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ABSTRACT 
 
A mathematical model is constructed to study the effect of heat transfer and elasticity of flexible walls in swallowing 
of food bolus through the oesophagus. The food bolus is supposed to be Jeffrey fluid and the geometry of wall 
surface of oesophagus is considered as peristaltic wave. The expressions for temperature field, axial velocity, 
transverse velocity and stream function are obtained under the assumptions of low Reynolds number and long 
wavelength. The effects of thermal conductivity, Grashof number, rigidity, stiffness of the wall and viscous damping 
force parameters on velocity, temperature and stream function have been studied. It is noticed that increase in 

thermal conductivity β , Grashof number Gr and the Jeffrey parameter 1λ results in increase of velocity 

distribution. It is found that that the size of the trapped bolus increases with increase 1λ .   

 
Keywords: Peristaltic transport, Jeffrey fluid, Oesophagus, food bolus, channel. 
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INTRODUCTION 
 

Peristaltic transport is a mechanism of pumping fluids in tubes when progressive wave of area contraction or 
expansion propagates along the length on the boundary of a distensible tube containing fluid. Peristalsis has quite 
important applications in many physiological systems and industry. It occurs in swallowing food through the 
oesophagus, chyme motion in the gastrointestinal tract, in the vasomotion of small blood vessels such as venules, 
capillaries and arterioles, urine transport from kidney to bladder. In view of these biological and industrial 
applications, the peristaltic flow has been studied with great interest. Many of the physiological fluids are observed 
to be non-Newtonian. Peristaltic flow of a single fluid through an infinite tube or channel in the form of sinusoidal 
wave motion of the tube wall is investigated by Burns and Parkes [1], Hanin [2],Shapiro et al.[3] etc,. In the 
literature some important analytical studies on peristaltic transport of non–Newtonian fluids are available Devi and 
Devanathan [4], Shukla and Gupta [5], Srivastava and Srivastava [6], Usha and Rao [7], Vajravelu et al. [8,9], Hayat 
et al. [10,11,12].     
               
Further an interesting fact is that in oesophagus, the movement of food is due to peristalsis. The food moves from 
mouth to stomach even when upside down. Oesophagus is a long muscular tube commences at the neck opposite the 
long border of cricoids cartilage and extends from the lower end of the pharynx to the cardiac orifice of the stomach. 
The swallowing of the food bolus takes place due to the periodic contraction of the esophageal wall. Pressure due to 
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reflexive contraction is exerted on the posterior part of the bolus and the anterior portion experiences relaxation so 
that the bolus moves ahead. The contraction is practically not symmetric, yet it contracts to zero lumen and squeezes 
it marvelously without letting any part of the food bolus slip back in the opposite direction. This shows the 
importance of peristalsis in human beings. Mitra and Prasad [13] studied the influence of wall properties on the 
Poiseuille flow under peristalsis. Mathematical model for the esophageal swallowing of a food bolus is analyzed by 
Mishra and Pandey [14]. Kavitha et al., [15] analysed the peristaltic flow of a micropolar fluid in a vertical channel 
with longwave length approximation. Reddy et al., [16] studied the effect of thickness of the porous material on the 
peristaltic pumping when the tube wall is provided with non-erodible porous lining. Lakshminarayana et al., [17] 
studied the peristaltic pumping of a conducting fluid in a channel with a porous peripheral layer. 
Radhakrishnamacharya and Srinivasulu [18] studied the influence of wall properties on peristaltic transport with 
heat transfer. Rathod et al., [19] studied the influence of wall properties on MHD peristaltic transport of dusty fluid. 
A new model for study the effect of wall properties on peristaltic transport of a viscous fluid has been investigated 
by Mokhtar and Haroun [20], Srinivas et al., [21] studied the effect of slip, wall properties and heat transfer on 
MHD peristaltic transport. Sreenadh et al., [22] studied the effects of wall properties and heat transfer on the 
peristaltic transport of food bolus through oesophagus. Afsar Khan et al., [23] analyzed the peristaltic transport of a 
Jeffrey fluid with variable viscosity through a porous medium in an asymmetric channel.  
 
In view of the importance of non-Newtonian physiological fluid motion by peristalsis we consider a mathematical 
model to study the effects of wall properties and heat transfer in swallowing the food bolus through the oesophagus. 
The simplest non-Newtonian physiological fluid is taken as Jeffrey fluid. The results are analyzed for different 
values of physical parameters. 
 
Mathematical Formulation 
Consider the peristaltic flow of an incompressible Jeffrey fluid in a flexible channel with flexible induced by 
sinusoidal wave trains propagating with constant speed c along the channel walls. The wall deformation is given by  
 

( )2( , )H x t a Cos x ct
πφ
λ

= − −                                (1)  

 
where , , , , ,h x t a φ λ  and c represent transverse vibration of the wall, axial coordinate, time, half width of the 

channel, amplitude of the wave, wavelength and wave velocity respectively. 
 

                        

 
 
 

O 

Figure1.  Physical Model 
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The governing equations of motion of incompressible Jeffrey fluid are given as 

2 2

02 2
1

( )
1

p u u
u v u g T T

t x y x x y

µρ ρ α
λ
  ∂ ∂ ∂ ∂ ∂ ∂+ + =− + + + −  ∂ ∂ ∂ ∂ + ∂ ∂   

                                                        (2) 

2 2

2 2
11

p v v
u v v

t x y y x y

µρ
λ
  ∂ ∂ ∂ ∂ ∂ ∂+ + =− + +  ∂ ∂ ∂ ∂ + ∂ ∂   

                                                                                    (3) 

0
u v

x y

∂ ∂+ =
∂ ∂                                                  (4)

2 2

2 2p

T T
c u v T K

t x y x y
ρ   ∂ ∂ ∂ ∂ ∂+ + = + +Φ  ∂ ∂ ∂ ∂ ∂   

                                          (5)  

 
where ρ  is the fluid density, u  axial velocity , v  Transverse velocity, y  transverse coordinate, p   pressure, µ  
fluid viscosity, g  acceleration due to gravity, α  coefficient of linear thermal expansion of fluid, T  temperature, 

pc  specific heat at constant pressure, K  thermal conductivity and  Φ  constant  heat addition/absorption. 

 
The velocity and temperatures at the central line and the wall of the peristaltic channel are given as  
 

 
 
 
 

 where 0T is the temperature at centre is line and 1T  is the temperature on the wall of peristaltic channel. 

 

The governing equation of motion of the flexible wall may be expressed as * 0L p p= −                                        (6) 

 

where *L  is an operator, which is used to represent the motion of stretched membrane with viscosity damping 
forces such that 
 

2 2
*

12 2
L m c

x t t
τ ∂ ∂ ∂= − + +

∂ ∂ ∂  
 
Continuity of stress at y h=  and using momentum equation, yield  

 

( )
2 2

*
02 2

1

( )
1

p u u
L h g T T u v u

x x x y t x y

µ ρ α ρ
λ
   ∂ ∂ ∂ ∂ ∂ ∂ ∂= = + + − − + +   ∂ ∂ + ∂ ∂ ∂ ∂ ∂  

                  (7) 

 
 Here τ  is the elastic tension in the membrane,

1m  is the mass per unit area,C is the coefficient of viscous 

damping forces. Introducing the following non-dimensional quantities, 
 

0

1

0T T at y

T T at y h

= =

= =
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2

2 2
1 0 0
2

1 0 1 0

, , , , , , , , ,

( )
, Re , , , ,
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p

x y u v a a p ct h Q
x y u v p t h Q

a c c c a ac ac

cgpa T T T Tca a
Gr pr

a c T T k T T k

ψδ ψ
λ δ λ µ λ λ

µαφ ρ δφ θ β
µ µ

= = = = = = = = = =

− − Φ= = = = = =
− −

                              (8) 

 
where δ is the length of the channel, ψ  is the Stream function, Q  is the Volume flow rate, Reis Reynolds number, 

Gr  is the Grashof number, θ  dimensionless temperature, β  is the dimensionless heat source/sink parameter and 

Pr is Prandtl number, we obtain the dimensionless governing equations and boundary conditions as follows 
 

  
2( , ) 1 ( )h x t C o s x tφ π= − −                                                                                                                         (9)  

 
2 2

2
2 2

1

1

1

p u u
Re u v u Gr

t x y x x y
δ θ

λ
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                                                                 (10) 
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                                                                 (11) 
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             (14) 

 

0
u

y

∂ =
∂  

at 0y =                                                                           

0u =  at y h=                                                      

0v =  at 0y =                                                                

0θ =  a t 0y = , 1θ =  at y h=                                                                                                                                (15) 

 
3 Solution of the problem    
Under the assumptions of long wavelength 1δ � and low Reynolds number, equations (9)-(15) reduce to  

 
2( , ) 1 ( )h x t Cos x tφ π= − −                                                                                                                                   (16) 
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0
u v

x y

∂ ∂+ =
∂ ∂

                                                                                                                (19) 

 
2

2
0

y

θ β∂ + =
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                                                                                   (20)  

 
0θ =  at 0y = , 1θ = at y h=                                                                                                           (21) 
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θ

λ
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                                                                                      (22) 

 
The following boundary conditions are imposed on the governing equations to model the problem under 
consideration: 

0
u

y

∂ =
∂  

at 0y =                                                                                                   (23) 

 

 0u = at y h=                                                                                                    (24)  

 0v =  at 0y =                                                                                                                           (25) 

 
Equation (18) shows that P is not a function of y. Now on differentiating equation (17) with respect to y, the 
compatibility equation as follows 

3

3
1

1
0

1

u
Gr

y y

θ
λ

∂ ∂+ =
+ ∂ ∂

                                                                                                 (26) 
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                                                                             (27) 

 
The closed form solution for equations (17) and (20) with the boundary conditions (21), (23) and (24) is given by 

( )2

2

y
hy y

h

βθ = + −                                                                        (28) 
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                          (29)  

 
 
 
 
 
 
 
Integrating the continuity equation with respect to y, using the above equation and the boundary condition (25), we 
obtain transverse velocity as 
 



M. Arun Kumar et al                                Adv. Appl. Sci. Res., 2013, 4(6):159-172       
 _____________________________________________________________________________ 

164 
Pelagia Research Library 

( )

( ){ }
( ){ }

3
2 2 2

3 1 2

2
1 3 1 2

4 3
4

2

4 4 ( ) ( )4 2 ( )
3

1 2 4 ( ) ( ) 2 2 ( )

4 2 2
6 4 4 3

y
y h E Sin x t E E Cos x t

h
v hy E Cos x t E E Sin x t

x

Gr y y h
h y hy

h x

π φ π π π π

λ π φ π π π

β

  
− − − + −  

  
 ∂ = − + − − + + − ∂ 
      ∂− − − +       ∂      

                         (30) 

 

Stream function can be obtained by integrating equation and using the condition 0ψ = at 0y = . It is given by  
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(31) 

 
RESULTS AND DISCUSSION 

 
In order to observe the quantitative effects of various parameters involved in the analysis, the velocity, temperature 
and stream functions are calculated for various values of these physical parameters.  The numerical evaluations of 
the analytical results and some significant results are displayed graphically from Figures (2) - (14). From Figures 
(2), (3) and (4), it is observed that increase in thermal conductivityβ , Grashof numberGrand the Jeffrey parameter

1λ results in increase of velocity distribution. Figure (5) displays the effect of rigidity parameter in the presence of 

stiffness 2( 0)E ≠  and viscous damping force 3( 0)E ≠ .  It is noticed that the velocity increases with increase in 

rigidity parameter.  A similar observation is made for different values of
2E in the presence of other parameters i.e., 

rigidity and viscous damping force which is shown in Figure (6). From figure (7), we can see the influence of 
viscous damping force on velocity distribution in the presence of rigidity and stiffness. One can observe that the 

velocity decreases with the increase in3E . The variation in temperature for various values of thermal conductivity is 

shown in Figure (8). The temperature increases with the increase inβ .  

 
An interesting phenomenon of peristalsis is trapping in which streamlines split to trap a bolus in the wave frame. 
The effect of thermal conductivity on trapping is analyzed in Figure (9).  It can be concluded that the size of the 
trapped bolus in the left side of the channel decreases whenβ  increases where as it has opposite behavior in the 
right hand side of the channel. The influence of Grashof number on trapping is analyzed in Figure (10).  It shows 

that the size of the left trapped bolus decreases with increase in Gr where as the size of the right trapped bolus 

increases with increase inGr . The effect of 1λ on trapping can be seen in Figure (11). We notice that the size of the 

bolus increases with increase1λ . The effect of 1E on trapping can be seen in figure (12). We notice that the size of 

the bolus increases with increase in1E . Figure (13) shows the influence of 2E  on trapping. We observe that the size 

of the trapped bolus decreases with increase in2E . The effect of 3E on trapping is shown in figure (14). It is shown 

that the size of the left bolus decreases where as the right bolus increases with increase in3E . 
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Fig 2. Velocity distribution for different values of β  with

1 2 3 10.7, 0.5, 0.1, 0.5, 2, 0.5, 0.2E E E t yβ λ= = = = = = =  
Fig3. Velocity distribution for different values of Gr  with

1 2 3 10.7, 0.5, 0.1, 0.5, 2, 0.5, 0.2.E E E t yβ λ= = = = = = =  

Fig 4. Velocity distribution for different values of 1λ  with

1 2 30.7, 0.5, 0.1, 0.5, 2, 0.5, 2.E E E t y Grβ= = = = = = =  

 

Fig 5. Velocity distribution for different values of 1E  with

2 3 10.5, 0.1, 0.2, 0.5, 2, 0.5, 2.E E t y Grλ β= = = = = = =  

Fig 7. Velocity distribution for different values of 3E with

1 2 10.7, 0.5, 0.2, 0.5, 2, 0.5, 2.E E t y Grλ β= = = = = = =  

Fig 6. Velocity distribution for different values of 2E with 

1 3 10.7, 0.1, 0.2, 0.5, 2, 0.5, 2.E E t y Grλ β= = = = = = =  
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(a)                                                                                     (b) 

 
(c) 

Fig 9: Effect of β  on Trapping (a) 0β =  (b) 4β =  (c) 8β =  for 1 2 3 10.7, 0.5, 1, 0.2, 0.1, 2.E E E t Grλ= = = = = =  
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Fig 8: The temperature distribution for different values of θ with  
1 2 10.7, 0.5, 0.2, 0.5, 0.5, 2.E E t y Grλ= = = = = =  
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(a)                                                                                        (b) 

 
(c) 

Fig 10: Effect of Gr  on Trapping (a) 0Gr =  (b) 2Gr =  (c) 4Gr =  for 

1 2 3 10.7, 0.5, 1, 0.2, 0.1, 2.E E E tλ β= = = = = =  
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(a)                                                                                                (b) 

 
(c) 

Fig 11: Effect of 1λ on Trapping (a) 1 0λ = ( b) 1 0.2λ =  (c) 1 0.4λ = for 

1 2 30.7, 0.5, 1, 2, 0.1, 2.E E E Gr t β= = = = = =  
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(a)                                                                                              (b) 

 
(c) 

Fig 12: Effect of 1E  on Trapping (a) 1 1E =  (b) 1 1.5E =  (c) 1 2E = for 

2 3 10.5, 1, 0.2, 2, 0.1, 2.E E Gr tλ β= = = = = =  
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(a)                                                                                      (b) 

 
(c) 

Fig 13: Effect of 2E  on Trapping (a) 2 0.1E =  (b) 2 0.5E =  (c) 2 0.9E = for 

1 3 10.7, 1, 0.2, 2, 0.1, 2.E E Gr tλ β= = = = = =  
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(a)                                                                                            (b) 

 

 
(c) 

Fig 14: Effect of 3E on Trapping (a) 3 1E =  (b) 3 1.5E =  (c) 3 2E = for 

1 2 10.7, 0.1, 0.2, 2, 0.1, 2.E E Gr tλ β= = = = = =  

 
CONCLUSION 

 
The present study deals with the combined effect of wall properties and heat transfer on the peristaltic transport of a 
Jeffrey fluid in a two dimensional channel. We obtained the analytical solution of the problem under long 
wavelength and low Reynolds number assumptions. Some of the interesting findings are 
 

1. The velocity increases with increase in thermal conductivity β , Grashof number Gr and the Jeffrey parameter1λ
. 

2. It is found that that the size of the trapped bolus increases with increase1λ .   

3. The coefficient of temperature increases with increasing values of thermal conductivity. 
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