

Pelagia Research Library

Advances in Applied Science Research, 2014, 5(2):159-165

Experimental and quantum chemical calculations of tris(morpholinyldithiocarbamato)antimony (III)

L. Umaralikhan^a, S. Raju^b, B. Liyahathalikhan^c and P. S. Joseph^{d*}

^aDepartment of Physics, Jamal Mohamed College, Trichy ^bDepartment of Chemistry, Government Arts College, Paramakudi ^cDepartment of Chemistry, Raja Serfoji Government Arts College, Tanjavur ^dDepartment of Physics, Cauvery College of Engineering & Technology, Trichy

ABSTRACT

In this paper, vibrational analysis of tris(morpholinyldithiocarbamato)antimony(III) were presented using experimental techniques and quantum chemical calculations. HOMO-LUMO properties and First hyperpolarizability also discussed.

Keywords: Tris(morpholinyldithiocarbamato)antimony(III), HOMO-LUMO, NLO.

INTRODUCTION

Dithiocarbamato complexes are useful in water purification, metal iron detector in water, lubricating oil and potent antioxidant agent, IR spectral detector. So dithiocarbamato complexes are interested in the current research. Antimonydithiocarbamato complexes have potential applications in the field of medical, industrial and communication. Hence it is catalysed us to prepare arsenic dithiocarbamato complexes with simple synthesis root.

Synthesis and spectral study of new iodobis (dialkyldithiocarbamato) complex of antimony have been reported by R.R.Schanta et al.[1] and the computational study of Tris complex of dithiocarbamatats of arsenic have been reported by P.S.Joseps et al.[2] The syntheses and spectroscopic study of a new series of mixed ligand complexes of antimony with dithioligands have been reported by S.Eskerar et al.[3]. FMN Khein et al. [4] have reported the indirect determination of antimony by molecular emission cavity and extraction as their diethyldithiocarbamate.

MATERIALS AND METHODS

Experimental Method

Antimony oxide is dissolved in concentrated hydrochloric acid. It is neutralized with sodium hydroxide solution. It is slowly added to the aqueous solution of sodium morpholinyldithiocarbamate. Antimony oxide and sodium morpholinyldithiocarbamate are taken in 1:1 molar proportion. White precipitate obtained, is filtered, dried and recrystallized from chloroform.

Computational Method

For supportive evidence to the experimental observations, the ab initio computations were performed with the aid of GAUSSIAN 09W[5] software package with internally stored HF/sto-3g* basis set methods. At first, the global minimum energy structure of the title molecule was optimized. Subsequently, the vibrational normal mode wavenumbers in association with the molecule were derived along with their IR intensity, Raman activity, HOMO-LUMO properties, thermo-dynamical properties also studied.

RESULTS AND DISCUSSION

Vibrational spectra

The FTIR spectrum of Tris (morpholinyldithiocarbamato) antimony(III) is shown in Figure 1. this complex shows C = Sstretching vibrations at lower wave number 1470.4 cm⁻¹ due to less nitrogen electron pair delocalization. The CH₂ bending modes are assigned to peaks at 1435.2, 1384.6 and 1356.0 cm⁻¹. The C – N single bond stretching vibrations are positioned between 1200 and 1300 cm⁻¹. The C = S stretching vibrations are intense and sharp between 800 and 1200 cm⁻¹.

Figure 1.FTIR spectra of Tris(morpholinyldithiocarbamato)antimony(III) (a)Experimental (b) Computational

F	FT-IR	Raman	E	Vib	
Frequency	HF/sto-3g*		Experiment value	vibrational Assignment	
386.4832	8.3658	44.0916			
413.8003	1.1862	4.7318			
416.1499	0.0002	35.6283			
438.9607	13.5387	2.2068			
460.3974	7.0701	1.4671			
462.1442	1.2831	7.0847			
519.9673	2.5819	0.3067			
539.0914	70.1804	4.1837			
541.2382	35.0197	10.0098			
615.8629	0.1265	0.5539			
617.6889	0.082	1.1605			
714.5842	17.0361	0.5267			
869.5614	0.0136	53.6635	800		
915.0384	26.8548	14.593			
925.0877	27.489	10.2767			
932.2754	0.1283	3.1643			
1016.1213	42.8773	15.5378			
1066.7285	11.4562	34.208			
1177.7545	37.857	0.2702			
1221.9929	138.4987	4.5284	1200	C=S sharp	
1245.7404	3.7309	21.2959	1200	C-N	
1245.757	5.8209	1.8304			
1275.7109	1.9735	1.7508	1356.0	CH_2	
1391.8648	395.3873	36.232	1300	C-N	
1391.8788	395.1981	36.2313	1384.6	CH_2	
1397.3199	118.616	60.5346			
1426.6573	33.6688	1.2695			
1426.9997	79.7428	0.407			
1433.7944	51.8087	33.1457			
1434.7218	12.4828	19.0117	1435.2	CH_2	
1513.1392	11.9799	1.5136	1470.4	C=S	
1528.579	26.6342	6.3904			
1561.5804	6.9135	15.2641			
1632.3754	431.2773	35.6297			
1685.7114	490.2738	8.3322			
1689.3919	75.6911	30.5251			
3213.6306	6.3781	13.7677			

Table 1.Vibrational Frequency Assignments

HOMO-LUMO analysis

A deeper understanding of chemical reactive can be gained by this electronic absorption corresponds to the transition from the ground to the first excited state and it is mainly described by one electron excitation from highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO)[6,7].

HOMO energy=-0.22844 au

LUMO energy= -0.09783 au

HOMO - LUMO energy gap= -0.13061 au

The HOMO is located over the antimony atom and corbamato groups attached to the morpholinylring. The HOMO \rightarrow LUMO transition implies an electron density transfer from antimony atom to morpholinyl ring. Moreover, these orbital significantly overlap in their position for Tris(morpholinyldithiocarbamato) antimony(III) (Fig.3). The HOMO and LUMO energy gap explains the eventual charge transfer interactions takingplace within the molecule.

Figure 3. HOMO- LUMO image

Figure 4. Optimized structure using HF/STO-3G*

Molecular geometry

The optimized structure of Tris(morpholinyldithiocarbamato) antimony(III) complex are shown in the following fig(4). The corresponding minimum energy obtained by HF/3-21G*method were fall on -9624.1135476. From the optimized geometry the optimized structural parameters are tabulated on table (2a & 2b).

Table 2	2a.Bond	length	optimized	for	HF/STO	-3G*

Bond Length							
R(1C-2C)	1.529	R(14O-16C)	1.440				
R(1C-3N)	1.484	R(15C-16C)	1.528				
R(1C-29H)	1.081	R(15C-41H)	1.082				
R(1C-30H)	1.075	R(15C-42H)	1.074				
R(2C-4O)	1.438	R(16C-43H)	1.084				
R(2C-31H)	1.084	R(16C-44H)	1.079				
R(2C-32H)	1.079	R(17C-18S)	1.820				
R(3N-5C)	1.485	R(17C-19S)	1.763				
R(3N-7C)	1.304	R(20C-21C)	1.529				
R(40-6C)	1.440	R(20C-22N)	1.484				
R(5C-6C)	1.528	R(20C-45H)	1.081				
R(5C-33H)	1.082	R(20C-46H)	1.075				
R(5C-34H)	1.074	R(21C-23O)	1.438				
R(6C-35H)	1.084	R(21C-47H)	1.084				
R(6C-36H)	1.079	R(21C-48H)	1.079				
R(7C-8S)	1.820	R(22N-24C)	1.485				
R(7C-10S)	1.763	R(22N-26C)	1.304				
R(11C-12C)	1.529	R(23O-25C)	1.440				
R(11C-13N)	1.484	R(24C-25C)	1.528				
R(11C-37H)	1.081	R(24C-49H)	1.082				
R(11C-38H)	1.075	R(24C-50H)	1.074				
R(12C-14O)	1.438	R(25C-51H)	1.084				
R(12C-39H)	1.084	R(25C-52H)	1.079				
R(12C-40H)	1.079	R(26C-27S)	1.820				
R(13N-15C)	1.485	R(26C-28S)	1.763				
R(13N-17C)	1.304						

Table 2b. Bond angle optimized for HF/STO-3G*

Bond Angle						
A(2C-1C-3N)	108.1	A(12C-11C-13N)	108.1	A(21C-20C-22N)	108.1	
A(2C-1C-29H)	109.7	A(12C-11C-37H)	109.7	A(21C-20C-45H)	109.7	
A(2C-1C-30H)	111.3	A(12C-11C-38H)	111.3	A(21C-20C-46H)	111.3	
A(1C-2C-4O)	110.0	A(11C-12C-14O)	110.0	A(20C-21C-23O)	110.0	
A(1C-2C-31H)	109.4	A(11C-12C-39H)	109.4	A(20C-21C-47H)	109.4	
A(1C-2C-32H)	110.5	A(11C-12C-40H)	110.5	A(20C-21C-48H)	110.5	
A(3N-1C-29H)	107.5	A(13N-11C-37H)	107.5	A(22N-20C-45H)	107.5	
A(3N-1C-30H)	110.1	A(13N-11C-38H)	110.1	A(22N-20C-46H)	110.1	
A(1C-3N-5C)	111.3	A(11C-13N-15C)	111.3	A(20C-22N-24C)	111.3	
A(1C-3N-7C)	125.3	A(11C-13N-17C)	125.3	A(20C-22N-26C)	125.3	
A(29H-1C-30H)	110.0	A(37H-11C-38H)	110.0	A(45H-20C-46H)	110.0	
A(40-2C-31H)	110.6	A(14O-12C-39H)	110.6	A(23O-21C-47H)	110.6	
A(40-2C-32H)	106.7	A(14O-12C-40H)	106.7	A(23O-21C-48H)	106.7	
A(2C-4O-6C)	112.5	A(12C-14O-16C)	112.5	A(21C-23O-25C)	112.5	
A(31H-2C-32H)	109.7	A(39H-12C-40H)	109.7	A(47H-21C-48H)	109.7	
A(5C-3N-7C)	123.4	A(15C-13N-17C)	123.4	A(24C-22N-26C)	123.4	
A(3N-5C-6C)	108.1	A(13N-15C-16C)	108.1	A(22N-24C-25C)	108.1	
A(3N-5C-33H)	107.5	A(13N-15C-41H)	107.5	A(22N-24C-49H)	107.5	
A(3N-5C-34H)	109.4	A(13N-15C-42H)	109.4	A(22N-24C-50H)	109.4	
A(3N-7C-8S)	118.4	A(13N-17C-18S)	118.4	A(22N-26C-27S)	118.4	
A(3N-7C-10S)	123.9	A(13N-17C-19S)	123.9	A(22N-26C-28S)	123.9	
A(40-6C-5C)	110.0	A(14O-16C-15C)	110.0	A(230-25C-24C)	110.0	
A(40-6C-35H)	110.5	A(14O-16C-43H)	110.5	A(23O-25C-51H)	110.5	
A(40-6C-36H)	106.6	A(14O-16C-44H)	106.6	A(23O-25C-52H)	106.6	
A(6C-5C-33H)	109.8	A(16C-15C-41H)	109.8	A(25C-24C-49H)	109.8	
A(6C-5C-34H)	111.6	A(16C-15C-42H)	111.6	A(25C-24C-50H)	111.6	
A(5C-6C-35H)	109.4	A(15C-16C-43H)	109.4	A(24C-25C-51H)	109.4	
A(5C-6C-36H)	110.6	A(15C-16C-44H)	110.6	A(24C-25C-52H)	110.6	
A(33H-5C-34H)	110.3	A(41H-15C-42H)	110.3	A(49H-24C-50H)	110.3	
A(35H-6C-36H)	109.7	A(43H-16C-44H)	109.7	A(51H-25C-52H)	109.7	
A(8S-7C-10S)	117.7	A(18S-17C-19S)	117.7	A(27S-26C-28S)	117.7	

Atomic charges of Tris(morpholinyldithiocarbamato)antimony (III)

Table 6.4a Atomic cha	arges of Tris ((morpholiny	dithiocarbamat	o)antimony(III)

Mulliken atomic charges:						
1	С	-0.227867	27	S	-0.133970	
2	С	-0.078239	28	S	-0.126227	
3	Ν	-0.760189	29	Η	0.259685	
4	0	-0.633703	30	Н	0.298103	
5	С	-0.223791	31	Н	0.219197	
6	С	-0.083049	32	Н	0.238324	
7	С	-0.211668	33	Н	0.254941	
8	S	-0.133976	34	Н	0.305030	
9	Sb	1.330315	35	Н	0.220818	
10	S	-0.126279	36	Н	0.239171	
11	С	-0.227882	37	Η	0.259690	
12	С	-0.078239	38	Η	0.298127	
13	Ν	-0.760192	39	Н	0.219201	
14	0	-0.633700	40	Н	0.238330	
15	С	-0.223784	41	Н	0.254952	
16	С	-0.083051	42	Н	0.305008	
17	С	-0.211700	43	Н	0.220819	
18	S	-0.133920	44	Н	0.239177	
19	S	-0.126210	45	Η	0.259688	
20	С	-0.227872	46	Η	0.298114	
21	С	-0.078243	47	Η	0.219199	
22	Ν	-0.760190	48	Η	0.238329	
23	0	-0.633702	49	H	0.254948	
24	С	-0.223788	50	Η	0.305013	
25	С	-0.083048	51	Η	0.220816	
26	С	-0.211687	52	Η	0.239174	

The charge distribution of Tris(morpholinyldithiocarbamato)antimony (III) shows that the nitrogen and carbamato, oxygen atoms have negative charges whereas all the hydrogen atoms have positive charges. The maximum atomic charge is obtained for Sb when compared with other atoms. This is due to the attachment of negatively charged carbamato group. various atomic charges tabulated in table (3).

Thermal properties

On the basis of vibrational analyses and statistical thermodynamics, the standard thermodynamic functions: heat capacity $(C_{p,m}^{0})$, entropy (S_{m}^{0}) and enthalpy (H_{m}^{0}) were calculated usingPerl script THERMO.PL[8] and are listed in Table (4). As observed from Table 4.7.1a, the valuesof $C_{p,m}^{0}$, S_{m}^{0} and H_{m}^{0} all increase with the increase of temperature from 100 to 1000 K , which is attributed to the enhancement of the molecular vibration as the temperature increases.

T (K)	S (J/mol.K)[S ⁰ _m]	Cp (J/mol.K) [C ⁰ _{p,m}]	ddH (kJ/mol)[H ⁰ _m]
100.00	494.04	204.99	12.64
200.00	674.28	323.24	39.33
298.15	821.88	422.04	75.93
300.00	824.50	423.89	76.71
400.00	960.17	523.90	124.11
500.00	1087.38	618.11	181.29
600.00	1207.56	700.63	247.34
700.00	1320.97	770.57	321.00
800.00	1427.83	829.57	401.09
900.00	1528.51	879.66	486.62
1000.00	1623.47	922.57	576.78

 $Table (4): Thermodynamic properties \ of \ Tris (morpholinyl dithio carbamate) \ Antimony (III)$

Predication of first hyperpolarizability

The first hyperpolarizability (β_0) of the title complex and the related properties (β_0, α_0) were calculated using the HF/sto-3g* basis set, based on the finite field approach. The components of β are defined as the coefficients in the Taylor series expansion of the energy in the external electric field. Theoretically calculated values of hyperpolarizability are 2707.33895x10⁻³³esu as shown in the table (5). We can conclude that the title complex is an attractive object for future studies of non-linear optical application.

Table (5) Polar and Hyper polar oordinates

Pola	coordinate (au)	Polar coordinate x10 ⁻³³ (esu)	Hyper	Polar coordinate (au)	HyperPolar coordinate x10 ⁻³³ (esu)
α_{xx}	369.6313309	54.77936324	β _{xxx}	-220.2834646	-1903.094936
α_{xy}	-0.0172152	-0.002551293	β _{xxy}	1196.499614	10336.91911
α_{yy}	369.6229844	54.77812629	β _{xyy}	219.8911657	1899.705748
α_{xz}	0.0030315	0.000449268	β _{yyy}	-1191.632631	-10294.87179
α_{yz}	0.6735184	0.099815427	β _{xxz}	-202.2232505	-1747.067328
α_{zz}	254.1174061	37.66019958	β_{xyz}	1.3866725	11.97987973
		β _{yyz}	-216.0612651	-1866.618088	
		β _{xzz}	-0.0162837	-0.140679769	
		β _{yzz}	-3.0619563	-26.45315906	
			β _{zzz}	104.9151753	906.393674
Hyperpolarizability (β)			313.374805 au	2707.33895 esu	

CONCLUSION

In this work, we have performed an experimental and quantum computational study on Tris (morpholinyldithiocarbamato) antimony (III) complex. Theoretical spectral frequencies FT-IR obtained. The theoretical data are in good agreement with experimental data of FT-IR. The HOMO and LUMO energy gape explains the charge transfer interactions taking place within the molecule. From the first hyperpolarizability calculation the title complex contains the NLO property.

REFERENCES

[1] R.R. Schanta, V.S. Sastri and C.L. Chakrabarti, Anal. Chem. 1973, 45(2), 3637.

[2] P.S. Joseph, L.Umaralikhan, B.Liyahathalikhan. S.Raju. AASR.2014,5(1):210-215

[3] S.Eskerar and S.H. Uselye, Acta. Chem. Scand A., 1975, 29, 185.

[4] FMN Khein, C.A. Tsipis, C.L. Tsiamia and G.E. Monoushakis, Com.J.Chem. 1979, 57, 767-782.

[5] Gaussian 09: Frisch, M. J. Trucks, G. W. Schlegel, H. B. Scuseria, G. E. Robb, M. A. Cheeseman, J. R. Scalmani, G. Barone, V. Mennucci, B. Petersson, G. A. Nakatsuji, H. Caricato, M. Li, X. Hratchian, H. P. Izmaylov, A. F. Bloino, J.Zheng, G.Sonnenberg, J. L. Hada, M. Ehara, M. Toyota, K. Fukuda, R. Hasegawa, J. Ishida, M. Nakajima, T. Honda, Y. Kitao, O. Nakai, H. Vreven, T. Montgomery, J. A., Jr. Peralta, J. E. Ogliaro, F. Bearpark, M. Heyd, J. J. Brothers, E. Kudin, K. N. Staroverov, V. N. Kobayashi, R. Normand, J. Raghavachari, K. Rendell, A. Burant, J. C.; Iyengar, S. S. Tomasi, J. Cossi, M. Rega, N. Millam, N. J. Klene, M. Knox, J. E. Cross, J. B. Bakken, V. Adamo, C.; Jaramillo, J. Gomperts, R. Stratmann, R. E. Yazyev, O. Austin, A. J. Cammi, R. Pomelli, C. Ochterski, J. W. Martin, R. L. Morokuma, K. Zakrzewski, V. G. Voth, G. A. Salvador, P. Dannenberg, J. J.Dapprich, S. Daniels, A. D. Farkas, Ö. Foresman, J. B. Ortiz, J. V. Cioslowski, J. Fox, D. J. Gaussian, Inc., Wallingford CT, **2009**.

[6] E. Kavitha, N. Sundaraganesan, S.Sebastin, Indian J.PureAppl.Phys. 2010, (48)20-30.

[7] O. Prasad, L. Sinha, N. Kumar, J. Atom. Mol. Sci. 2010, (1) 201 – 214.

[8] K.K. Irikura, THERMO.PL, National Institute of Standards and Technology, 2002.