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Endothelialised Tissue Engineered Substitutes 
Produced by the Self-Assembly Approach for 

Implantation and Research: Past, Present and 
Future

Abstract 
Recent innovations in medicine include tissue engineering to produce tissues 
or organs for replacement/repair surgeries but also to serve as relevant 
tridimensional research models. For both applications, presence of microvascular 
networks inside the reconstructed tissues is necessary to obtain structures that 
are both complex and more complete. Indeed, rapid inosculation of graft to host 
is essential for positive clinical outcomes but pre-vascularized tissues are also a 
need to obtain thick tissue where diffusion of nutrients and oxygen cannot be only 
passive. In the last two decades, the self-assembly approach was developed at 
LOEX and has allowed breakthroughs in many organ/tissue reconstructions. This 
unique technique relies on the production of a stroma scaffold by the mesenchymal 
cells themselves without the need of exogenous materials. Endothelialisation of 
such tissues shows a great impact not only on graft reperfusion but also in the 
improvement of research models such as cancer and psoriatic models. The presence 
of a vascular or lymphatic network now opens the door to the development of 
complex and configurable models which may be available soon.

Keywords: Tissue engineering; Endothelial cells; Self-assembly 

Received: June 03, 2021; Accepted: June 10, 2021; Published: June 17, 2021

Introduction
In recent years, the Western world has been confronted with a 
shortage of adequate tissues for transplants to meet the needs of 
various pathologies [1]. Indeed, the increase in number of patients 
requiring repair or replacement of defective organs, mainly 
related to an ageing demographic and an increasingly sedentary 
lifestyle of the population, are combined with a decrease in the 
pool of available organs. This is due to the reasons mentioned 
above and to the tightening of the selection criteria for tissues 
suitable for grafting by regulatory agencies. At the request of 
clinicians, and often with their contribution, scientists have been 
led to develop innovative technologies to remedy this situation. 
Among these, tissue engineering seems particularly promising 
and has undergone significant development in recent decades, 
even if sometimes chaotic due to the gap between the scientific 
world and the financial and media worlds who do not think on 
similar time scales [2-4].

Literature Review
Tissue engineering is primarily based on the use of molecular 
scaffolding of synthetic or natural origin, onto which cells, 
potentially from the patient, can be seeded to recreate a functional 
organ/tissue [5,6]. One of the main pitfalls encountered by tissue 
engineering has been the ability to graft thick tissues. Indeed, the 
diffusion limit, which allows a passive exchange of nutrients and 
oxygen in one direction and of metabolic waste and carbon dioxide 
in the other, is variable but rarely allows the reconstruction of 
scaffolds with a thickness of beyond 300-350 µm. Most complex 
structures, however, require tissues of this thickness and beyond. 
This is the case when attempting reconstruction of any three-
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dimensional organ. Failing to overcome this dilemma would 
restrict tissue engineering to small, thin tissues and eliminate the 
possibility of replacing entire organ [7].

Even if the host's vascular network is capable of invading the 
reconstructed tissue once grafted, which is not necessarily the 
case, particularly with synthetic materials; the rate of invasion 
of the tissue for optimal perfusion of the graft is rarely reached. 
Partial or total tissue necrosis may be observed. Several solutions 
have been considered, such as helping the host network to invade 
the graft more quickly by using proangiogenic growth factors 
such as Vascular Endothelial Growth Factor (VEGF), or by forming 
a capillary-like network inside the graft itself before implantation, 
which can connect to the host by inosculation [8-10]. 

Discussion
Over the past twenty years, Dr. François A. Auger's group has 
developed at LOEX a new approach to reconstruct tissues by 
tissue engineering: the “self-assembly" technique (Figure 1) [11]. 
This technique, which relies on the capacity of stromal cells to 
produce, secrete and assemble their own extracellular matrix 
(ECM), makes it possible to build scaffolds very similar to native 
tissues without the need for exogenous biomaterials which may 
distance a model from the native tissue. Mechanical properties 
of transplant tissues are a critical factor for the transplant and for 
tissue functionality. These properties are fairly satisfactory when 
using the self-assembly technique [12-15]. In addition, these 

tissues demonstrated a histological organization and functionality 
of epithelial cells seeded on stromas, at a level very similar to 
that observed in native epithelia [12,16]. This is not always the 
case for epithelial cells when seeded on many biomaterials.

The protocols developed from the self-assembly technique have 
made it possible to develop a whole range of tissues helpful to 
compensate for the lack of tissues suitable for grafting. Bilayered 
skin substitutes consisting of an epidermis made of keratinocytes 
and a dermis of fibroblasts with their ECM have been used for 
several years to treat severely burnt patients, but also for those 
with ulcers or children affected by epidermolysis bullosa [17-19]. 
Corneal tissues have also been developed to treat patients with 
blindness associated with corneal clouding following trauma 
[20]. Blood vessels have been designed simultaneously with 
skin substitutes, using a similar technique, obtaining a tubular 
shape by rolling the ECM sheet around a mandrel [21]. Other 
models are currently under development such as adipose tissue 
reconstructed from adipose-derived stem/stromal cells (ASC) 
to serve as filling tissues or biological dressings [22,23]. Bone 
tissues have also been derived from ASC [24]. More recently, 
genitourinary tissues, such as the ureters, bladder and urethra 
have been developed using tubular or flat models, and the vagina 
as flat models only [12,15,25,26].

In addition to the obvious clinical applications, fundamental 
study models have been derived from these reconstructed 
tissues to understand pathologies in a context close to native 

Figure 1 Schema of the reconstruction of tissue using the standard protocol of self-assembly. 

Note: Mesenchymal cells are seeded in three wells of 6-well plates including an anchorage paper device and metal weights. Cells are 
cultured for 4-6 weeks in the presence of ascorbate to form an ECM sheet. Endothelial cells are then seeded on the top of intermediate 
and bottom sheets. Sheet is stacked together, pinned with surgical clips and fused under little mechanical load. After 4 days, the fused 
tissue can be seeded with epithelial cells before one another week of cell culture to allow horizontal proliferation of epithelial cells 
on the top of the stroma. Tissue is then place at the air/liquid interface for three weeks to achieve epithelial cell stratification and 
differentiation. This protocol allows the production of tissues with strong ECM without exogenous biomaterials, functional epithelium 
and a capillary-like network.
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Figure 2 Schema of the reconstruction of tissue using the “reseeding” variant protocol of self-assembly. 

Note: Mesenchymal and endothelial cells are seeded in one well of 6-well plates including an anchorage paper device and metal 
weights. Cell is cultured for 2 weeks in the presence of ascorbate before a mesenchymal and endothelial cell reseeding step. Cultures 
are pursued for 2 additional weeks to form an ECM rich stroma. The tissue can be seeded with epithelial cells before one another week 
of cell culture to allow horizontal proliferation of epithelial cells on the top of the stroma. Tissue is then place at the air/liquid interface 
for three weeks to achieve epithelial cell stratification and differentiation. This protocol allows the production of tissues with strong 
and homogenous ECM without exogenous biomaterials, functional epithelium and a highly mature 3D capillary-like network. For this 
variant no stacking step is required. Also the cost and complexity of the production are reduced.

Figure 3 Schema of a potential model to study cancer metastases spreading from bladder to lungs and bones.

Note: Branched blood vessels are reconstructed first and placed under flow in bioreactor. The flow is directed from the bladder 
substitutes to the lung and bone substitutes.  The connection from substitutes to reconstructed blood vessels is expected to take 4 
days. Bladder cancer spheroids produced by the hanging drop technique are placed on endothelialized reconstructed bladder mucosa, 
10 days after the beginning of the air/liquid interface just after the formation of the basal lamina separating the urothelium from the 
basal lamina. Invasive cancer cells can migrate through the epithelium, cross the basal lamina, invade the stroma and enter in the 
circulation through micro-vascular network. Cells can then go by the flow until reaching the reconstructed bronchi mucosa or the 
reconstructed bone. After extravasation, the cancer cell migrates through stroma to create a metastasis. This model allows also the 
circulation of cancer cell-derived exosomes through the blood flow. These exosomes are known to prepare the ECM to accept the 
circulating cancer cells.

human tissue. Indeed, most studies are performed on inadequate 
models associated with a low potential for clinical translation 

[27]. Monolayers of cells in plastic Petri dishes generally do 
not make it possible to recreate either the complexity of the 
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organization of the tissue in three dimensions, and therefore, the 
cell dynamics, polarity in particular, and hence differentiation, 
or the interactions between cells and the ECM, which a protein 
coating can very partially represent. Similarly, laboratory animals 
often show significant differences between species, humans 
included. The contribution of these models to the advancement 
of science should not be underestimated; nevertheless, biological 
complexity obliges us to recognize that it is necessary today to 
develop more sophisticated models and perhaps in the mid-
term, not only to recreate tissues in the laboratory but also to 
interconnect them, similarly to organ-on-chip technology, which 
is exciting but too simplistic given the complexity of realistic 
biological conditions.

In this context, the self-assembly technique has made it possible 
to study skin pathologies such as hypertrophic scars, systemic 
sclerosis (scleroderma), melanoma and basal carcinoma, psoriasis, 
epidermolysis bullosa, neurofibromatosis or skin manifestations 
of amyotrophic lateral sclerosis (ALS) [19,28-34]. Studies have 
also been carried out to better understand Fuchs’ dystrophy, 
which affects the corneal endothelium [35]. Models have also 
been developed to study pathologies of the genitourinary tract, 
such as bladder cancer, ketamine-induced cystitis, urinary tract 
infections, as well as infection of an immunocompetent vaginal 
mucosa model by the human immunodeficiency virus (HIV) [36-
38]. These various models could also serve as a solid basis for 
conducting permeability studies for the pharmaceutical industry 
as current in vitro models are often lacking in complexity.

Whether the objective is to reconstruct tissue for transplantation 
or to produce models that are as complete as possible, possibly 
composed of interconnected reconstructed tissues, vascular 
network formation within the 3D tissue is essential. For example, 
to study the early stages of metastasis or to measure the 
dynamics of diffusion of various factors within the tissue [39]. 
Several approaches have been attempted to recreate a network 
of capillaries within tissues produced by the self-assembly 
technique. Initially, human umbilical cord vein endothelial cells 
(HUVEC) or microvascular endothelial cells (MVEC) were seeded 
on the surface of ECM sheets which were then stacked to form an 
endothelialized stroma [40,41]. Although this approach may have 
given interesting results in the clinic by demonstrating that tissues 
produced with this approach were reperfused more quickly than 
non-endothelial tissues, the distribution of capillaries on the 
surface of the sheets was not optimal. A new technique was 
therefore introduced (Figure 2). The HUVEC/MVEC was seeded 
along with the stromal cells to produce the sheet and formed 
a capillary network throughout its entire thickness [42]. It was 
then possible to reseed endothelial cells and stromal cells on the 
ECM sheet to thicken it and homogenize the distribution of cells. 
It was also possible to stack reseeded sheets and have a network 
of capillaries harmoniously distributed in a relatively thick tissue.

Limits
Even if the tissues produced by the self-assembly method, 
endothelialized or not, offer real advantages compared to 

substitutes produced with biomaterials, the fact remains that 
they have certain drawbacks that it is necessary to mention. 
Indeed two main problems can arise in the context of the use 
of tissues reconstructed with the self-assembly method: the first 
is related to the time required for the production of the tissues 
and therefore their costs, although significant efforts have been 
made to decrease these two factors [42,43]. As seen in Figures 1 
and 2, the time to produce a complete substitute, i.e. with stroma 
and epithelium, takes about two months. For certain applications 
which require the production of tissues in an emergency, the 
technique therefore seems unsuitable even if work is in progress 
to evaluate the possibility of using decellularized matrices in order 
to halve the time required [44]. For other applications where time 
is not a critical factor, such as hypospadias correction surgeries 
which are performed on an elective basis, this factor is less 
impactful. The cost issue may, however, put off some surgeons. 
Nevertheless, if the treatment is evaluated in a long term point of 
view, the advantages of a bilayered tissue produced with the cells 
of patients and having a very strong histological and functional 
similarity can be an important advantage and thus reduce the 
costs subsequent to the surgery which are often important when 
using more classic approaches [17]. Another problem arises from 
the planar or circular configuration of the tissues produced. 
Some organs require more elaborate morphologies such as the 
lungs or kidneys, for example, and are difficult to reconstruct 
using the self-assembly technique. Nevertheless structures as 
complex as heart valves could be produced with this approach 
[45,46]. However, no techniques or mix of techniques should be 
ignored in order to provide the most suitable product to patients, 
for graftable tissue, or to scientists, for research models.

Future Directions
Nevertheless, many challenges remain to be overcome to 
recreate thick tissues, that of a thickness beyond the diffusion 
limit, or to produce an interconnected network of organs/tissues 
reconstructed by tissue engineering, using the self-assembly 
technique or others as appropriate. For example, it could be 
exciting to connect brain organoids with intestinal or bladder 
tissue due to the numerous pathologies linking the brain and 
these organs [47,48]. The hypothesis that cancer cells secrete 
messages that remotely alter the microenvironment of metastasis 
sites has been developed for many years. It has been revived 
over the past fifteen years by studies on exosomes [49,50]. 
Producing tissues from primary cancer sites and studying the 
diffusion of these exosomes through the bloodstream and their 
effect on metastatic sites could provide valuable information. It 
would also be interesting to understand why specific tissues are 
more inclined to receive circulating cancer cells where others are 
refractory. The self-assembly technique has also been shown to 
reconstruct lymphatic vessels, which play a role in these processes 
[51]. From a technical point of view, such an interconnected 
tissue network could be built. Several techniques reconstructed 
many organs/tissues, and blood vessels can be designed and 
easily interconnected for various calibres (Figure 3). 
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Conclusion
The medicine of the future has a high potential be a personalized 
medicine where each person can receive appropriate treatment 
for the pathology that affects them, adapted to each unique 
profile [52-55]. Contrary to what some people imagine, such a 
development would reduce health costs by avoiding the use of 
expensive drugs that may not prove useful for a specific person 
and therefore by shortening treatment times and reducing side 
effects. Unlike the models currently used, the development 
of complex research models where all aspects could be 
parameterized and controlled, unlike animal models, and this 
from a patient's own cells, will allow these feats that were still 
unimaginable a half-century ago but are today within our reach. 
Also, people will be able to have access to a range of tissues 
reconstructed in the laboratory with their own cells and that 
are therefore perfectly immune-compatible, having a degree of 
differentiation, and therefore functionality, as high as possible, 
allowing a return to a better quality of life. The development 
of tissue engineering for direct clinical applications and for the 
advancement of knowledge has the potential to change the 

face of medicine. It could be comparable to the discoveries of 
antibiotics and vaccines. Sky is the limit.
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