary conditions, we assume if ui,  θI , ci are the 

approximations of u, θ and C we define the errors (residual) i
c
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These errors are orthogonal to the weight function over the domain of ei under Galerkin finite element technique we 
choose the approximation functions as the weight function. Multiply both sides of the equations (10 – 12) by the 

weight function i.e. each of the approximation function i
jψ  and integrate over the typical three nodded linear 

element (ηe, ηe+1) we obtain 

),4,3,2,1(                          0
1

==∫
+

idyE
e

e

i
j

i
u

η

η

ψ                                          (14) 

),4,3,2,1(                          0
1

==∫
+

idyE
e

e

i
j

i
c

η

η

ψ                                          (15) 

),4,3,2,1(                          0
1

==∫
+

idyE
e

e

i
j

i
η

η
θψ                                          (16) 

 
where 

0)()((
1

222
1 =+−∆+−








∫

+

dyNCGuuM
d

du

d

d i
j

iiii
ie

e

ψθδδδ
ηη

η

η

                                                   (17) 

0()(
11

0 =







+−−








∫∫

++

dy
dy

d

dy

d

N

ScS
dyuScNC

dy

dC

dy

d e

e

e

e

i
i
j

i
c

i
i η

η

η

η

θψγ                          (18) 

0)(
1

=−+







∫

+

ηψαθη

η

duPN
dy

d

dy

d i
j

i
T

ie

e

                                                                                                                 (19) 

 
Following the Galerkin weighted residual method and integration by parts method to the equations (17) – (19) we 
obtain 
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choosing different i
jΨ ’s corresponding to each element ηe in the equation (20) yields a local stiffness matrix of 

order 3×3 in the form 
 

)()())(())(())(())(( ,2,,.
2

.
2
1.,

k
j

k
ji

k
ji

k
ji

k
i

k
ji

k
i

k
i

k
ji

k
i

k
ji QQunumMNCgGuf +=∆+++− δδθδ           (26) 

 
Likewise the equation (21) & (22) gives rise to stiffness matrices 
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are 3×1 column matrices and such stiffness matrices (26) – (28) in terms of local nodes in each element are 
assembled using inter element continuity and equilibrium conditions to obtain the coupled global matrices in terms 
of the global nodal values of k, θ & C. In case we choose n-quadratic elements then the global matrices are of order 
2n+1. The ultimate coupled global matrices are solved to determine the unknown global nodal values of the 
velocity, temperature and concentration in fluid region. In solving these global matrices an iteration procedure has 
been adopted to include the boundary and effects in the porous region. 
 
The shape functions corresponding to 
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STIFFNESS MATRICES 
The global matrix for θ is  
A3 X3 = B3                                (30) 
 
The global matrix for C is  
A4 X4 = B4                                (31) 
 
The global matrix u is 
A5 X5 = B5                                (32) 
 
In fact, the non-linear term arises in the modified Brinkman linear momentum equation (20) of the porous medium. 
The iteration procedure in taking the global matrices is as follows.  We split the square term into a product term and 
keeping one of them say ui’s under  integration, the other is expanded in terms of local nodal values as in  (13),  

resulting in the corresponding coefficient matrix )'( sn j
k
i   in (26),  whose coefficients involve the unknown ui’s . 

To evaluated (27) to begin with choose the initial global nodal values of ui’s as zeros in the zeroth approximation.  
We evaluate ui’s , θi’s and Ci’s in the usual procedure mentioned earlier.  Later choosing these values of ui’s as first 
order approximation calculate θi’s, Ci’s.  In the second iteration, we substitute for ui’s the first order approximation 
of and ui’s and the first approximation of θi’s and Ci’s obtain second order approximation.  This procedure is 
repeated till the consecutive values of ui’s , θi’s and Ci’s differ by a preassigned percentage. For computational 
purpose we choose five elements in flow region. 
 
*For M=0 the results are in good agreement with Leelakumari [16]. 
*For So=0 the results are in good agreement with Balasubramanyam et al [3] 

 
RESULTS AND DISCUSSION 

 
In this analysis we investigate the effect of chemical reaction and thermo diffusion on the non-Darcy convective 
Heat and mass transfer flow of a viscous fluid in a vertical channel in the presence of constant heat sources. 
 
Figs. 1-6 represent the axial velocity with different variation of G, M, D-1, α, Sc, S0, N and γ. Fig. 1 represents u 
with Grashof number G. It is found that the axial velocity is in the vertically downward direction for G>0 and is in 
the vertically upward direction for G<0. |u| enhances with increase in |G| with  maximum at y = 0.5. The variation of 
u with M and D-1 is shown in fig. 2. It is found that lesser the permeability of the porous medium/higher the Lorentz 
force lesser |u| in the entire fluid region.The magnitude of u experiences an enhancement with increase in the 
strength of the heat source/sink (fig.3). The variation of u with Schmidt number Sc shows that lesser the molecular 
diffusivity larger |u| in the flow region (fig.4). We notice form fig.5 that |u| enhances with increase in S0>0 and 
reduces with |S0| (<0) (fig.6). The variation of u with buoyancy ratio N shows that when the molecular buoyancy 
force dominates over the thermal buoyancy force the magnitude of u reduces when the buoyancy forces act in the 
same direction and for the forces acting in opposite directions |u| enhances in the fluid region (fig.6). The effect of 
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the chemical reaction parameter γ on u is shown in fig.7. It is found that |u| reduces in the degenerating chemical 
reaction case and enhances in the generating chemical reaction case in the entire fluid region.  
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Fig. 1 : Variation of u with G       Fig. 2 : Variation of u with D-1 & M 

  I II III IV V VI      I II III 
G 102 3x102 5x102 -102 -3x102 -5x102     D-1 103 3x103 5x103 103 103 
           M 2 2 2 4 6 
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Fig. 3 : Variation of u with α       Fig. 4 : Variation of u with Sc 

  I II III IV V VI     I II III IV 
α 2 4 6 -2 -4 -6    Sc 0.24 0.6 1.3 2.01  
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Fig. 5 : Variation of u with S0       Fig. 6 : Variation of u with N 

  I II III IV       I II III IV 
S0 0.5 1 -0.5 -1.0      N 1 2 -0.5 -0.8  



B. Uma Devi et al                                                Adv. Appl. Sci. Res., 2012, 3(5):2924-2939      
 _____________________________________________________________________________ 

2932 
Pelagia Research Library 

-0.25

-0.2

-0.15

-0.1

-0.05

0

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

u

I

II

III

IV

V

VI

 
Fig. 7 : Variation of u with  γ   

        I II III IV V VI 
γ 0.5 1.5 2.5 -0.5 -1.5 -2.5  

 
The non-dimensional temperature (θ) is shown in figs. 8-15 for different parametric values. Fig. 8 represents θ with 
Grashof number G. It is found that the actual temperature enhances in the heating case and depreciates in the cooling 
case with maximum attained at y = -0.2. The variation of θ with M and D-1 shows that lesser the permeability of the 
porous medium/higher the Lorentz force lesser the actual temperature in the entire flow region (figs. 9&10). Fig. 11 
represents θ with heat source parameter α. It is found that the actual temperature enhances with increase in the 
strength of the heat source and reduces with heat sink (fig.11). Lesser the molecular diffusivity larger the actual 
temperature (fig.12). The actual temperature reduces with increase in S0 (>0) and enhances with |S0| (<0)(fig.13). 
When the molecular buoyancy force dominates over the thermal buoyancy force the actual temperature reduces 
when the buoyancy forces act in the same direction and for the forces acting in opposite directions it enhances in the 
flow region (fig. 14). The variation of θ with chemical reaction parameter γ is shown in fig.5. It is found that the 
actual temperature reduces in the degenerating chemical reaction case and enhances in the generating chemical 
reaction case.  
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Fig. 8 : Variation of θ with G       Fig. 9 : Variation of θ with D-1  
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Fig. 10 : Variation of θ with α       Fig. 11 : Variation of θ with α 

  I II III         I II III IV V VI 
M 2 4 6       α 2 4 6 -2 -4 -6  
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Fig. 12 : Variation of θ with Sc       Fig. 13 : Variation of θ with S0 

 I II III IV         I II III IV 
   Sc 0.24 0.6 1.3 2.01        S0 0.5 1 -0.5 -1.0  
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Fig. 14 : Variation of θ with N      Fig. 15 : Variation of θ with  γ 
  I II III IV        I II III IV V VI 

N 1 2 -0.5 -0.8      γ 0.5 1.5 2.5 -0.5 -1.5 -2.5  
 
The concentration distribution (C) is shown in figs.16-23 for different parametric values. Fig.16 represents C with 
Grashof number G. It is found that the actual concentration depreciates in the heating case and enhances in the 
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cooling case with maximum attained at y = -0.4 and the point of maximum shifts towards the left boundary with 
increase in G>0 and for G<0, it is attained at y = -0.2. The variation of C with M and D-1 shows that the actual 
concentration enhances with increase in M or D-1 (figs.17&18). The variation of C with α shows that the actual 
concentration enhances with increase in α>0 and depreciates with |α| (<0) (fig. 19). Lesser the molecular diffusivity 
larger the actual concentration (fig.20). Also the actual concentration enhances with increase in S0>0 and depreciates 
with |S0| (<0) (fig.21). From fig.22 we find that the actual concentration depreciates when the buoyancy forces act in 
the same direction and for the forces acting in opposite directions it enhances in the entire flow region. The variation 
of C with γ shows that the actual concentration reduces in the degenerating chemical reaction and enhances in the 
generating case (fig. 23). 
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Fig. 16 : Variation of C with G      Fig. 17 : Variation of C with D-1  

  I II III IV V VI      I II III 
G 102 3x102 5x102 -102 -3x102 -5x102     D-1 103 3x103 5x103   
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Fig. 18 : Variation of C with α       Fig. 19 : Variation of C with α 

 I II III         I II III IV V VI 
M 2 4 6       α 2 4 6 -2 -4 -6  

 
The rate of heat transfer (Nusselt number) at the walls y =-1&1 are shown in tables 1-6 for different parametric 
values. Tables 1&4 represent Nu with G, M, D-1 and α. It is found that the rate of heat transfer enhances with G>0 
and reduces with G<0 at both the walls. Lesser the permeability of the porous medium smaller |Nu| for G>0 and 
larger for G>0 at both the walls. The variation of Nu with Hartman number M shows that the rate of heat transfer at 
y = -1 reduces with M in the heating case and enhances in the cooling case while at y = 1, it enhances with M for all 
G. Also it experiences an enhancement with increase in the strength of the heat source/sink. The variation of Nu 
with buoyancy ratio N shows that the rate of the heat transfer reduces with N at y = -1&1 when the buoyancy forces 
act in the same direction and for the forces acting in opposite directions, |Nu| enhances at y =-1 and reduces at y = 1. 
Lesser the molecular diffusivity larger |Nu| for G>0 and lesser for G<0 at both the walls (tables 2&5). The variation 
of Nu with Soret parameter S0 shows that it enhances for G>0 and reduces for G<0 with increase in S0>0 at both the 
walls while for S0 <0, it reduces in the heating case and enhances in the cooling case at both the walls. Also the rate 
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of heat transfer enhances in the degenerating chemical reaction case for all G and in the generating reaction case, it 
enhances in the heating case and reduces in the cooling case at both the walls (tables 3&6). 
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Fig. 20 : Variation of C with Sc       Fig. 21 : Variation of C with S0 

  I II III IV         I II III IV 
Sc 0.24 0.6 1.3 2.01        S0 0.5 1 -0.5 -1.0  
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Fig. 22 : Variation of C with N       Fig. 23 : Variation of C with  γ 

  I II III IV        I II III IV V VI 
N 1 2 -0.5 -0.8      γ 0.5 1.5 2.5 -0.5 -1.5 -2.5  

Table.1 :  Nusselt number Nu1 at y=-1 
 

G I II III IV V VI VII VIII IX X 
102 300.06 284.588 281.07 293.585 290.112 586.168 872.276 -272.15 -558.26 -844.37 

3x102 354.953 297.098 287.218 329.071 316.474 695.805 1036.66 -326.75 -667.6 -1008.4 
-102 260.034 272.867 275.971 265.085 267.975 506.225 752.417 -232.35 -478.54 -724.73 

-3x102 229.544 262.109 271.507 241.692 249.02 445.333 661.121 -202.03 -417.82 -633.61 
M 2 4 6 2 2 2 2 2 2 2 
D-1 103 103 103 3x103 5x103 103 103 103 103 103 
α 2 2 2 2 2 4 6 -2 -4 -6 

 
Table-2 :  Nusselt number Nu1 at y=-1 

 
G I  II  III  IV  V VI  VII  
102 300.06 229.99 300.16 300.17 299.87 299.94 300.19 

3x102 354.95 354.18 356.39 356.39 354.58 354.71 355.2 
-102 260.03 259.99 260.11 260.11 260.25 260.17 259.89 

-3x102 229.54 229.23 230.11 230.11 230.21 229.99 229.09 
N 1 2 -0.5 -0.8 1 1 1 
Sc 1.3 1.3 1.3 1.3 0.24 0.6 2.01 
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Table-3 : Nusselt number Nu1 at y=-1 
 

G I II III IV V VI VII VIII IX 
102 300.06 300.352 299.48 299.19 299.907 299.877 299.611 299.757 299.787 

3x102 354.953 356.191 352.505 351.294 354.65 354.59 354.058 354.351 354.411 
-102 260.034 259.818 260.468 260.685 260.209 260.243 260.545 260.379 260.346 

-3x102 229.544 229.045 230.553 231.061 230.094 230.201 231.141 230.625 230.52 
So 0.5 1 -0.5 -1 0.5 0.5 0.5 0.5 0.5 
γγγγ 0.5 0.5 0.5 0.5 1.5 2.5 -0.5 -1.5 -2.5 

 
Table-4 : Nusselt number Nu2 at y=1 

 
G I II III IV V VI VII VIII IX X 
102 4442.12 4203.98 4137.34 4342.09 4288.43 8866.74 13291.4 -4407.1 -8831.7 -13256 

3x102 5290.22 4386.23 4281.26 4889.97 4723.99 10561.4 15832.5 -5252.1 -10523 -15794 
-102 3823.75 4021.67 4070.37 3901.78 3946.44 7631.14 11438.5 -3791.1 -7598.4 -11405 

-3x102 3352.71 3855.75 4036.78 3540.34 3653.6 6690.01 10027.3 -3321.7 -6658.9 -9996.2 
M 2 4 6 2 2 2 2 2 2 2 
D-1 103 103 103 103 3x103 5x103 103 103 103 103 
α 2 2 2 2 2 4 6 -2 -4 -6 

 
Table-5 : Nusselt number Nu2 at y=1 

 
G I II III IV V VI VII 
102 4442.12 4441.17 4443.57 4443.86 4439.23 4440.21 4444.06 

3x102 5290.22 5278.28 5308.6 5312.34 5284.45 5286.42 5294.06 
-102 3823.75 3823.05 3824.8 3825.01 3827.06 3825.94 3821.54 

-3x102 3352.71 3347.8 3360.09 3361.54 3363.1 3359.6 3345.8 
N 1 2 -0.5 -0.8 1 1 1 
Sc 1.3 1.3 1.3 1.3 0.24 0.6 2.01 

 
Table-6 : Nusselt  number Nu2 at y=1 

 
G I II III IV V VI VII VIII IX 
102 4442.12 4446.63 4433.15 4428.67 4439.28 4439.28 4435.16 4437.43 4437.89 

3x102 5290.22 5309.35 5252.38 5233.66 5285.51 5284.57 5276.31 5280.87 5281.79 
-102 3823.75 3820.41 3830.46 3833.82 3826.47 3827 3831.67 3829.11 3828.58 

-3x102 3352.71 3345.03 3368.35 3376.2 3361.25 3362.92 3377.46 3369.48 3367.86 
So 0.5 1 -0.5 -1 0.5 0.5 0.5 0.5 0.5 
γγγγ 0.5 0.5 0.5 0.5 1.5 2.5 -0.5 -1.5 -2.5 

  
Table-7 : Sherwood number  fu1 at y=-1 

 
G I II III IV V VI VII VIII IX X 
102 15.9974 16.3558 16.4284 16.1471 16.2275 18.9102 21.823 10.1718 7.2589 4.3462 

3x102 14.7286 16.0578 16.31 15.3263 15.6286 16.3761 18.0237 11.4335 9.7859 8.1384 
-102 16.9236 16.6263 16.5553 16.8067 16.7397 20.76 24.5964 9.2508 5.4144 1.578 

-3x102 17.6298 16.8755 16.6827 17.3483 17.1786 22.1703 26.7109 8.5486 4.0081 -0.5325 
M 2 4 6 2 2 2 2 2 2 2 
D-1 103 103 103 3x103 5x103 103 103 103 103 103 
α 2 2 2 2 2 4 6 -2 -4 -6 

 
Table-8 : Sherwood number  fu1 at y=-1 

 
G I II III IV V VI VII 
102 15.9974 14.1586 4.9478 7.7086 13.6241 14.431 17.583 

3x102 14.7286 12.5616 1.5167 4.8002 13.3907 13.8466 15.6169 
-102 16.9236 15.3392 7.4052 9.7837 13.7934 14.8556 19.0247 

-3x102 17.6298 16.2478 9.2526 11.3393 13.9218 15.1783 20.1276 
N 1 2 -0.5 -0.8 1 1 1 
Sc 1.3 1.3 1.3 1.3 0.24 0.6 2.01 

 
The rate of mass transfer (Sherwood number) at the walls y =-1&1 are shown in tables 7-12 for different parametric 
values. It is found that the rate of mass transfer reduces at y =-1 and enhances at y = 1 with increase in G>0 while a 
reversed effect is observed with G<0. The variation of  Sh with M&D-1 shows that lesser the permeability of the 
porous medium/higher the Lorentz forces larger |Sh| at y =-1 and smaller at y = +1 for G>0 and lesser at y = -1 and 
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larger at y = 1 for G<0 .With respect to heat source parameter α, we find that the rate of mass transfer enhances at y 
=-1 and reduces at y = 1 with increase in the strength of the heat source while an increase in the strength of the heat 
sink,  reduces , |Sh| at y = -1 and enhances at y = 1 for all G (tables 7&9). The variation of Sh with N shows that the 
rate of mass transfer depreciates at y = -1 and enhances at y = 1 with increase in N>0 and it enhances at y =-1 and 
reduces at y = 1 with |N| for all G. Also lesser the molecular diffusivity larger |Sh| at y = -1 and lesser |Sh| at y = 1 
for all G. (tables 8&11). With respect to Soret parameter S0, we find that |Sh| enhances at y =-1 and reduces at y = 1 
with increase in S0>0 and a reversed effect is noticed in the behaviour of |Sh| with |S0| (<0). The variation of Sh with 
chemical reaction parameter γ, we find that the rate of mass transfer reduces at y =-1 and enhances at y = 1 in the 
degenerating reaction case and in and reduces at y = 1 for all G (tables 9&12).  

 
Table-9 : Sherwood number  fu1 at y=-1 

 
G I II III IV V VI VII VIII IX 
102 15.9974 19.6756 8.6631 5.06703 14.0834 13.7333 10.3432 12.1771 12.5467 

3x102 14.7286 19.0953 6.0883 1.81418 13.6672 13.4846 11.554 12.5869 12.7934 
-102 16.9236 20.0973 10.559 7.3693 14.3856 13.9136 9.4735 11.8811 12.3684 

-3x102 17.6298 20.4177 12.015 9.1885 14.615 14.0503 8.8183 11.6573 12.2335 
So 0.5 1 -0.5 -1 0.5 0.5 0.5 0.5 0.5 
γγγγ 0.5 0.5 0.5 0.5 1.5 2.5 -0.5 -1.5 -2.5 

 
Table-10 : Sherwood  number  fu2at y=1 

 
G I II III IV V VI VII VIII IX X 
102 12.0159 11.7241 11.6444 11.8934 11.8277 9.5396 7.0633 16.9685 19.4448 21.9211 

3x102 13.054 11.9495 11.8189 12.5644 12.3619 11.6141 10.1743 15.9336 17.3735 18.8133 
-102 11.2582 11.5009 11.5603 11.3539 11.4086 8.0253 4.7923 17.724 20.957 24.1899 

-3x102 10.6805 11.2974 11.5143 10.9106 11.0495 6.8708 3.06104 18.3002 22.11 25.9197 
M 2 4 6 2 2 2 2 2 2 2 
D-1 103 103 103 3x103 5x103 103 103 103 103 103 
α 2 2 2 2 2 4 6 -2 -4 -6 

 
Table-11 : Sherwood  number  fu2at y=1 

 
G I  II  III  IV  V VI  VII  
102 12.0159 13.5671 21.3373 19.0082 14.034 13.348 10.6673 

3x102 13.054 14.8735 24.1447 21.3881 14.2251 13.8261 12.2757 
-102 11.2582 12.6014 19.3267 17.3104 13.8955 13.0006 9.4881 

-3x102 10.6805 11.8583 17.8154 16.0377 13.7905 12.7366 8.5862 
N 1 2 -0.5 -0.8 1 1 1 
Sc 1.3 1.3 1.3 1.3 0.24 0.6 2.01 

 
Table-12 : Sherwood  number  fu2at y=1 

 
G I  II  III  IV  V VI  VII  VIII  IX  
102 12.0159 8.91286 18.2042 21.2895 13.5351 13.6987 16.6908 15.2031 14.9124 

3x102 13.054 9.38754 20.3116 23.9033 13.8753 13.9009 15.7001 14.8677 14.7106 
-102 11.2582 8.56797 16.6519 19.3554 13.2882 13.5525 17.4023 15.4452 15.0583 

-3x102 10.6805 8.30594 15.4604 17.8658 13.1009 13.4419 17.9383 15.6283 15.1687 
So 0.5 1 -0.5 -1 0.5 0.5 0.5 0.5 0.5 
γγγγ 0.5 0.5 0.5 0.5 1.5 2.5 -0.5 -1.5 -2.5 

 
CONCLUSION 

 
In this analysis we discuss the effect of thermo diffusion and chemical reaction effects on non-darcy convective heat 
and mass transfer flow in a vertical channel in the presence of heat sources. By using Galerkin finite element 
technique the equation are solved. The importance conclusions of this analysis are: 
1. |u| enhances with increase in S0>0 and reduces with |S0| (<0). |u| reduces in the degenerating chemical reaction 
case and enhances in the generating chemical reaction case in the entire fluid region. 
2. The actual temperature reduces with increase in S0 (>0) and enhances with |S0|(<0). The actual temperature 
reduces in the degenerating chemical reaction case and enhances in the generating chemical reaction case. 
3. The actual concentration enhances with increase in S0>0 and depreciates with |S0| (<0). The actual concentration 
reduces in the degenerating chemical reaction and enhances in the generating case. 
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4. The Nusselt number enhances for G>0 and reduces for G<0 with increase in S0>0 at both the walls while for S0 
<0, it reduces in the heating case and enhances in the cooling case at both the walls. Also the rate of heat transfer 
enhances in the degenerating chemical reaction case for all G and in the generating reaction case, it enhances in the 
heating case and reduces in the cooling case at both the walls. 
5. |Sh| enhances at y =-1 and reduces at y = 1 with increase in S0>0 and a reversed effect is noticed in the behaviour 
of |Sh| with |S0| (<0). The rate of mass transfer reduces at y =-1 and enhances at y = 1 in the degenerating reaction 
case and in and reduces at y = 1 for all G. 
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