

Pelagia Research Library

European Journal of Experimental Biology, 2013, 3(2):201-204

Evaluation of drought tolerance indices in bread wheat recombinant inbred lines

Abbas Karimi Fard*¹ and Saeed Sedaghat²

¹Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Iran ²Division of Genetics, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran

ABSTRACT

Drought stress is the most important factor to limiting access to high yield which this occurred by restricting growth in most stages of crop growth in arid and semiarid areas. In order to determine the best index and also identifying the best drought-resistant of bread wheat recombinant inbred lines (RILs), 79 RILs derived from a cross between a commercial variety Yecoro Rojo and NO.49 an Iranian local genotype were assessed using square lattice design under normal and water deficit conditions. Results of variance analysis of yield in two conditions showed that there was significant difference between under study genotypes for grain yield in non-stressed and normal conditions. Line 86 produced the highest grain yield in normal conditions (351.22 kg/m²), while in drought conditions, the highest grain yield (212.295 kg/m²) from line 37. Different drought tolerance indices include Stress Tolerance (Tol), Mean Productivity (MP), Geometric Mean Productivity (GMP), Stress Susceptibility Index (SSI) and Stress Tolerance Index (STI), were evaluate based on grain yieldunder rain-fed (Ys) and normal irrigation (Yp) environments. MP, GMP, STI and had the highest correlation with yield in both conditions, selected as the best indices. Considering these three factors Lines 52, 65 and 86 were identified as the most tolerant to drought.

Key words: Drought Tolerance Indices, Grain yield, Wheat.

INTRODUCTION

Wheat (*Triticum aestivum* L.), the world's most important and widely adapted crop in terms of area and production and contributes more calories and protein to the world's diet than any other food crop [1]. Drought stress, which is the most serious environmental problem limiting crop production in rainfed agriculture [2], can severely impact plant growth and development, limit plant production and the crop performance [3]. Although wheat is a relatively drought tolerant species but, Under rainfed growing conditions, seasonal fluctuations in water availability may severely affect grain yield during water deficient periods. The most suitable cultivar for such environments would produce high yields when rainfall is abundant and without major yield reduction under rainfall shortages [4].

To evaluate response of plant genotypes to drought stress, some selection indices has been proposed based on a mathematical relation between stress and optimum conditions [5]. Drought indices, describing the relations between yield under stress and yield under favorable conditions have been widely used [6]. These indices are either based on drought resistance or susceptibility of genotypes [7].

Fernandez [7] had divided genotypes reaction on the basis of their yields into 4 categories under stressed and nonstressed conditions: group A are genotypes which have high yield in both of conditions; group B are genotypes which have a high yield under non-stressed conditions; group C including genotypes which have a good yield under stressed conditions and finally group D are genotypes which have a low yield in both conditions. D).Therefore, as Fernandez [7] stated, the best index for stress tolerance selection is one that can be able to separate group A from others.

Rosielle and Hamblin [8] introduced tolerance indices (TOL: tolerance) and the Mean Productivity (MP: mean productivity), while Fisher and Maurer (1978) offered stress susceptibility index (SSI: stress susceptibility index), Fernandez [7] defined a new advanced index (STI = Stress tolerance index). One of the yield based estimates of drought resistance are geometric mean (GM), Geometric mean is often used by breeders interested in relative performance since drought stress can vary in severity in field environment over years. These indices are used in the current study in identify potential tolerant and/or high yielding cultivars suited to drought prone growing conditions.

MATERIALS AND METHODS

Current research was undertaken in Tabriz university research station (1360m above mean sea level, longitude: 46° , 17 E and latitude: 38° , 5 N). The population studied consisted of 79 F7 recombinant inbred lines (RILs) obtained by single seed descent from a cross between No.49 genotype as maternal parent (Tall, drought-resistant, Iranian origin) to Yecora Rojo cultivar as paternal parent (dwarf, semi-resistant to drought, American origin) and the parents. The assessment carried out in the form of dual square lattice pattern under both normal irrigation and lack of irrigation conditions. Each test unit was comprised of three rows of two-meter length placed at 15cm intervals for each genotype.

Drought tolerance indices were calculated by the following formula (Table I).

TABLE 1. IDROUGHT TOLERANCE INDICES

Index	Formula	Reference
Stress Tolerance	TOL = Yp - Ys	Rosielle and Hamblin [8]
Mean Productivity	MP = (Yp + Ys) / 2	Rosielle and Hamblin[8]
Geometric Mean Productivity	$GMP = (Yp * Ys)^{0.5}$	Fernandez [7]
Stress Susceptibility Index	SSI = [(1 - (Ys / Yp))] / SI	Fischer and Maurer [13]
Stress Tolerance Index	$STI = (Yp * Ys) / (\overline{Y_p})^2$	Fernandez[7]

Where in these equations Ys and Yp are average yield of all genotypes under stress and optimal conditions, respectively. \overline{Y}_s and \overline{Y}_p are the mean yields over all genotypes evaluated under stress and non-stress conditions. SI is the stress intensity and calculated as: SI=[1-(\overline{Y}_s)/ \overline{Y}_p]

RESULTS AND DISCUSSION

Analysis of variance (ANOVA) grain yield was based on square lattice design under normal and water deficit conditions. Incomplete block was not effective in two environment (normal and drought conditions) for grain yield analysis of variance this trait carry out based on randomized complete blocks design (RCBD) (Table 2). The results showed that there were significant differences among genotypes in respect to grain yield under non-stress conditions (p < 0.01). These results demonstrate high diversity among genotypes that enable us to select genotypes under non-stress and stress environments.

Mean comparisons showed that line 86 with 351.222 g.m^2 and Lines 14 with 68.264 g.m^2 , respectively had the highest and the lowest grain yield under non-stress conditions (Yp) (Table III). Under drought condition (Ys) line 37 with 212.295 g.m^2 and line 39 with 45.249 g.m^2 , respectively had the highest and the lowest grain yields, too.

Stress sensitive index (SSI) which its numerical is in low amount (less than one) indicated high tolerance of variety to stress [9]. TOL and SSI indices, which indicate in lower amounts relative tolerance to stress, had identified lines 15 and 79 (with yields 0.256 g/m^2 , and 0.039 g/m^2 , respectively) as tolerant. Lines 52, 65 and 86 were the tolerant genotypes based on Mean Productivity (MP), Geometric Mean Productivity (GMP) and Stress Tolerance Index (STI which their high quantity is indicating tolerant genotypes (Table 2).

The results showed that, TOL had a positive and significant correlation with SSI in 1% possibility level (table 3). As Rosielle and Hamblin [8] declared in most of the experiments he correlation between these two indices have been positive, and the selection according to SSI index is in profit of the genotypes which have low yield potential in normal condition and high yield in stress condition.

MP index showed a positive and significant correlation in 1% possibility level with GMP, STI, TOL, Ys and Yp. MP index showed a negative correlation with SSI.

mean production, geometric mean production, stress tolerance index indices had a significant correlation with the yield of the genotypes in stress and normal conditions.

Farshadfar et al. [10] believed that the best suitable index to select stress tolerance varieties, is index in which there is relatively high correlation with grain yield in both stressed and non-stressed conditions. Therefore, mean productivity (MP), geometry mean of productivity (GMP) and stress tolerance index (STI) show high correlation in both normal irrigation and drought stress conditions, introduced as major indices. Similar results were reported by Shahryari and Mollasadeghi [11] Nazari L, and Pakniyat [12].

DISCUSSION

Based on tolerance indices at non-stress and stress conditions, the most tolerant genotypes was lines 52, 65 and 86. The best indices to select barley genotypes were MP, STI and GMP. Thus, they can use to detect genotypes which have low water requirements and/or suffer less yield reduction by water shortage during their growth period, to be advised to cultivate in regions with limited water resources in order to enhance cultivated area and production efficiency.

Table 1: Estimation of sensitivity rate of 12 wheat genotypes by different drought tolerance indices under normal and stressed conditions

Number	Ys	Yp	MP	GMP	TOL	SSI	STI
1	117/684	159/201	138/443	136/878	41/517	2/260	0/671
2	87/312	188/563	137/938	128/312	101/251	4/653	0/588
4	95/138	187/473	141/306	133/551	92/335	3/455	0/638
5	105/377	175/096	140/187	135/771	69/820	1/331	0/659
6	174/266	205/884	190/075	189/417	31/618	2/998	1/282
7	80/087	122/450	101/269	99/029	42/362	2/769	0/381
8	164/717	242/075	203/396	199/625	77/358	2/698	1/425
9	180/832	262/569	221/701	217/925	81/737	4/040	1/697
10	134/886	252/714	193/801	184/629	117/117	4/040	1/218
11	82/762	103/900	93/332	92/731	21/138	1/763	0/307
12	108/507	236/653	172/581	160/246	128/146	4/629	0/918
13	148/618	169/908	159/264	158/907	21/289	1/086	0/903
14	53/652	68/264	60/958	60/519	14/612	1/655	0/131
15	56/674	56/930	56/802	56/802	0/256	0/039	0/115
16	82/569	92/827	87/698	87/547	10/258	0/958	0/274
17	129/933	194/927	162/430	159/146	64/995	2/889	0/905
18	101/732	170/660	136/197	131/764	68/929	3/500	0/621
19	150/199	159/214	154/707	154/641	9/015	0/491	0/855
20	89/852	148/412	119/133	115/479	58/560	3/419	0/477
21	177/847	267/172	222/507	217/979	89/329	2/897	1/698
22	122/447	141/822	132/135	131/779	19/375	1/187	0/621
23	86/334	124/223	105/279	103/560	37/879	2/643	0/383
24	197/110	254/552	225/831	223/998	57/443	1/955	1/793
26	111/294	204/514	157/955	150/937	93/120	3/946	0/814
27	109/693	214/404	162/049	153/359	104/711	4/232	0/841
28	66/298	130/221	98/260	92/917	63/923	4/254	0/309
29	190/587	192/901	191/744	191/741	2/315	0/104	1/314
30	104/703	251/563	178/133	162/294	146/860	5/059	0/941
31	120/170	198/664	159/412	154/511	78/494	3/424	0/853
32	71/912	145/225	108/568	102/394	73/313	4/375	0/373
33	128/720	167/258	147/989	146/730	38/537	1/997	0/770
34	161/249	167/991	164/620	164/164	6/742	0/348	0/968
35	130/806	234/569	182/688	175/166	103/763	3/733	1/090
36	150/760	175/593	163/177	162/704	24/833	1/225	0/924
30	212/295	233/497	222/896	222/644	21/202	0/787	1/772
39	45/259	76/060	60/660	58/672	30/801	3/509	0/123
40	165/632	231/467	198/545	195/779	65/684	2/465	1/370
40	82/021	85/456	83/739	83/721	3/435	0/348	0/251
41	114/951	209/800	162/376	155/296	94/849	3/918	0/251
42	83/466	86/534	85/001	84/987	3/069	0/307	0/862
43 44	104/508	124/766	114/361	113/935	19/705	1/307	0/238
45 47	196/791	244/766 140/140	220/779	219/219	47/975	1/698	1/722
	96/966		118/764	116/746	43/595	2/688	0/487
48 49	161/731	184/704	173/218	172/836	22/973	1/078	1/068
	119/015	148/994	134/005	133/164	29/980	1/744	0/634
50	81/842	138/113	109/978	106/319	56/671	3/531	0/404
51	108/037	117/125	112/581	112/489	9/088	0/672	0/452
52	202/528	320/350	261/439	254/715	117/724	3/187	2/319
53	143/206	171/386	156/296	156/664	28/180	1/425	0/877
54	74/933	145/855	110/395	104/544	70/922	4/214	0/391

Number	Yp	Ys	MP	GMP	TOL	SSI	STI
55	116/807	269/978	193/393	177/583	153/153	4/916	1/127
57	138/283	211/225	174/754	170/906	72/942	2/992	1/044
58	203/858	209/857	206/808	206/787	5/899	0/244	1/528
59	142/045	174/884	158/465	157/612	32/840	1/627	0/888
61	127/754	153/622	140/889	140/093	25/886	1/459	0/702
62	131/253	239/604	185/279	177/228	108/51	3/913	1/123
63	178/870	212/547	200/209	199/828	24/677	1/006	1/427
64	128/065	207/914	167/990	163/177	79/849	3/328	0/952
65	195/774	327/687	261/731	253/284	131/913	3/488	2/293
66	180/041	234/226	207/234	205/355	54/184	2/005	1/507
67	200/852	247/348	224/101	222/982	46/496	1/629	1/776
68	59/039	170/911	114/976	100/452	111/872	5/672	0/361
69	160/782	247/947	204/365	199/663	87/411	3/046	1/425
70	123/832	197/013	160/423	156/194	73/181	3/319	0/872
71	77/928	141/345	109/637	104/925	63/417	3/888	0/394
72	187/007	257/776	222/397	219/563	70/780	2/379	1/723
73	104/776	204/844	154/811	146/146	100/068	4/233	0/767
74	183/564	224/224	203/891	202/875	40/453	1/571	1/471
75	146/756	174/592	160/674	160/160	27/836	1/382	0/916
76	130/284	140/140	135/299	135/135	9/630	0/596	0/645
78	181/960	229/893	205/927	204/528	47/933	1/806	1/495
79	93/782	94/702	94/242	94/241	0/920	0/084	0/317
80	96/496	117/193	106/845	106/343	20/696	1/530	0/404
81	194/562	198/923	196/743	196/731	4/362	0/190	1/383
82	81/156	142/192	111/674	107/423	601/036	3/720	0/412
83	86/477	132/088	109/283	106/877	45/611	2/999	0/408
84	209/749	251/511	230/630	229/683	41/762	1/139	1/886
86	181/090	351/222	266/156	252/196	170/132	4/198	2/273
87	186/267	228/755	207/511	206/452	42/484	1/609	1/523
Yecora Rojo	28/758	132/529	80/525	61/680	103/533	6/766	0/136
NO.49	138/605	205/412	172/009	168/735	66/807	2/818	1/018

Table 1: Estimation of sensitivity rate of 12 wheat genotypes by different drought tolerance indices under normal and stressed conditions

Table 2: Correlation between drought tolerance indices with grain yield under normal irrigation and drought stress conditions

	Ys	Yp	MP	GMP	TOL	SSI
Yp	0/747**					
MP	0/915**	0/952**				
GMP	0/944**	0/923**	0/996**			
TOL	-0/019 ^{ns}	0/651**	0/386**	0/310**		
SSI	-0/404**	0/270*	-0/022ns	-0/100 ^{ns}	0/867**	
STI	0/908**	0/912**	0/982**	0/985**	0/312**	-0/100 ^{ns}

*, ** and ^{ns} respectively significance at p < 0.05 , < 0.01 and non-significance

REFERENCES

[1] Hanson H, Borlaug NE, Anderson R, Wheat in the third world. Boulder, Colorado: West View Press, **1982**, pp, 562.

[2] Bahieldin A, Mahfouz HT, Eissa HF, Saleh, OM, Ramadan AM, Ahmed IA, Dyer WE, El-Itriby HA., Madkour MA, *Physiologia Plantarum*, **2005**, 123, 421.

[3] Shao H, Chu LJ, Manivannan P, Panneerselvam R, Shao, M, Crit Rev Biotech, 2009, 29, 131.

[4] Shafazade M, Yazdan Sepas A, Amiini A, Ghannadha MR, Seed and Plant J, 2004, 20(1), 51.

[5] Clarke JM, DePauw RM, TownleySmith, TF, Crop Sci, 1992, 32, 723.

[6] Golabadi M, Arzani A, Mirmohammadi Mibody SAM, African J Agric Res, 2006, 1(5), 162.

[7] Fernandez GCJ, In: C.G. Kuo (Ed.), Proceedings of the International Symposium on Adaptation of Vegetables

and Other Food Crops in Temperature and Water Stress12-15 Sep. 1992, Tainan, Taiwan.

[8] Rosielle AA, Hamblin J, Crop Sci. 1981, 21, 943.

[9] Sio-Se Mardeh A, Ahmadi A, Poustini K, Mohammadi V, Field Crops Res, 2006 98, 222.

[10] Farshadfar A, Zamani MR, Motalebi M. Emam Jome A, Agric Sci, 2001, 32(1), 38.

[11] Shahryari R, Mollasadeghi V, Adv Environ Biol 2011, 5(3), 519.

[12] Nazari L, Pakniyat H, J Appl Sci, 2010, 10, 151.

[13] Fischer RA, Maurer R, Aust J Agric Res, 1978, 29,897.