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ABSTRACT 
 
In this study, we investigated the effects of thermal radiation on entropy generation in a temperature dependent 
viscosity fluid flow in a channel with a naturally permeable wall of very small permeability. Numerical solutions are 
presented for the isothermal and convective boundary conditions and the effects of various pertinent parameters are 
examined on the velocity field, temperature field, entropy generation number, and Bejan number through graphs 
and discussed. 
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INTRODUCTION 
 

The study of pressure-driven or shear driven flows through channels are important because of many applications in 
science and technology. There are numerous geophysical and industrial applications of the study of flow of a 
viscous fluid flows overlying a porous medium with associated heat transfer effects. Several such applications have 
been discussed by Nield and Bejan [1], and many others. When a viscous fluid in a channel bounded below by a 
porous medium, the no-slip condition at its surface is not valid, since there exists effectively a slip velocity. 
Instability of Poiseuille flow is examined by Chang et al.[2] in a fluid overlying fluid saturated porous medium layer  
Hill and Straughan [3], investigated the instability of Poiseuille flow numerically, in a viscous fluid overlying a 
same fluid-saturated porous material in a channel. The upper wall of the channel is impermeable while the lower one 
is composed of a Brinkman-type porous material layer and a layer of porous material of Darcy-type. Earlier, Beavers 
and Jospeh [4], Saffamn [5], Ochoa-Tapia and Whitaker [6, 7] and James and Davis [8] have investigated and 
discussed in detail matching conditions at the fluid-porous medium interface. 
 
Numerous investigations have been conducted of viscous fluid flow and heat transfer in porous medium-wall 
bounded channels or coupled-flow in domains partially filled with a porous medium due to their recent 
technological implications in various configurations of engineering interest. Chauhan and Shekhawat [9] examined 
Couette compressible fluid flow in a channel bounded below by a porous medium of very small permeability. In a 
similar geometry Chauhan and Vyas [10] studied heat transfer effects in MHD Couette compressible fluid flow. 
Analytical investigation was presented by Kuznetsov [11] of fluid flow in the porous interface region in a channel 
partially filled with a porous medium. Kuznetsov [12,13] also investigated analytically Couette flow and heat 
transfer effects in a composite channel partially filled with a porous material . Alkam et al. [14] examined forced 
convection in channels partially filled with porous material. Al-Nimir and Khadrawi [15] studied Transient natural 
convection in domains partially filled with porous material. Umavathi et al. [16] examined heat transfer in a 
generalized Couette   flow in a composite channel. Aguilar-Madera et al. [17] investigated convective heat transfer 
in a parallel-plate channel partially filled with a porous medium, where the forced convection is caused due to a 
pressure drop in the horizontal axis direction. They presented the modelling of flow and heat transfer in the channel 
using a one domain approach. Chauhan and Agrawal [18] examined MHD Couette flow with hall current effects in a 
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partially porous material filled channel in a rotating system. Vyas and Srivastava [19] investigated generalized MHD 
Couette flow in a composite channel with entropy generation .Chauhan and Olkha [20] studied slip effects on wall 
driven flow of a non-Newtonian fluid in a channel bounded by a stretching sheet and a porous medium bed by 
employing homotopy perturbation method. 
 
Most of the investigations dealing with heat transfer effects in various flow configurations considered heat analysis 
based on the First Law of thermodynamics, which expresses the energy conservation principle. In analysing the 
complete energy transfer process, this law is inadequate. Experimental studies indicated that when heat energy is 
transferred to a system, only a part of it is converted to work, which is useful. Thus useful energy associated to work 
must have low entropy. Bejan [21] studied entropy generation in thermal systems and investigated the importance of 
entropy minimization in improving their performance. The study of entropy generation, thus, is useful in the design 
of heat exchangers, and other devices. Therefore many researchers carried out studies in this field, e.g. Morosuk[22], 
Mahmud and Fraser[23] ,  Hooman and Gurgenci[24], Damesh et al.[25], Chauhan and Kumar[26], Makinde and 
Aziz[27].Radiation effects on fluid flows are important in context of thermal energy storage solar power technology, 
environmental , astrophysical and space technology processes involving high temperatures. The study of these 
effects are considered by many authors in their research works, e.g. Smith[28] , Whitaker[29],Lai and Kulacki[30] 
,Chamkha[31], Raptis[32], Hossian et al.[33] , Bakier[34], Cortell[35], Shit and Haldar[36], Pantokratoras and 
Fang[37], Chauhan et al.[38]. In thermal-flow systems it is intended to utilize optimally the energy resources and 
avoid energy losses. If thermal radiation is appreciable, it also affects the entropy production   in thermal flow 
system. Arpaci [39] investigated heat lost into entropy production under thermal radiation effects. Chen et al.[40], 
Makinde[41], Bull et al. [42] studied effects of thermal radiation on entropy generation due to flow along wavy or 
flat plate. 
 
The aim of this research is to investigate the entropy generation in Poiseuille flow of a fluid overlying a porous 
medium under thermal radiation. In this study, a flow of temperature-dependent viscosity fluid in a channel bounded 
below by a naturally permeable bed of very small permeability is considered. Flow of fluid in the channel is driven 
by a constant pressure gradient applied at the mouth of the channel. Viscous dissipation and radiation effects are also 
considered, and Rosseland approximations for radiative heat transfer are assumed to be valid. Governing momentum 
and energy equations are solved numerically. The effects of various pertinent parameters are examined on the 
velocity field, thermal field, entropy generation number and Bejan number, and discussed graphically.  
 
1. Formulation of the problem 
We consider the flow of fluid with temperature dependent viscosity through a horizontal parallel channel of 
width ''d . The upper wall of the channel is impermeable, while the lower wall is a naturally permeable medium of 

very small permeability and saturated   with fluid at constant temperature '' 0T . 
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Figure1 Schematic diagram 
The flow in the bounding porous medium wall is modelled by the Darcy’s equation therefore in the absence of any 
external pressure gradient, the filter velocity in the porous matrix of very small permeability is assumed to be zero. 
The effect of the porous matrix is, thus to introduce a velocity slip at the lower bounding wall of the channel and its 
permeability affects flow in the channel through Saffman slip boundary condition [5].The flow in the parallel wall 
channel is driven by a constant pressure gradient applied at the mouth of the channel. The upper impermeable 
channel wall is assumed to have a negligible thickness and its upper face is in contact with another fluid at 

temperature '' 1T  . The upper wall is thus heated by convection from external hot fluid which provides a convection 

heat transfer coefficient ''h . Further it is assumed that property variations of the viscous fluid in the channel because 
of temperature are limited to viscosity only, which is assumed to vary as an inverse linear function of temperature, 
following Lai and Kulacki [30], as follows: 

)(1
)(

0

0

TT
T

−+
=

λ
µµ                                                                                                               (1) 



Dileep Singh Chauhan and Vinita Khemchandani                                Adv. Appl. Sci. Res., 2016, 7(4):104-120        
 _____________________________________________________________________________ 

106 
Pelagia Research Library 

where 0µ , is the viscosity of the fluid at the temperature 0T   ; and λ is the viscosity variation parameter . 

The governing equations for the present problem are given by  
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The corresponding boundary conditions are given by  
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Where, 

u  is the velocity  in the x -direction ; T is the temperature; ρ , the density; pC , the specific heat at the constant 

pressure; k , the thermal conductivity ;  
x

p

∂
∂−

, the pressure gradient; and
 

),(Tµ the  temperature dependent 

viscosity of the fluid; K , the permeability of the porous medium ; and α , the dimensionless constant depending on 
the local geometry of interstices of the porous matrix. 
 
In this study ,the Rosseland diffusion flux model is taken to simulate radiative heat transfer which is suitable for an 
optical thick fluid and gray , absorbing-emitting , but non scattering medium. Following Siegel and Howell [43] , it 
takes the form : 
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Where, σ , the Stefan –Boltzmann constant; and1k , the mean absorption coefficient. 

 

The term 4T     can be expanded for small temperature differences in a Taylor series about   0T  as follows   
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Let us introduce the following  non-dimensional quantities: 
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Substituting (1),(7) and above non-dimensional quantities (8) in equations (2)-(5), we obtain  
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And the boundary conditions are given by  
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Where, P is the non dimensional axial pressure gradient; U , the flow characteristic velocity; and  a , the variable 

viscosity parameter. For constant viscosity case we have, 0=a ; and for 0>a , the viscosity of the fluid 
decreases with rise in temperature . 
 
Here, 
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2. Numerical method of Solution 
Let us introduce the following new variables 
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Using the above new variables (13) the BVP consisting of the set of non-linear differential equations (10) and (11) 
with the boundary conditions (12), is reduced to a system of first order differential equations as follows: 
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and the corresponding boundary conditions are given by 
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The set of equations (14) are solved by using MATLAB solver   bvp4c   with the boundary conditions (15). The 
solution is obtained up to   the desired accuracy 10-6  .  

 
3. Entropy Generation 
In a thermal-flow system, entropy generation is finite positive provided in the medium temperature/ velocity 
gradients are present. Following Bejan [43, 21] and Arpaci [39], the local volumetric rate of entropy generation in 
the presence of appreciable radiation, is given by 

22

1

3
0

2

2 3

16









∂
∂

′
+
























∂
∂+









∂
∂

′
=′′′

y

u

Ty

T

kk

T

y

T

T

k
S

µσ
                                                           (16) 

 where T ′ , is a reference temperature.  
The dimensionless entropy generation number)(NS is defined as 

0S

S
NS

′′′
′′′

= ,                                                                                                                       (17) 

where 
22

2

0 dT

Tk
S

′
∆=′′′  is the characteristic entropy generation rate; and 01 TTT −=∆  

 
Using equations (18),(19) and  non dimensionless quantities (8), to obtain dimensionless entropy  generation number 
as follows: 
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Where
T

T
′

∆=Ω , the dimensionless temperature difference; 1NS is the dimensionless entropy generation due to 

heat transfer in the presence of radiation; and2NS , the dimensionless entropy generation due to fluid friction. 

Another important irreversibility parameter is the Bejan number )(Be which is defined as  
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DISCUSSION 

 
In this paper, a second law analysis of a temperature dependent viscosity fluid Poiseuille flow is investigated in the 
presence of thermal radiation. A pressure –driven flow through a channel with a naturally permeable wall of very 
small permeability is considered, and the effects of various parameters, such as, the Permeability parameterK , the 

variable viscosity parametera , the stark number RN , the Brinkman numberBr , the Biot numberBi , and the 

pressure gradient parameterP , are examined and discussed. 
 
The results on fluid flow are depicted graphically in figures 2-4 for various values of the parameters. It is found that 
the effect of the permeability of the lower porous medium wall is to enhance the flow in the channel. There is a 
velocity slip at the lower wall which increases by the Permeability parameter K  of the porous medium. In the limit 
when 0→K , the porous medium wall becomes impermeable, and the corresponding boundary conditions at it will 

be of no-slip. We see that for this case ( )0=K  the velocity profile is parabolic and the maximum velocity occurs 

at the centre line of the channel. For 0≠K , there is a slip at the lower porous medium wall, the maximum velocity 
is not at the centre line of the channel, but shifted a little towards lower wall. The location of peak velocity in the 
channel shifts towards lower wall as   permeability K  increases. Further it is seen that as the viscosity variation 
parameter a increases, which in turn cause a decrease in the fluid viscosity, consequently the flow in the channel 
increases. It is also observed that an increase in the value of the Brinkman numberBr , enhances the velocity of the 
fluid in the channel due to viscous heating effect. 
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Figures 5-8 illustrate the temperature profiles against y for various values of the parameters. It is found that with the 

increase in the permeability K  of the lower porous medium wall the temperature in the channel rises since 
permeability K  increases flow in the channel causing more viscous dissipation. The similar effect is observed by 
increasing the value of the viscosity variation parametera . Further it is observed that the temperature profile in the 

absence of viscous dissipation )0( =Br is linear, which indicates that the process of heat transfer in this case is 

purely by conduction , and with the increase in the value of Br the  temperature rises in the channel. The effect of 

the Stark number RN  or the Biot number Bi is also to increase the temperature in the channel.  

 
The effects of various parameters on the entropy generation rate NS are displayed in figures 9-15. The effect of the 

permeability K  of the porous medium lower wall is to reduce NS  at the lower wall, while NS  enhances at the 
upper wall of the channel by increasingK . Further it is seen that with the increase in the value of the viscosity 
variation parametera , the viscosity of the fluid decreases which affects significantly the velocity gradients in the 

channel causing an increase in the viscous dissipation, consequently increasing the entropy generation rate NS  near 

the channel walls. It is further seen that NS increases as the Brinkman number Br increases. The effects are more 

pronounced at the channel walls, as expected. However, with the increase in the value of Stark numberRN , the 

entropy generation rate reduces in the channel at all values ofy . Similar effect is observed with the increase in the 

value of the difference temperature parameterΩ . The effect of the Biot number Bi is to increase NS at all values 

of y in the channel. Similar results are observed with the increase in the value of the pressure gradient parameterP . 

The profiles for Bejan number Be are illustrated in the figures 16-22. It is observed that the effect of the 

permeability K  is to increase Be  at the lower wall, while Be decreases at the upper wall byK . There is a point in 

the channel where 1=Be  for some value ofy . This point where Be attains its maximum value shifts towards 

lower wall from mid channel with the increase inK . The effect of the viscosity variation parameter a is to reduce 

the Bejan number Be in the channel. Similarly it is seen that with the increase in Br value, the Bejan number 

Be decreases in the channel. Be , attains its maximum value one for 0=Br  for all values of y in the channel. 

There is also a point in the middle part of the channel ,  where Be also attains one for 0≠Br , which shows that at 
this point in the channel the fluid friction irreversibility is zero for the values of the parameters taken in this graph . 

Similar results are observed by the pressure gradient parameterP . However, the effect of the   Stark numberRN , or 

the Biot numberBi , or the temperature difference parameterΩ , is to increase the Bejan numberBe . 
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Figure2. Velocity profiles for  2.0,1.0,1,1,1 ===== BiPNBr R α  
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Figure3.Velocity profiles for  2.0,0001.0,1.0,1,1 ===== BiKaBr α  
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Figure4. Velocity profiles for  0001.0,1.0,1,1,1,1 ====== KaPNBr R α  
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Figure5. Temperature   profiles   for  2.0,1.0,1,1,1 ===== BiBrNP R α
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Figure6. Temperature   profiles   for  2.0,1.0,0001.0,1,1,1 ====== BiKaPN R α  
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Figure7. Temperature   profiles   for  2.0,1.0,0001.0,1,1,1 ====== BiKaPBr α  
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Figure8. Temperature   profiles   for  1.0,0001.0,1,1,1,1 ====== αKaPNBr R  
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Figure9. Entropy   profiles   for  1,10,1.0,1,1,1,1 =Ω====== BiaPNBr R α  
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Figure10. Entropy   profiles for  1,10,1.0,0001.0,1,1,1 =Ω====== BiKPNBr R α  
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Figure11.  Entropy   profiles for  1,10,1.0,001.0,1,1,1 =Ω====== BiKaPN R α  
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Figure12. Entropy   profile  for  1,10,1.0,0001.0,11,1 =Ω====== BiKaPBr α  
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Figure13. Entropy profiles  for  1,1.0,001.0,1,1,1,1 =Ω====== αKaNPBr R  
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Figure14. Entropy  profiles  for  1,10,1.0,0001.0,1,1,1 =Ω====== BiKPNBr R α  

 



Dileep Singh Chauhan and Vinita Khemchandani                                Adv. Appl. Sci. Res., 2016, 7(4):104-120        
 _____________________________________________________________________________ 

116 
Pelagia Research Library 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

4

6

8

10

12

14

y

N
S

 

 

P=1,2,3,4

 
Figure15. Entropy   profiles  for  1,10,1.0,0001.0,1,1,1 =Ω====== BiKaNBr R α  
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Figure16. Bejan number   profiles   for  1,10,1.0,1,1,1,1 =Ω====== BiaPNBr R α  
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Figure17.   Bejan number profiles   for  1,10,2.0,001.0,1,1,1 =Ω====== BiKPNBr R α  
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Figure18.  Bejan number profiles for  1,10,2.0,001.0,1,1,1 =Ω====== BiKPNa R α  
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Figure19.   Bejan number profiles   for  1,10,1.0,0001.0,1,1,1 =Ω====== BiKaPBr α  
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Figure20.   Bejan number profiles for  1,1.0,0001.0,1,1,1,1 =Ω====== αKaNPBr R  
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Figure21.   Bejan number Profiles   for  10,1.0,0001.0,1,1,1,1 ======= BiKPaNBr R α  
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Figure22.   Bejan number profiles   for  1,10,1.0,0001.0,1,1,1 =Ω====== BiKaNBr R α  
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