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ABSTRACT 
 
Encircled Energy Factor (EEF) is an important corollary of the Point Spread Function (PSF) of 
an optical system. In the present paper, we have studied the Encircled Energy Factor and other 
associated corollaries of the PSF,viz. Displaced Energy in order to understand their role as 
point-image quality assessment parameters. 
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INTRODUCTION 
 

The most important corollary of the Point Spread Function ( )PSF  is the “Encircled Energy 
Factor”  or the “Encircled Power”. It measures the fraction of the total energy in thePSF , 
which lies within a specified radius ‘δ ’ in the plane of observation or detection. It is one of the 
significant parameters which serve as an index of the performance of an optical system. The 
radial distribution of energy within the image, called the encircled power, is a classical measure 
of the quality of the optical system producing that particular image. We will designate this 
important parameter by the symbol EEF (δ ).  EEF (δ ), obviously vanishes when  δ  is zero and 
approaches unity when δ  becomes infinity. Lord Rayleigh (1). Was the first to point out the 
importance of the encircled energy factor to find the illuminations in the various rings of the 
diffraction pattern and presented a formula for calculating the same. 
 
When a converging spherical wave is diffracted by a circular aperture the classical theory of 
focusing predicts that light energy is highly concentrated in the geometrical focal plane. It means 
that there is a maximum amount of energy within a receiving circle of a given radius centered at 
the aperture axis and placed in the geometrical focal plane which contains more energy per unit 
area than any other plane parallel to it. Thus, it comes out that the EEF (δ ) is the primary 
corollary of the PSF and is the factor, which describes the integrated behavior of the point 
source diffraction image. It is a sensible image quality evaluation parameter of an optical system, 
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which may be diffraction–limit
these phenomena.  
 
Previous    studies    on   encircled    energy     factor:
mathematical formula for a circular aperture without apodisation i.e., in diffraction limited Point 
Spread Function. STOKES (2) and RAYLEIGH (1) also proved a number of general theorems 
on encircled energy. The idea of making the
thereby optimize the diffraction pattern has been utilized and studied by STRAUBEL (3) WOLF 
and LINFOOT (4) carried out a detailed study of Encircled Energy for a circular aperture. 
LANSRAUX (5) gave an alternate interpretation of Encircled Energy as the contrast at the centre 
of the image with respect to the background. LANSRAUX and BOIVIN (6) found that there is a 
maximum limit to the concentration of energy in the central core of the diffraction pattern.
SHANNON and NEWMAN (
BARAKAT and HOUSTON(8) have shown that the encircled energy can be obtained directly by 
measuring the transfer function, An improved method for measuring encircled or enclosed 
energy for imaging optical systems, makes use of previously micro
are positioned with a great accuracy at the centre of an image, by LEVI (9).
 
SURENDAR, SESHAGIRI RAO and MONDAL (10) have studied the encircled energy and its 
complimentary quantity, excluded energy using Lanczos apodisation filters. 
 
2. MATHEMATICAL EXPRESSION   FOR   

 
The figure.1 shows a schematic representation of diffraction at a circular aperture of diameter
. Let us consider a spherical wave
aperture, is emerging from the optical system and converging towards the axial focal point
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limited, defocused, aberrated, apodised or even a combined form of all 

Previous    studies    on   encircled    energy     factor:  LORD RAYLEIGH (1) gave the 
mathematical formula for a circular aperture without apodisation i.e., in diffraction limited Point 
Spread Function. STOKES (2) and RAYLEIGH (1) also proved a number of general theorems 
on encircled energy. The idea of making the encircled energy maximum for a certain radius and 
thereby optimize the diffraction pattern has been utilized and studied by STRAUBEL (3) WOLF 
and LINFOOT (4) carried out a detailed study of Encircled Energy for a circular aperture. 

ternate interpretation of Encircled Energy as the contrast at the centre 
of the image with respect to the background. LANSRAUX and BOIVIN (6) found that there is a 
maximum limit to the concentration of energy in the central core of the diffraction pattern.

NEWMAN (7) developed an apparatus for measuring Encircled Energy. 
BARAKAT and HOUSTON(8) have shown that the encircled energy can be obtained directly by 
measuring the transfer function, An improved method for measuring encircled or enclosed 
nergy for imaging optical systems, makes use of previously micro- machined detections which  

are positioned with a great accuracy at the centre of an image, by LEVI (9).

SURENDAR, SESHAGIRI RAO and MONDAL (10) have studied the encircled energy and its 
plimentary quantity, excluded energy using Lanczos apodisation filters. 

2. MATHEMATICAL EXPRESSION   FOR   EEF  
 

The figure.1 shows a schematic representation of diffraction at a circular aperture of diameter
. Let us consider a spherical wave-front S  having the radius 'd  and which momentarily fills the 
aperture, is emerging from the optical system and converging towards the axial focal point
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machined detections which  
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plimentary quantity, excluded energy using Lanczos apodisation filters.  

 

The figure.1 shows a schematic representation of diffraction at a circular aperture of diameter2R
and which momentarily fills the 

aperture, is emerging from the optical system and converging towards the axial focal pointF . 
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Let ( , , )P u v w be a typical point not far away fromF . Also, let FP ρ=  be the position vector by 

which the point P  is specified and let 'd PF= . Our intention is to study the diffracted field   
( , , )pA u v w i.e., the amplitude of the light diffracted at the pointP . Let d  be the distance of the 

point P  from an arbitrary point ( )ζηξ ,,O  on the wave-front just at the moment where it is 

incident on the aperture. Let 
'

A

d
 be the amplitude of the incident wave at the point O. We shall 

assume that the incident light is quasi-monochromatic light and that the wave length is very 
much small compared to the radius of the aperture i.e., R<<λ . 
 
A general expression for the complex amplitude at the point P can now be obtained by applying 
the Huygens’s Fresnel principle. Thus, following BORN and WOLF [1], the complex amplitude 
of light diffracted at the point P can be written as  
 

(1)                        ( ) ( ) ( ), , exp ' ( )[exp ]
S

i A dS
G u v w ikd f r ikd

d dλ
 = − − 
 

∫∫  

In the above expression, k stands for propagation constant  
λ
π

2  and ( )rf  known is the pupil 

function which defines the nature of transmission over the pupil of the aperture of the optical 
system under consideration. The double integral has to be carried out over the entire surface area 
of the wave-front incident on the aperture. The usual inclination factor has been omitted here 

since only small angles are involved. If 0  denotes a unit vector in the direction OF, we can write, 
with good approximation, 
 

(2)                                ( )' .d d o ρ− =  

The surface element  dS  can be expressed as 
 

(3                                    ( )2
dS d dα=  

   
Where  dS  is the element which subtends a solid angle αd  at the pointF .  
 

We can write          (4)                         
( )

( )
( )
2

2 2'

R rdrddS
d

d d

θ
α = =   

Where ( )θ,r  are the polar co-ordinates of the point O. Without introducing an appreciable error, 
d can be replaced by 'd  in the denominator of the integrand in the expression (II-1). Thus, after 
simplification, we obtain 

(5)              ( ) ( ) ( ), , exp .
iA

G u v w f r ik o d
α

ρ α
λ

= − −∫∫  

The integration extending over the solid angle 
αd
 subtended by the aperture at the pointP . For a 

clear aperture ( ) 1=rf  and the expression (5) reduces to the well known   Debye integral viz., 
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(6)                                   ( ) ( ), , exp .
iA

G u v w ik o d
α

ρ α
λ

= − −∫∫  

which can be written, after substituting for αd  from equation (4), as 
 

(7)                        ( ) ( ) ( )
1 2

2

'2

0 0

, , exp .
iA R rdrdG u v w f r ik o

d

π
θρ

λ
= − −∫ ∫  

  
Let us use the polar co-ordinates ( )φσ ,  for P  and ( )θ,r  forO . We can express the Cartesian co-
ordinates of the points O  and P  as. 
 
                                                     sinu σ φ=  
(8)                                                 φσ cos=v  
     and  
                                                     θξ sinRr=  
(9)                                           θη cosRr=  
      and 

(10)                                       ( ) [ ]
2 21/22 2 2 1

' ' 1 ........
2 '

R r
d R r d

d
ζ

 
 = − = − +  

 
        

    We      therefore, get    (11)                          .
'

u v w
o

d

ξ η ζρ + +=  

 
Substituting the values of u , v , ηξ ,  and ζ  from (8), (9) and (10) in, (11).  
 We obtain    
 

  
( )

2 2

2

sin sin cos cos ' 1
. 1 ...

' ' 2 '

Rr Rr wd R r
o

d d d

σ ϕ θ σ ϕ θρ
 + = + − +      

 

(12)                                                  
( )

( )
2 2

2

cos 1
1

' 2 '

Rr R r
w

d d

σ θ ϕ  −
= + − 

  
 

where the higher powers 
2 2

' 2( )

R r

d

 
 
 

 have been neglected. Let us now introduce the two 

dimensionless variables Y  and Z  to specify the position of the pointP . 

                                                                     
2

2

'

R
Y w

d

π
λ
 =  
 

 

(13)                                                 And σ
λ
π








=
'

2

d

R
Z  

                            Where ( ) 2/122 vu +=σ ,  
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It has to be noted that the point P  lies on the direct beam of light or in the geometrical shadow 

according as 1<
Y

Z
. Using

2
k

π
λ

= , we can write 

(14)                                               ( )
2

2' 1
. cos

2

d
k o Zr y yr

R
ρ θ φ  = − − + 

 
 

Substituting the value of .k o ρ  value from (14) in equation (7), we obtain  
 

(15)         ( ) ( ) ( )
21 2 2

2
2

0 0

' 1
, exp cos

2 '

iA d R rdrd
G y Z f r iZr i y iyr

R d

π θθ φ
λ

  = − − − + −  
   

∫ ∫
 

(16)                      

( ) ( ) ( ) ( ) 2

21 2 ' 2
2

'
0 0

1
exp cos

2

iA d R r drd
f r irZ iyr i y

R d

π θθ φ
λ

  
= − − − +  

   
∫ ∫  

 
The integral w.r.t θ  is a well known standard integral being equal to ( )02 J Zrπ  where ( )ZrJ0  

is the Bessel function of the first kind and zero order for the argument( )Zr . Thus, 
 

( ) ( ) ( )
2 12 2

02
0

'
, exp 2 exp

' 2

i AR d iyr
G y Z i y f r J Zr rdr

d R
π

λ
    −   = −        

        
∫        (17) 

  

Putting   
2

'
exp

'

A d
i y

d R
φ

λ
  − =  
  

,    we get 

(18)                                              ( ) ( ) ( )
1 2

2
0

0

, 2 exp
2

iyr
G y Z i R f r J Zr rdrπ φ  −=  

 
∫  

       
The term 2iRπ φ  outside the sign of integration does not have any effect on the diffraction    
pattern. Neglecting, therefore, this term we obtain       

(19)                                 ( ) ( ) ( )∫ 






 −=
1

0

0

2

2
exp2, rdrZrJ

iyr
rfZyG  

                            
as the expression for the amplitude of light diffracted at the point P . The factor of 2  has been 
retained in the above diffraction integral as a normalizing factor. point spread function of the 
optical system can be evaluated by knowing the explicit expression of the pupil function ( )f r  
and then taking the squared modulus of the equation  (19), at the focused plane of observation 
corresponding to 0y = , the above expression reduces to, 

(20)                                                     ( ) ( ) ( )
1

0

0

0, 2G Z f r J Zr r dr= ∫  

                              
The Encircled Energy Factor ( )EEF  is defined as the ratio of the flux inside a circle of radius ‘
δ ’ centered on the diffraction head to the total flux in the image of a point object. Thus, 
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                        (21)                                  ( )
( )

( )

2
2

0 0
2

2

0 0

0,

0,

G z zdzd

EEF

G z zdzd

π δ

π

φ

φ
∞=
∫ ∫

∫ ∫
δ  

where φ  is the azimuthally angle; ( )0,G z  is the amplitude in the image plane at a point z  units 

away from the diffraction head due to the aperture function ( )f r . Since, the integration over φ  
introduces the same constant π2  in the numerator and the denominator, the above expression 
reduces to  

(22)                                                         ( )
( )

( )

2

0

2

0

0,

0,

G z zdz

EEF

G z zdz

δ

δ ∞=
∫

∫
 

The denominator in the expression [2] represents the total flux in the entire image plane. This 
implies an impossible task of evaluating the denominator by integrating the PSF  over the image 
plane, i.e., for the limits of z  in the range0 z≤ ≤ ∞ . However, in actual practice, ( )0,G z  is 

rapidly convergent and drops to zero value at a finite distance from 0z ≥  to 15.0z ≤ . This 
happens due to the fact that G  contains Bessel functions of the first kind, which oscillate from 
positive to negative values very rapidly and become zero at a finite distance from the centre of 
the diffraction image ( 0)z = . Thus, it will be sufficient for all practical purposes if the upper 
limit of integration in the denominator of [2] is fixed around 15.0. Therefore,  
 

(23)                                              ( )
( )

( )

2

0
15

2

0

0,

0,

G z zdz

EEF

G z zdz

δ

δ =
∫

∫
. 

                 
It may be mentioned here that analytically too, a closed form solution of the integral in the 
denominator of [2] can be obtained in terms of another corollary of the PSF, “Passing – Flux 
ratio” denoted byτ . 
 

RESULTS  AND DISCUSSION 
 

 For calculation we have using Mathematica4.1 software we given program as input then we got 
results. This parameter is also known as the encircled power, i.e., the amount of power contained 
in a circle of radius δ in the Gaussian plane of observation( 0)y = , which is centered on the 
Gaussian image point( 0)z = . Fig.2 shows how the encircled power on the encircled energy 

factor varies withδ. It is observed from the table-1 that the central Airy disc ( 0)for β =  contains 
83.8%  of the total power. The first bright ring contains7.2%, the second bright ring 2.8% and 
the third bright ring1.4% of the total power.  
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Figure.2 

 
Table.1 

 ENCIRCLED  ENERGY  FACTOR  FOR  BARTLETT  WINDOW  FUNCTIONS   

δδδδ values β=0 β=0.1 β=0.2 β=0.3 β=0.4 β=0.5 β=0.6 β=0.7 β=0.8 β=0.9 β=1 

1 0.2306 0.2301 0.2293 0.2278 0.2255 0.222 0.2166 0.2086 0.1967 0.1794 0.1548 
2 0.6445 0.6466 0.6481 0.6486 0.6473 0.6435 0.6355 0.6212 0.597 0.5582 0.4988 
3 0.8535 0.8623 0.8714 0.8803 0.8886 0.8953 0.8991 0.8972 0.8855 0.8576 0.8043 
4 0.8749 0.8866 0.8992 0.9129 0.9273 0.9423 0.9568 0.9695 0.9773 0.9754 0.9557 
5 0.8992 0.907 0.9157 0.9253 0.9359 0.9475 0.9599 0.9726 0.9842 0.9926 0.9934 
6 0.9405 0.9446 0.9491 0.9542 0.9599 0.9662 0.9731 0.9803 0.9874 0.9932 0.9958 
7 0.9501 0.9536 0.9576 0.962 0.9669 0.9723 0.9781 0.9842 0.9901 0.9948 0.9965 
8 0.9559 0.9589 0.9623 0.9661 0.9703 0.975 0.98 0.9854 0.9907 0.995 0.997 
9 0.9728 0.9747 0.9769 0.9793 0.9819 0.9848 0.988 0.9912 0.9943 0.9966 0.9973 
10 0.979 0.9807 0.9826 0.9847 0.987 0.9895 0.9921 0.9947 0.9971 0.9987 0.9986 
11 0.9809 0.9824 0.984 0.9859 0.9879 0.9902 0.9926 0.9951 0.9974 0.9992 0.9997 
12 0.9896 0.9904 0.9912 0.9921 0.9932 0.9943 0.9956 0.9969 0.9983 0.9993 0.9999 
13 0.9943 0.9947 0.9952 0.9957 0.9963 0.997 0.9977 0.9984 0.9991 0.9997 0.9999 
14 0.995 0.9954 0.9958 0.9962 0.9968 0.9973 0.9979 0.9986 0.9992 0.9998 1 
15 1 1 1 1 1 1 1 1 1 1 1 

 

4. Displaced Energy Factor [ ( )DEF δ ]:  

Wetherill (11) has defined the “displaced energy” as the difference of the encircled energy of 
the diffraction-limited system, in a specified circle, to the encircled energy due to an apodised 
system in the same specified circle. The mathematical form of this factor is, therefore,  
 

0

0.2
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EEF(δ
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(24)                                                   ( ) ( ) ( )δδδ FA EEFEEFDEF −=  
 
Where, ( )δAEEF  and ( )δFEEF  represent the encircled energy for a diffraction -limited system 
and an apodised system respectively.  

(25)                                 

( )
( )

( )

2
2

0 0
2 15

2

0 0

0,

0,

A

A

G z zdzd

DEF

G z zdzd

π δ

π

φ

φ
= −
∫ ∫

∫ ∫
δ

( )

( )

2
2

0 0
2 15

2

0 0

0,

0,

F

F

G z zdzd

G z zdzd

π δ

π

φ

φ

∫ ∫

∫ ∫
 

 
Since, the integration over φ  introduces the same constant π2  in the numerator and the 
denominator, the above expression reduces to  

(26)                                       

( )
( )

( )

2

0
15

2

0

0,

0,

A

A

G z zdz

DEF

G z zdz

δ

δ = −
∫

∫

( )

( )

2

0
15

2

0

0,

0,

F

F

G z zdz

G z zdz

δ

∫

∫
 

Where the subscripts A  and F  stand for Airy (β=0) and filtered non-airy(β≠0) pupils 
respectively. The positive sign of this factor indicates that the energy displacement is outward 
while the negative sign indicates that the energy displacement is inward. This factor is useful to 
compare the energy distribution in the case of actual optical imaging systems to that of perfect 
systems. This is a more sensitive quality factor in the case of central obscuration in the aperture. 
It is, of course, less sensitive in the case of an image motion, where   Strehl-ratio plays an 
important role. 
 

Table.2         
d values β=0 β=0.1 β=0.2 β=0.3 β=0.4 β=0.5 β=0.6 β=0.7 β=0.8 β=0.9 β=1 

1 0 0.0004 0.0013 0.0027 0.005 0.0086 0.0139 0.022 0.0339 0.0512 0.0758 
2 0 -0.0021 -0.0036 -0.004 -0.0028 0.001 0.009 0.0233 0.0475 0.0863 0.1457 
3 0 -0.0088 -0.0179 -0.0268 -0.0351 -0.0419 -0.0456 -0.0437 -0.032 -0.0041 0.0492 
4 0 -0.0117 -0.0244 -0.038 -0.0525 -0.0674 -0.0819 -0.0946 -0.1024 -0.1005 -0.0809 
5 0 -0.0078 -0.0165 -0.0261 -0.0368 -0.0484 -0.0608 -0.0734 -0.0851 -0.0934 -0.0942 
6 0 -0.0041 -0.0086 -0.0137 -0.0194 -0.0257 -0.0326 -0.0398 -0.0469 -0.0527 -0.0553 
7 0 -0.0035 -0.0075 -0.0119 -0.0168 -0.0222 -0.028 -0.0341 -0.04 -0.0447 -0.0464 
8 0 -0.003 -0.0064 -0.0102 -0.0144 -0.0191 -0.0242 -0.0295 -0.0348 -0.0391 -0.0411 
9 0 -0.0019 -0.0041 -0.0065 -0.0091 -0.0121 -0.0152 -0.0185 -0.0215 -0.0239 -0.0245 

10 0 -0.0017 -0.0036 -0.0057 -0.008 -0.0105 -0.0131 -0.0157 -0.0181 -0.0197 -0.0196 

11 0 -0.0015 -0.0031 -0.005 -0.007 -0.0092 -0.0117 -0.0141 -0.0165 -0.0183 -0.0188 

12 0 -0.0007 -0.0016 -0.0025 -0.0036 -0.0047 -0.006 -0.0073 -0.0086 -0.0097 -0.0102 

13 0 -0.0004 -0.0009 -0.0014 -0.002 -0.0027 -0.0034 -0.0042 -0.0049 -0.0054 -0.0056 

14 0 -0.0004 -0.0008 -0.0012 -0.0018 -0.0023 -0.0029 -0.0036 -0.0042 -0.0048 -0.005 
15 0 -1E-16 -1E-16 0 -1E-16 -1E-16 -1E-16 -1E-16 -1E-16 -1E-16 0 
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Figure.3 

 
 

RESULTS AND DISCUSSION 
 

We have used the expression (26) to evaluate the displaced energy. The results have been shown 
in the tabular form in table-2 and in the graphical form in the figure-3.  So far as the variation of  
DEF  with β  is concerned, we find that only for lower values of δ , ( )DEF δ  is positive, 
whereas for higher valuesδ , ( )DEF δ  is negative irrespective of the value ofβ . We have 
noticed earlier that 1β =  gives the best possible result for the family of filters we have 
considered.  

 
CONCLUSION 

 
The pupil function of the chosen apodised system can be mathematically expressed as: 
          ( ) ( )1f r rβ= −     For   10 ≤< r ; 

                   = 0              for        1r > ;  
 
Where  β  is the apodisation parameter which controls the transmission of the transmitted light 
through the optical system; 0=β  corresponds to the diffraction-limited perfect system with 
uniform transmission of unity within the pupil function which is known as the Airy system r  
Studies on encircled energy factor and its corollaries reveal that in most of the cases, the DEF (δ) 
is negative, i.e., the energy displacement is inward as towards the centre of the diffraction 
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pattern. is the normalized distance of a point within the pupil circle, 1222 ≤=+ ryx  from its 
centre. In observational astronomy, the experimental determination of a PSF is often very 
straight-forward due to the ample supply of point sources like stars or quasars. The form and 
the shape of the PSF may vary widely depending on the instrument and the context in which it is 
used. The theoretical model presented in this thesis should be able to handle capably these 
varying situations. 
 
In space telescopes: For radio telescopes and diffraction-limited space telescopes, the dominant 
terms in the EEF may be inferred from the configuration of this aperture in the Fourier domain. 
In practice, there may be multiple terms contributed by various components in a complex optical 
system. A complete description of the EEF will also include diffusion of light or photo-electrons 
in the detector, as well as tracking errors in the space-craft or the telescope. In such situations, 
the pupil-function has to be suitably modified to fit into our theoretical model. 
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