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ABSTRACT

In this paper we will prove some generalized identities involving Fibonacci Polynomials and for rapid numerical
calculation of identities we present each identity as summation involving binomial coefficients.
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INTRODUCTION

The most prominent linear recurrence relation afeortwo with variable coefficient is one that deffribonacci
polynomial, it is define recursively as:
Fop1(x) =xFE,(x) + F,_;(x) ,n=1withFy(x) =0 andF;(x) =1 @Y

Binet's Formula
The well knownBinet's formula allows us to exprebhent*Fibonacci Polynomial in function of the roots=
aandr, = Sof the characteristic equatie® — xr — 1 = 0 associated to the recurrence relation (1) as:

R =222

Finding the exact expression Bf(x)from equation (2) requires multiple steps of busyl anessy algebraic
calculation which is not desirable, so in this pape presenf, (x) as a summation involving binomial coefficients
for quick numerical calculation. Likewise we uséstiummation to write some fundamental identitiescerning
Fibonacci polynomial and develop some new idemtitising Fibonacci Polynomial.

)

Fibonacci Polynomial, Pascal’s triangle and BinomigCoefficient [2]
The well known Pascal’s triangle shown in Table bme of the world’s most recognized number padtern

Table 1
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Its entries can be presented as binomial coefficidescribe the expansion @f + y)™ for any integen > 0. In
particular thekt" entry alongnt”* row of Pascal’s triangle corresponds to the coifit of x*y™~* and is given by
the well known factorial formula:

(Z)=#ik)!,(osk3n) 3)

The most celebrated property of Pascal’s triargylesitriangular recurrence given by:

(n)_(n—l)_l_(n—l) @
k) \ k k-1

whichexpress each binomial coefficient as a sunmonatif the two entries immediately above it, moreoties

recurrence uniguely define Pascal’s triangle ifimialize the boundary value along its outer diagis to 1 that is:

(Z) = (Z) =1 5)

all other entries are then generated using (4).

Table 2: Pascal's triangle as Binomial coefficient

)

Table 3: First few Fibonacci Polynomials by (1)
Fi(x)=1

F,(x) =x

F(x)=x?+1

F(x) = x3+2x

Fs(x) =x*+3x%+1

Fg(x) = x5+ 4x3 + 3x

We may present coefficient of each term of Fiboh&aynomials as binomial coefficients first fewlypwomials
are presented in Table 4:

Table 4
r =)
= ()

So by inspection we can see thatfoe 0

B

Fan@ =Y ("] )an

i=0
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wherdn| represent the floor function.

Now using equations (1), (4),(5) and Table 4
Fn+2(x) = an+1(x) + Fn(x)

=x [(g) X"+ <n; 1) X2 gt (n I_EFJ> x”‘zng]

2

N [(n ; 1) . (n ; 2) T <n - 1n__—1 lnT_lJ>xn—1—2[”T‘1]]

2

+1 n+ n— +1_lnT+1J n+1-2|2FL
=[<”0 )x 1+(’;)x 1+...+<n - )x 12121]

. 2
l.e.

Frap(x) = [(n Z 1) 4 (’11) et <n + inT;Jl"T“J>xn+l_2lnTﬂl]

wherdn| represent the floor function.

Theorem 1.1 If F,(x) is any Fibonacci Polynomial then for any integer 0:

Frpi(x) = (:)L) x™ + (n ; 1) X2 44 (n l_EJBJ>xn_2l%]
E5 2

> 6)

i=0
wherdn] represent the floor function.

Proof: It follows from above discussion, also Theorethdan be proved using principal of mathematicaliatin.
As direct consequences of Theorem 1.1 and the itlefinof Fibonacci polynomial we obtained the follimg
theorems

Theorem 2.1[2] If E,(x) is any Fibonacci Polynomial then for any integee 0:

0)
n n
2n—i .
1+xZF2i(x)=Z< . )xZ"‘Z’
i=0 i=0 :
(ih)
257
< S 41—
xz F2i+1(x) — Z ( ] )x2n+1—2i
i=0 i=0 '
(iii)
n n 2
2n—i .
1+ xz Fi(x) = [Z ( ] )xzn‘z’]
i=0 i=0 l
Theorem 2.2[2] If E,(x) is any Fibonacci Polynomial then for any integer 0:
i
0) s
N\ S B3n+3—i
x4 (xz + 1) Z xn—iF3i+2(x) — Z ( ] )x3n+3—2i
i=0 i=0 :
(ih)
n I 1
. n —i .
xn+1 + Z x”“Fi(x) — Z ( ] )xn+1—21
i=0 i=0 l
(iii)
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52|

n 2
E i 3n+2-—1i

(x2+1) XV R (x) = Z ( ; >x3n+2—21
i=0

i=0

(iv)

l3n+1

n 2
: 3n+1-i .
xn+1 + (xz + 1)an—LF3i(x) — Z ( ; )x3n+1—2L
i=0

i=0

Theorem 2.3[1][2} If E,(x) is any Fibonacci Polynomial then for any integer 0:

(i)
(i) ; ; (
Fy (O F2,5(6) = Fip(0) = (=D [ li(”i‘l) n-2 4 (x2 - 1) Z ("‘1‘ )
i=0
(iii) ) -
Frya(OF2(x) = F3,1(x) = (-1 i ("7 i) 2 4 x E ("~ ll - i) 12
i=0 i=0

Proof: To prove Theorems 2.1-2.3 we can simply use Téradt.1 and the fact that each expression on thbdefl
side can be written as a single or power of Fibon&olynomial, we could use the principal of matlatical
induction,Binet’s formula, combinatorial argumeatgust simple algebra to prove the theorems.
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