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ABSTRACT

Encircled Energy Factor (EEF) is an important corollary of the Point Sporead Function (PSF) of
an optical system. In the present paper, we have studied the Encircled Energy Factor and other
associated corollaries of the PSF,viz. Displaced Energy in order to understand their role as
point-image quality assessment parameters.
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INTRODUCTION

The most important corollary of the Point Spreaadtion (PSF) is the“Encircled Energy

Factor” or the“Encircled Power”. It measures the fraction of the total energy inR8€,
which lies within a specified radiu$ * in the plane of observation or detection. It irecof the
significant parameters which serve as an indexhefgerformance of an optical system. The
radial distribution of energy within the image, ledl the encircled power, is a classical measure
of the quality of the optical system producing tiparticular image. We will designate this
important parameter by the symbeEF (6). EEF (0), obviously vanishes whe is zero and
approaches unity whefi becomes infinity. Lord Rayleigh (1). Was the fitst point out the
importance of the encircled energy factor to fihé flluminations in the various rings of the
diffraction pattern and presented a formula focgkiting the same.

When a converging spherical wave is diffracted bgiraular aperture the classical theory of
focusing predicts that light energy is highly camicated in the geometrical focal plane. It means
that there is a maximum amount of energy withie@eiving circle of a given radius centered at
the aperture axis and placed in the geometricall folane which contains more energy per unit
area than any other plane parallel to it. Thussoines out that th&EEF (8) is the primary

corollary of the PSF and is the factor, which describes the integratedalior of the point

source diffraction image. It is a sensible imagaliy evaluation parameter of an optical system,
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which may be diffractionlimited, defocused, aberrated, apodised or even a cechfonm of all
these phenomena.

Previous studies on encircled energy factor: LORD RAYLEIGH (1) gave the
mathematical formula for a circular aperture withapodisation i.e., in diffraction limited Poi
Spread Function. STOKES (2) and RAYLEIGH (1) alsoved a number of general theore
on encircled energy. The idea of making encircled energy maximum for a certain radius

thereby optimize the diffraction pattern has betlizvad and studied by STRAUBEL (3) WOL
and LINFOOT (4) carried out a detailed study of iezcled Energy for a circular apertul
LANSRAUX (5) gave an &krnate interpretation of Encircled Energy as tetr@ast at the cent
of the image with respect to the background. LAN&RXAand BOIVIN (6) found that there is
maximum limit to the concentration of energy in tbentral core of the diffraction patte

SHANNON and NEWMAN (7) developed an apparatus for measuring Encircladrdy.

BARAKAT and HOUSTON(8) have shown that the encidcénergy can be obtained directly
measuring the transfer function, An improved metHod measuring encircled or enclos
energy for imaging optical systems, makes use ofipusly micr¢- machined detections whic
are positioned with a great accuracy at the ceritem image, by LEVI (9

SURENDAR, SESHAGIRI RAO and MONDAL (10) have stutlithe encircled energy and
conplimentary quantity, excluded energy using Lancgosdisation filters

2. MATHEMATICAL EXPRESSION FOR EEF

The figure.1 shows a schematic representationfisadiion at a circular aperture of diame¢2R

. Let us consider a spherical w-front S having the radiugl and which momentarily fills th
aperture, is emerging from the optical system amuverging towards the axial focal pcF .
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Let P(u,v,w)be a typical point not far away frofn. Also, let FP = p be the position vector by

which the pointP is specified and let’ = PF . Our intention is to study the diffracted field
A (u,v,w)i.e., the amplitude of the light diffracted at theintP. Let d be the distance of the

point P from an arbitrary poimO({,n,Z) on the wave-front just at the moment where it is
incident on the aperture. L%tA—\. be the amplitude of the incident wave at the pGintVe shall

assume that the incident light is quasi-monochramaght and that the wave length is very
much small compared to the radius of the apertargd << R.

A general expression for the complex amplitudéhatgoint P can now be obtained by applying
the Huygens'’s Fresnel principle. Thus, following B and WOLF [1], the complex amplitude
of light diffracted at the point P can be written a

@) GwNN@=—%f§}md4m)gf¢)wmﬁm)€§

In the above expression, k stands for propagatostant 2% and f(r) known is the pupil

function which defines the nature of transmissi@erahe pupil of the aperture of the optical
system under consideration. The double integratd&g carried out over the entire surface area
of the wave-front incident on the aperture. Thealisnclination factor has been omitted here

since only small angles are involved Oifdenotes a unit vector in the direction OF, we wite,
with good approximation,

2) (d-d)=0.p
The surface elementS can be expressed as

3 ds=(d)*da
Where dS is the element which subtends a solid ardifeat the poinE .

ds _(Rerdrdd)
@ (o)
Where (r,8) are the polar co-ordinates of the point O. Withiatroducing an appreciable error,

d can be replaced bg' in the denominator of the integrand in the expogséll-1). Thus, after
simplification, we obtain

(5) G(u,v,w):—i:‘—o‘g f (r) exp(-ikop) da

The integration extending over the solid angkubtended by the aperture at the pBinfor a
clear aperturef (r):l and the expression (5) reduces to the well knoldebye integral viz.,

We can write 4) da =
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_ A L= =
(6) G(u,v,w)——;jjexp(—lko.p)da
which can be written, after substituting fdo from equation (4), as
) 'Ajl'sz( ) p( 'k__) Rzrdrdy
(uv,w)=-— r)exp -ikop :
/1 00 d2

Let us use the polar co-ordinatis, @) for P and (r,8) forO. We can express the Cartesian co-
ordinates of the point® and P as.

u=osing
(8) V =0 CoS¢
and
& =Rrsind
9 n = Rr cosf
and
1/2 1R2r2
10 =[(d")-Rr?| =d'|1-=——+......
(10) 2 =[(@)-rr?] {Z[d'] }
We therefore, get (11) B_E:M

d 1

Substituting the values af, v, &, 7 and{ from (8), (9) and (10) in, (11).
We obtain

e . . , -
O.p:{asmqﬁRr Sind+ o cogRr coé}rwd {1_ Rr +}

d' d'|” 2(d)
Rr — 2,2
(12) = gcosd ¢)+W 1_£R_r2
d 2(d)
Rer?
where the higher power%wj have been neglected. Let us now introduce the two

dimensionless variableg and Z to specify the position of the point
2
Y —2—77[Bj w
Ad’

(13) And Z = 2/‘” (Bja

Whete= (u? +v?)"?,

148
Pelagia Research Library



Alety. Srisailam et al Adv. Appl. Sci. Res., 2011, 2(6):145-154

It has to be noted that the poiRt lies on the direct beam of light or in the geomcatrshadow

according a%Z— <1. UsingZTIT: k, we can write

N2
(14) k5.,5=Zrcos(9—qo)—(dEj y+%yr2
Substituting the value of o. p value from (14) in equation (7), we obtain
ALY d\¥ 1. ,|Rerdrdg
15 ,Z)==—|| f(r)exp -izr cogd-¢)+i —=iyr?
09 olua)= e oo (oo
AR d Y |Rerdrdg
:7“'f exp[(—er)cos{H o) - (|yr )+I(R] y}T

The integral w.r.td is a well known standard integral being equalszo(Zr) where Jo(Zr)
is the Bessel function of the first kind and zerdew for the argumeZr). Thus,

G(y,.Z)= —(;—j(gﬁf]exp{i(%f y:l 27
Putting /]dA'Z ex p{ (dey} =@, we get

(18) G(y,Z):ZniquZJl' f (r)exr{_izrszo(Zr)rdr

=

f(r) ex;{_i;erJo(Zr)rdr 17)

o

The term 7R’ outside the sign of integration does not haveedfect on the diffraction
pattern. Neglecting, therefore, this term we obtain

(19) G(y,z)= 2]1' f(r)exr{_inZJJo(Zr)rdr

as the expression for the amplitude of light ddteml at the poinP . The factor of2 has been
retained in the above diffraction integral as anmalizing factor. point spread function of the
optical system can be evaluated by knowing theie@kgm@xpression of the pupil functio (r)
and then taking the squared modulus of the equafi®), at the focused plane of observation
corresponding toy = 0, the above expression reduces to,

(20) ZI Zr r dr

The Encircled Energy Fact¢EEF) is defined as the ratio of the flux inside a @rof radius *
6’ centered on the diffraction head to the totakfio the image of a point object. Thus,
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2

N

:o'—-.

ﬁe (0,2) zdzdg
(21) EEF (8) =22
jﬂe (0,2) zdzdg

where ¢ is the azimuthally angleG (O,z) is the amplitude in the image plane at a paintnits

away from the diffraction head due to the aperfuretion f (r). Since, the integration over

introduces the same constadw in the numerator and the denominator, the aboyeession
reduces to

zdz

Jle 0

(22) EEF (0) =2

ﬂG zdz
The denominator in the expression [2] represer&std)tal flux in the entire image plane. This
implies an impossible task of evaluating the dematar by integrating th&S- over the image
plane, i.e., for the limits ok in the rang@< z< . However, in actual practices (O,z) IS
rapidly convergent and drops to zero value at #efidistance fromz=>0 toz<15.0. This
happens due to the fact th@t contains Bessel functions of the first kind, whagtillate from
positive to negative values very rapidly and becam® at a finite distance from the centre of
the diffraction image(z=0). Thus, it will be sufficient for all practical ppwses if the upper
limit of integration in the denominator of [2] ixéd around 15.0. Therefore,

G (0,2)[ zdz

(23) EEF (0) = _
‘G (O,z)‘2 zdz

o Blo—u

It may be mentioned here that analytically too,l@ed form solution of the integral in the
denominator of [2] can be obtained in terms of haotorollary of the PSFPassing — Flux
ratio” denoted by .

RESULTS AND DISCUSSION

For calculation we have using Mathematica4.1 saféwve given program as input then we got
results. This parameter is also known as the dadifgower, i.e., the amount of power contained
in a circle of radiu in the Gaussian plane of observaijgr 0), which is centered on the
Gaussian image poi(e=0). Fig.2 shows how the encircled power on the eledrenergy
factor varies witb. It is observed from the table-1 that the centigy disc ( for S =0) contains

83.8% of the total power. The first bright ring contath2%, the second bright ring.8% and
the third bright rind..4% of the total power.
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Figure.2
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Table.1
ENCIRCLED ENERGY FACTOR FOR BARTLETT WINDOWFUNCTIONS

dvalues| “p=0 | p=0.1 | p=0.2 | p=0.3 | p=0.4 | p=0.5 | p=0.6 | p=0.7 | p=0.8 | p=0.9 | p=1
1 0.2306| 0.2301 0.2293 0.2278 0.2255 0.222 0.2168086| 0.1967 0.1794 0.1548
2 0.6445| 0.6466 0.6481 0.6486 0.6473 0.6435 0.6355212| 0.597| 0.5582 0.4988
3 0.8535| 0.8623 0.8714 0.8803 0.8886 0.8953 0.89®8972| 0.8855 0.8576 0.8043
4 0.8749| 0.8866 0.8992 0.9129 0.9273 0.9423 0.959868695| 0.9773 0.9754 0.95%7
5 0.8992| 0.907| 0.915Ff 0.92%3 0.9359 0.9475 0.9599726| 0.9842 0.9926 0.9934
6 0.9405| 0.9446 0.9491 0.9542 0.9599 0.9662 0.97@9803| 0.9874 0.9932 0.99%8
7 0.9501| 0.9536 0.9576 0.962 0.9669 0.9723 0.9789842| 0.9901 0.9948 0.9965
8 0.9559| 0.9589 0.9623 0.9661 0.9703 0.975 0/98 85@.9 0.9907| 0.995 0.997
9 0.9728| 0.9747 0.9769 0.9793 0.9819 0.9848 0.98891@| 0.9943 0.9966 0.9973
10 0.979 | 0.9807 0.9826 0.9847 0.987 0.9895 0.9929940 | 0.9971 0.9987 0.9986
11 0.9809| 0.9824 0.984 0.9859 0.9879 0.9902 0.9926951| 0.9974 0.9992 0.9997
12 0.9896| 0.9904 0.9912 0.9921 0.9932 0.9943 0.9956969| 0.9983 0.9993 0.9999
13 0.9943| 0.9947 0.9952 0.9957 0.9963 0.997 0.9909984| 0.9991 0.999F 0.9999
14 0.995| 0.9954 0.9958 0.9962 0.9968 0.9973 0.9979986| 0.9992 0.9998 1
15 1 1 1 1 1 1 1 1 1 1 1

4. Displaced Energy Factor DEF (9)]:

Wetherill (11) has defined thelisplaced energy” as the difference of the encircled energy of
the diffraction-limited system, in a specified ¢&cto the encircled energy due to an apodised
system in the same specified circle. The mathewaddtoem of this factor is, therefore,
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(24) DEF () = EEF,(3) - EEF-(9)

Where, EEF,(J) and EEF. () represent the encircled energy for a diffractitimited system
and an apodised system respectively.

[Tea0f e e (0.2 aiutp
DEF (5)= 22 _is

[ [lea(0.2) zimp | lc (0.2)" zizg
(25) bo ]

Since, the integration oveg introduces the same consta@nz in the numerator and the
denominator, the above expression reduces to

jz‘GA(O,z)‘2 zdz ﬁGF (0,2)‘2 zdz
DEF (5) = 1% h 105
[16a(0.2) zdz  [|G:(0.2)" zdz
0 0

(26)
Where the subscriptsA and F stand for Airy B=0) and filtered non-air$fz0) pupils
respectively. The positive sign of this factor rates that the energy displacement is outward
while the negative sign indicates that the eneliggldcement is inward. This factor is useful to
compare the energy distribution in the case ofaatptical imaging systems to that of perfect
systems. This is a more sensitive quality factahi case of central obscuration in the aperture.
It is, of course, less sensitive in the case ofimaage motion, where  Strehl-ratio plays an
important role.

Table.2

dvalues| p=0 | p=0.1 | p=0.2 | p=0.3 | p=0.4 | p=0.5 | p=0.6 | p=0.7 | p=0.8 | p=0.9 | p=1
1 0 0.0004 | 0.0013| 0.0027 0.005 0.0086 0.0139 0.0220339.| 0.0512| 0.0758
2 0 | -0.0021| -0.003§ -0.004 -0.0028 0.001 0.009 0.0233.0475| 0.0863] 0.1457
3 0 | -0.0088| -0.0179 -0.0268 -0.03%1 -0.0419 -0.0456.0437| -0.032| -0.0041 0.049p
4 0 | -0.0117 | -0.024« | -0.03¢ | -0.052¢ | -0.067« | -0.081¢ | -0.094¢ | -0.102¢ | -0.100¢ | -0.080¢
5 0 | -0.0078| -0.0165 -0.0261 -0.0368 -0.0484 -0.0608.0734| -0.0851 -0.0934 -0.0942
6 0 | -0.004: | -0.008¢ | -0.013" | -0.019¢ | -0.025" | -0.032¢ | -0.039¢ | -0.046¢ | -0.0527 | -0.055!
7 0 | -0.0035| -0.007§ -0.0119 -0.0168 -0.0222 -0.028.0341| -0.04 | -0.0447 -0.0464
8 0 -0.003 | -0.0064 -0.0102 -0.0144 -0.0191 -0.0242.02@5| -0.0348 -0.0391 -0.0411
9 0 | -0.0019| -0.0041 -0.0065 -0.0091 -0.0121 -0.015R.0185| -0.0215 -0.0239 -0.0245
10 0 | -0.0017| -0.003¢ -0.005f -0.008 -0.0105 -0.0131.01®7| -0.0181] -0.019f -0.0196
11 0 | -0.0015| -0.0031 -0.00% -0.00f -0.00P2 -0.0117 01401 | -0.0165 -0.01883 -0.0188
12 0 | -0.0007| -0.0016 -0.0025 -0.0036 -0.0047 -0.006.0073| -0.0086/ -0.009Y -0.0102
13 0 | -0.0004| -0.0009 -0.0014 -0.00Rp -0.0027 -0.0034.0042| -0.0049 -0.0054 -0.0036
14 0 | -0.0004| -0.0008 -0.001p -0.0018 -0.0023 -0.0020.0036| -0.0042 -0.0048 -0.00%
15 0 -1E-16 | -1E-16 0 -1E-1§ -1E-16 -1E-16 -1E-16 -¥{1-1E-16 0
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Figure.3
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RESULTS AND DISCUSSION

We have used the expression (26) to evaluate fgadied energy. The results have been shown
in the tabular form in table-2 and in the graphioaim in the figure-3. So far as the variation of
DEF with g is concerned, we find that only for lower valud®d¢ DEF(J) is positive,

whereas for higher valuéds, DEF(J) is negative irrespective of the value/of We have
noticed earlier thatg =1 gives the best possible result for the family dfefs we have
considered.

CONCLUSION

The pupil function of the chosen apodised systembeamathematically expressed as:
f(r)=(1-Br) For 0<r<i;
=0 for r>1,

Where g is the apodisation parameter which controls teasmission of the transmitted light
through the optical system3 =0 corresponds to the diffraction-limited perfect teys with
uniform transmission of unity within the pupil furan which is known as the Airy system

Studies on encircled energy factor and its conelareveal that in most of the cases, the DF (
is negative, i.e., the energy displacement is idwas towards the centre of the diffraction
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pattern. is the normalized distance of a point initihe pupil circle, x* +y* =r*<1 from its

centre.In observational astronomy, the experimental determination of a PSF is oftery
straight-forward due to the ample supply of poimtirses likestars or quasars The form and
the shape of the PSF may vary widely dependindhenrstrument and the context in which it is
used. The theoretical model presented in this shekbuld be able to handle capably these
varying situations.

In space telescoped-or radio telescopes and diffraction-limited spadescopes, the dominant
terms in the EEF may be inferred from the configaraof this aperture in thEourier domain.

In practice, there may be multiple terms contridutg various components in a complex optical
system. A complete description of the EEF will alsdude diffusion of light or photo-electrons
in the detector, as well as tracking errors ingpace-craft or the telescope. In such situations,
the pupil-function has to be suitably modified itarito our theoretical model.
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