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ABSTRACT

In the present paper, we have studied the Enciitetgy FactorEEF(J) ,0< 0 < 1 within a circle of specified

radius O in the Impulse response function or the Greemstion of an optical system with First —Order Paiib
Filters. As the most important conclusion from quesent study, we find that the Encircled Energgtéia

EEF(J) is a monotonically increasing positive functiolt.vanishes at the origin,d =0, of the EEF(5)

versu d curves and then increases monotonically approgalnity asymptotically as the ‘bias’ of the apsidy
function tends to increase.
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INTRODUCTION

The encircled energy EEF (O) measures the fraction of the total energy conthiwihin a circle of specified

radius ‘0’ in the image plane, centered on the diffractiead This is one of the important parameters irsthdy
of a diffraction image. LORD RAYLEIGH1] first pointed out the importance of the studiestie encircled
energy in the diffraction pattern as an image qualssessment parameter. Although the encircletygn a good
test for the quality of an optical system, it has Ibeen used much in the early years, becausaedifficulties in
its calculations. To overcome this difficulty, LARBUX and BOIVIN [2] introduced computing techniques for the
numerical evaluation of the encircled energy in diferaction pattern of an optical system havingmhtions. The
image structure of self- luminous or incoherentliuniinated objects, formed by optical instrumenise |
astronomical telescopes and cameras used in gdr@bgraphy is determined by the diffraction stadigéhe
Fractional Encircled Energy gives an idea of the effective spread of the adfion pattern. This spread will
determine the resolution as in the astronomicalgema like imaging of distant point objects throughrandom
stationary atmosphere. In what follows now, we piksent a brief review of the previous works donghe EEF
by various authors.

SOM and BISWASJ3] studied the fractional encircled energy digitibn in the far-field diffraction pattern with
circular apertures under partially coherent illuation. KINTNER [4] has calculated the encircled rgye
analytically by representing the point spread fiomctn an orthogonal series form. It is now wellekvn that the use

of an annular aperture makes the central maximutiénAiry pattern narrow and increases the deptfoods.
WELFORD [5] has studied the focal depth with annual apeduand discussed about the encircled energy.
TSCHUNKO [6] has shown that there will be increases in #solution with the obscured apertures. STAMNES,
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HEIER andLJUNGGREN(]7] have calculated the encircled energy for lange of aberration free annular aperture
systems using HOPKIN'S&lgorithm [8]. They have also assessed the foci#l silerances. TSCHUNK{6]
derived the total energy function and determinedpartial energy integrals for the system with anuar aperture
apodised with different types of apodising funcioBISWASand BOIVIN[9] derived a general formula to study
the influence of wave aberrations on the perforreanic optimum apodisers particularly in the encidcknergy
values. In their study, they have used Straubedscknd Lansraux-Boivin apodisers. DEVARAYALU, RAdd
MONDAL [10] discussed about the possibility of identifyisigper- resolving and apodising properties of ditalp
system having shaded circular apertures from dedirenergy considerations.

VISWANATHAM, RAO and MONDAL [11] have studied the fraction of the encircledrggewith regard to the
dispersion factor in the diffraction pattern of circular aperturéedJNEBERG [12] proposed four apodisations
problems and suggested a method to solve themibyg tiee calculus of variations. The third Lunenbprgblem is
to find the optimum pupil function which gives maxim energy in a given area in the image field atrdteiving
plane. LANSRAUX and BOIVIN [2], BARAKAT [13] alsorivestigated this problem on the basis of the catmn
of variations. UENO and ASAKURA [14] have solvétist problem of maximum encircled energy for an edtém
free, rotationally symmetric optical system apodisgith a specified overall transmittance. CLEMEN®8d
WILLIKINS [15] investigated the problem of findinthe diffraction pattern and corresponding pupil ction
having the maximum possible encircled energy r&tioan arbitrarily fixed radius and a fixed Raleitiimit of
resolution. MONDAL [16] has derived an expressionthe encircled energy within the circle of adfied radius
in the Fraunhofer diffraction pattern due to aipétial aperture.

When a converging monochromatic spherical waveffeadted at a circular aperture, the classicabtligredicts
that the intensity distribution in the focal regiaill be symmetrical about the focal plane. But seduent studies
show that the principal maximum of the diffractipattern may not be at the geometrical focuses aodesm
towards the aperture depending upon the Fresnebeu(i) of the system. This effect is referred $¢&@cal shift’ .
BARAKAT [13] has studied experimentally the varatiof encircled energy with Fresnel number N of shstem.
MAHAJAN [17] has discussed about the encircled gpef systems with non- centrally obscured apestamd has
shown that non-central obscuration yields an eduahigher encircled energy value than that with tia@n
obscuration. VENKAT REDDY, PRASAD and MONDAL [18]alie computed the encircled energy of optical
systems with non- centrally apodised pupils.

ENCIRCLED ENERGY FACTOR (EEF)
The principal corollary of the PSF is thmcircled Energy Factor (EEF). As already stated, it is the ratio of the

flux inside a circle of radiusd* centered on the diffraction head, to the totaifin the diffraction pattern. It
represents the amount of energy contained withiincie of radius * d ‘ in the image plane normalized to a total
energy value of 1.0 as & — . Thus, by definition,

1
(Vv -
Where @ = tan l(_.] and z = ( uz+ \/2)2 are the polar coordinates of a point in the diffien pattern on the
u

image plane;@ is the azimuthally angle an(ﬁp (O, Z) is the amplitude in the image plane at a poininits away

from the diffraction head; z is expressed in dini@mgss diffraction units. Since the integratiordeng introduces
just a constant in both numerator and denomin#ierabove equation reduces to:
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ﬂGp (o, z)‘2 zdz
EEF(0)=2

”Gp (o, z)‘2 zdz
0

The denominator in the equation (2) representddtad flux and is equal to the twice tipass flux ratioT . The
amplitude of the light diffracted in the far fietdgion associated with rotationally symmetric pdpiiction can be
expressed by the following equation:

1
0

When f (r) is the pupil function, for our apodization filtdthe pupil function f (r) is here represented as:

f(r)=(@+pr? (4)

Substituting equations (4) and (3) in equationw@)obtain for the,

(a+pr?)3,(zr) rdr} zdz

Oty

{2
EEF(0) =
IE
0
It is a monotonically increasing positive functidh.vanishes at the origid =0 and increases monotonically
approaching unity asymptotically @ tends tooo .

ot— [0t—3r

(a+[3r2)J0(zr) rdr} zdz
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Fig.1(a) : Variation of EEF( 3) with 5 for g =0,0.25,0.50 & 0.75; 3=0.1
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Fig.1(b) : Variation of EEF( &) with 5 for o =0,0.25,0.50 & 0.75; 3=0.3
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Fig.1(c) : Variation of EEF( 3) with 5 for o =0,0.25,0.50 & 0.75; 3=0.6
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Fig.1(d) : Variation of EEF( &) with § for g =0,0.25,0.50 & 0.75; 3=0.9

We have shown the variation of EEB | with d for a =0, 0.25, 0.50 & 0.75 in the figures 1 (a) to 1. @hch
curve in the figures is for a particular value @f as indicated therein. It is observed from the féguthat a
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particular value ofd and for smaller value ofr , EEF (0) has lower values. Further, the EEF ) curves are not
well dispersed for higher values af . Also, this happens when the value 8fis very small. As the value gf is

increased , the EERJ() curves start getting well-separated from onelseroto show the desirable effects of higher
values of 8 on the amount of Encircled Energy within a preesfied radius ofd .

3 RELATIVE ENCIRCLED ENERGY [EEF(J)]R
It is defined as the light flux enclosed by a @roff radius 9’ in the image plane due to the apodised pupil as a
function of the total flux in the image plane dodtie Airy pupil. Thus,

5

2
flG,(0.2)[ zdz
—0

[EEF(9)] =2 e (6)

[IGa(0.2)[ 202

0

G, and Gp are the amplitudes for the free aperture andjiven case of apodisation in our study respectively
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Fig.2(a): Variation of REEF with 5 for o =0,0.25,0.50&0.75; B=0.3
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Fig.2(b): Variation of REEF with 5 for o =0,0.25,0.50&0.75; p=0.6
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Fig.2(c): Variation of REEF with 5 for g =0,0.25,0.50&0.75; 3=0.9

We have shown the variation of Relative Encirclatkigy Factor with specified values of radd for a smaller
value of F=0.3 an intermediate value of £=0.6 and a higher value of 5 =0.9for

a =0,0.25,0.50&0.7!in the figures 2 (a) to 2 (c). It is observed frtme figures that for a particular value of
[ the effects of increasing th& values are to increase thias or the average valueof the REEF curves, as it
should be expected. So far as the effect@offor a particular value ofr are concerned, an increasing the value of
[ increases the individual values of REEF. Thustlierrelative EEF the effects of botr and [ are similar.

4 EXCLUDED ENERGY EE(9)

The distribution of energy in the outer ring sturetis callecExcluded Energy EE(J) which is defined as
EE(J)=1- EEF(9) ..cccvvnue.. (7)

where EEF(5) is theencircled energy factorwithin the circle of radiusd . This parameterEE(5) is also
known as thédispersion factor”. Mathematically, the excluded energy can be ddfase

T\Gp(o,z)\2 2d;

EE(0)=2¢—— ... (8)
[6,(0.2)" zdz
0

This is used in evaluating apodisation techniqoestfippressing the ring structure. It is evideatrfithe definition
of Excluded Energy EE(5) as given in the expression (8) tkEEF(b_) and EE(5) are complementary in

nature. Therefore, the effects af and [ for a particular value o® on the EEF(J) curves will be reversed

for the EE(5) curves for the same value @ .
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Fig.3(a): Variation of EE( & ) with & for o =0,0.25,0.50 & 0.75; pB=0.3
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Fig.3(b): Variation of EE( & ) with 3 for g =0,0.25,0.50 & 0.75; B=0.6
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Fig.3(c): Variation of EE( & ) with & for a =0,0.25,0.50 & 0.75; B=0.9
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5 DISPLACED ENERGY DE(J)

The two parameters encircled energy factor anduebed energy represents distribution of energy withtircle of
specified radius and outside it in the point spréatttion of a particular real optical system regpely. The

displaced energyDE(5) is the difference of the encircled energy factiothe perfect lens system and that of the
real one.

DE(J) = EEF(9)], ~[ EEF{(J)] -cvvcveivee (9)
where [EEF(J)]A and[ EEF(5)]p refer respectively to the perfect and the realtesy. In the above

expression [EEF(O_)]A gives encircled energy for the perfect ideal srys(q@ = O) and [EEF(J)]p is the

encircled energy for the actual apodised casenfosame radiuso °.

2
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1.6 __w» q=0.25
1.4
1.2 / a=0.5
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DE(5
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o
o 1 2 3 a > 5 6 7 8 ° 10
Fig.4(a): Variation of DE( 5 ) with 5 for g =0,0.25,0.50 & 0.75 ; 3=0.3
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Fig.4(b): Variation of DE( 5 ) with 5 for o =0,0.25,0.50 & 0.75 ; 3=0.6
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Fig.4(c): Variation of DE( & ) with § for o =0,0.25,0.50 & 0.75 ; g =0.9

We have shown the variation of DB () with O for various values ofr =0, 0.25, 0.50 & 0.75 for particular values
of [£=0.3, 0.6 & 0.9 in figures 4.4(a) to 4.4(c). Thexas are self evident and need not be discussetlighgpr.

We have shown the variation d}')E(5) with O for various of a =0,0.25,0.50&0.7' for particular

values of3 =0.3,0.6 &0.€ in Fig 4(a) to 4(c). The curves are self- Evident need not be discussed any
further.
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