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ABSTRACT 
 
The fully developed flow and heat transfer in a vertical double passage channel containing permeable fluid is 
studied analytically using regular perturbation method. The Brinkman model is used for flow through porous media, 
viscous and Darcy dissipation terms are included in the energy equation. The channel is divided into two passages 
by means of a thin, perfectly conductive baffle and the walls are uniformly heated. The effect of porous parameter 
σ  and mixed convection parameter λ  on the velocity and temperature profiles near the hot and cold wall are 
analyzed. The result shows that these effects mainly depend on the baffle position. 
 
Keywords: mixed convection, viscous dissipation, double-passage, Permeable fluid. 
______________________________________________________________________________ 
 

INTRODUCTION 
 

Convective heat transfer is the study of heat transfer process between the layers of a fluid, when the fluid is in 
motion and/or between a fluid in motion and a boundary surface in contact with it when they are not at different 
temperatures. The convective mode of heat transfer is generally   divided into two basic process. If the motion of the 
fluid arises from an external agent for example, fan, wind or the motion of heated object itself. Then the process is 
termed forced convection. If on the other hand no such externally induced force is provided and the flow arises 
naturally from the effect of a density difference, resulting from a temperature or concentration difference in a body 
force field such as the gravitation field, then the process is termed as natural convection. The density difference 
gives rise to buoyancy force to which flow is generated. Free convection heat transfer between a finite vertical 
parallel plates suspended in calm viscous fluid had been extensively investigated as one of the fundamental problem 
of heat transfer. Natural convection is an important heat transfer mechanism in the technology of building 
insulations. From the point of basic research in heat transfer, this phenomenon is being studied mainly in terms of 
simple model of free convection in rectangular enclosures, filled with viscous fluid. The subject of free convection 
in enclosures is extensive and has numerous applications in practical engineering situations. Fully developed heat 
transfer natural convection in vertical channel with symmetric constant wall temperatures has been studied by 
Bodoia and Osterle [1]. Aung [2] studied the case when the walls are heated asymmetrically. Aung and Worku [3] 
presented a theory for the fully developed heat transfer of combined convection in a vertical channel with 
asymmetric constant wall temperature. Nelson and Wood [4] presented an analytical solution for combined heat and 
mass transfer natural convection in vertical channel with asymmetric boundary conditions. The majority of existing 
studies on convective heat transfer in porous media are based on the Darcy flow model. Darcy’s law, however, is 
found to be inadequate for the formulation of fluid flow and heat transfer problems in porous media when there is a 
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solid boundary and the Reynolds number based on the pore size is greater than unity. Therefore, it is necessary to 
incorporate the boundary and inertia terms into the momentum equation. These effects have been studied for forced 
convection as well as for natural convection in porous media. 
 
Natural convection heat transfer in porous media has received a world of careful attention because it frequently 
occurs in many physical problems and engineering applications for contemporary technology such as geothermal 
systems, grain storage, fiber and granular insulation, packed sphere  beds, heat exchangers, chemical catalytic 
reactors, petroleum reservoirs, coal combustors, nuclear waste repositories, and filtration.  A recent review by Tien 
and Vafai [6] gives the extent of the research information about natural convection in porous media and stress the 
importance of non-Darcy effects such as the inertia and boundary effects as the remedies of the Darcy’s law in 
certain applications. Darcy law is an empirical formula relating the pressure gradient, the gravitational force and the 
bulk viscous resistance in a porous media. Thus, the mathematical formulation based on the Darcy’s law will neglect 
the effects of solid boundary or the inertia forces on fluid flow and heat transfer through porous media. In general, 
the inertia and boundary effects become significant when the fluid velocity is high and the heat transfer is 
considered in the near-wall region, respectively. Theoretically a velocity square term and viscous term are 
incorporated in the momentum equations to model inertia and boundary effects, respectively. Cheng [7] et al.  
Studied numerically the non-Darcy effects on the transient natural convection boundary layer flow near an 
isothermal vertical flat surface embedded in a high-porosity medium. Certain   porous materials, such as foam 
metals and fibrous media, usually have high porosities (with porosity about 0.9� 0.95). The analysis made by 
Cheng [8] et al.  shows that the non-Darcy effects are much more consequential in high porosity media. It is also 
found that both the inertia and the boundary effects decrease the velocity of streaming fluid in the thermal boundary 
layer and reduce the heat transfer rate.  
 
The stratified situation occures for example, in cooling ponds, lakes for solar ponds and in the atmosphere.  If the 
vertical surface is a part of an enclosure the ambient enhancement of the heat transfer in a vertical channel is a major 
aim because of its practical importance in many engineering systems, such as the solar energy collection and the 
cooling of electronics systems. The convective heat transfer may be enhanced in a vertical channel by using rough 
surface, inserts, swirl flow device, turbulent promoter, etc. Candra et al. [9] investigated the use of ribbed walls, Han 
et al. [10] used V-shaped turbulence promoters, Lin et al. and Beitelmal et al. [11] demonstrated the effect of jet 
impingement mechanism. Recently, Dutta and Hossain [12] investigated the heat transfer and the frictional loss in a 
rectangular channel with inclined solid and perforated baffles. 
 
Unfortunately, most of these methods cause a considerable drop in the pressure. Guo et al. [13] suggested that the 
convective heat transfer could be enhanced by using special inserts, which can be specially designed to increase the 
included angle between the velocity vector and the temperature gradient vector rather than to promote turbulence. 
So, the heat transfer is considerably enhanced with as little pressure drop as possible. A plane baffle may be used as 
an insert to enhance the rate of heat transfer in the channel. To avoid a considerable increase in the transverse 
thermal resistance into the channel, a thin and perfectly conductive baffle is used. The effect of such baffle on the 
heat transfer in a vertical channel can be found elsewhere. In working dimensions are: length=1.2 m, width =0.2m 

and the volume flow   rate =1.105− m 3 /s. For double-passage channels, the length-to-width ratio becomes larger as 
the baffle becomes near the wall. So, viscous dissipation may become important.   
 
Keeping in view the applications of mixed convective flows through porous medium as mentioned above and to 
analyze the heat and mass transfer by introducing the baffle in the channel has motivated us to choose this problem. 

 
2 Mathematical formulation  
The channel shown in Figure.1. is divided into two passages by means of perfectly conductive and thin baffle. 
Consideration is given to a laminar, two-dimensional, incompressible, steady flow of permeable fluid in a channel. 
The fluid enters the channel with a uniform upward vertical velocity and constant temperature. The channel walls 
are subjected to different constant temperatures, which are higher than that at the entrance. The fluid properties are 
assumed to be constant except for the buoyancy term of the momentum equation. 
 
For fully developed flow, it is assumed that the transverse velocity and the temperature gradient in the axial 
direction are zero. Darcy–Lapwood Brinkman model is used in developing the basic equations. By taking into 
account the effect of viscous dissipation, the governing equations are 
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2
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= − − + +                                                               (2) 
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where, The subscript ‘i’ denotes stream 1 or stream 2. The boundary conditions are 
 

1 10 : 0, cy u T T= = =                              

1 2
1 2 1 2: 0, ,

dT dT
y b u u T T

dy dy
∗= = = = =               (4) 

 

2 2: 0, hy b u T T= = =                          

 

 
Figure. 1.  Geometry and boundary conditions. 

                    
The momentum balance equation (2) has been written according to the Boussinesq approximation by invoking a 

linearization of the equation of state, ( )Tρ  around the reference temperaturerT . Recently, Barletta and Zanchini 

(1998)  have recommended the choice of the mean fluid temperature as the reference temperature in the fully 
developed region. In the present work, the mean temperature of the wall temperatures is chosen as the reference 
temperature, i.e. 
 

 
 
 

The governing equations and boundary conditions can be expressed in the following dimensionless forms. 
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3. Analytical Solution 
The basic equations governing the flow are defined in Equations (5) and (6) along with boundary conditions (7) are 
highly nonlinear and coupled. Hence finding exact solution is not possible. However, approximate analytical 
solutions can be found using the method of regular perturbation. We take flow field and the temperature field to be  
                                                                                                  
Stream 1 

1 10 11U U Uε= +                                                                                                  (9) 

1 10 11θ θ εθ= +                                                                                                     (10) 

 
Stream 2 

2 20 21U U Uε= +                                                                                                (11) 

2 20 21θ θ εθ= +                                                                                                    (12) 

 

Where ε ( )Br=  is chosen as the perturbation parameter. Using equations (9) - (12) in the equations (5) - (7) 

becomes 
 

Stream 1  
Zeroth order equations 

2
2 2 2 210

10 1 102
0

Re

d U Gr
m m m U

dy
θ γ σ+ − − =                                                    (13)                    

2
10
2

0
d

dy

θ =                                                                                                              (14) 
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First order equations 
2

2 2 211
11 112

0
Re

d U Gr
m m U

dy
θ σ+ − =                                                                         (15) 

22 2
2 2 21011

102 2
0

dud n
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                                                                      (16) 

 
Stream 2  
Zeroth order equations 

2
2 2 2 220

20 2 202
0

Re
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dy
θ γ σ+ − − =                                                          (17) 

2
20
2

0
d

dy
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First order equations                                           

2
2 2 221

21 212
0

Re

d U Gr
m m U

dy
θ σ+ − =                                                                         (19) 

22 2
2 2 22021

202 2
0

dud n
n u

dy m dy

θ σ 
+ + = 
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                                                                     (20)  

 
Zeroth order boundary conditions 

10 0; 0U at Y= =  

10 0;U at Y Y ∗= =  

20 0; 1U at Y= =                                                                            

20 0;U at Y Y ∗= =  

10 1/ 2 0at Yθ = − =  

20 1/ 2 1at Yθ = =  
*

10 20 at Y Yθ θ= =  

*10 20d d
at Y Y

dy dy

θ θ= =                                                                                      (21) 

 
First order boundary conditions  

11 0 0U at Y= =   

11 0U at Y Y ∗= =  

21 0 1U at Y= =  

21 0U at Y Y ∗= =  

11 0 0at Yθ = =                                                                                

21 0 1at Yθ = =  

11 21 at Y Yθ θ ∗= =                       
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11 21d d
at Y Y

dy dy

θ θ= = ∗                                                                               (22) 

 
Zeroth order solutions 
The solutions of zeroth order differential equations (13), (14), (17), (18) along with boundary and interface 
conditions (21) are  
 
Stream 1 

( ) ( )10 1 2 1 2osh inhU d c y d s y l y l yα α= + + −                                                     (23)               

10 1 2c y cθ = +                                                                                                              (24)         

       
Stream 2 

( ) ( )20 3 4 1 3osh inhU d c y d s y l y l yα α= + + −                                                    (25)            

20 3 4c y cθ = +                                                                                                             (26)       

 
First order solutions 
The solutions of first order differential equations (15) - (16) using boundary and interface conditions (22) are, 
Stream 1 

( ) ( ) ( ) ( )
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α α α

α

= + + +

+ + +

+ + + +
+ +

            (27)                   

( ) ( ) ( ) ( )
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4 3 2
5 6 7 8 9 5 6
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α α
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Stream 2 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

21 7 8 30 31

2 2
32 33 34

4 3 2
35 36 37 38

39 40
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α α α

α
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  (29)                   

( ) ( ) ( ) ( )
( ) ( )

21 21 22 23 24

4 3 2
25 26 27 28 29 7 8

2 2f cosh y f sinh y f ycosh y f ysinh y

f cosh y f sinh y f y f y f y c y C

θ α α α α

α α

= + + +

+ + + + + + +
       (30)                    

 
RESULTS AND DISCUSSION 

 
The fully developed flow and heat transfer in a vertical double passage channel containing permeable fluid is studied 
analytically using regular perturbation method. The Brinkman model is used for flow through porous media, viscous 
and Darcy dissipation terms are included in the energy equation. Figures 2-5 represents that the effect of porous 
parameter σ  and mixed convection parameter λ  on the velocity and the temperature are shown in when the baffle 
is placed near the cold wall, Figures 6-8 are the graphs when the baffle is placed in the middle of the channel  
 
The variation of velocity for different values of porous parameterσ  and mixed convection parameter λ  which is 

the ratio of Grashof number to Reynolds number is shown in Figure 2 and 3 respectively. We observe that the 
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velocity decreases with increase in the value of the porous parameterσ . For large porous parameter, the frictional 

drag resistance against the flow in the porous region is very large and as a result, the velocity decreases as the 
porous parameterσ  increases. Since the baffle is placed near the cold wall, the effect ofσ  is insignificant in 

stream1 compared to stream2. 
 
The effect of mixed convection parameterλ  on the velocity is shown in Figure 3. As λ  increases velocity 

increases in both the streams but its effect is more influential in stream 2 compared to stream 1. Physically increase 
of mixed convection parameterλ  implies increase in Grashof number, where Grashof number is the ratio of 

buoyancy force to viscous force. Hence increase in Grashof number increases the buoyancy force which in turn 
promotes the flow.   
 
Figures 4 and 5 shows that as the porous parameter σ  and mixed convection parameterλ  increases, temperature 

increases. From Figure 6 it is seen that as the porous parameterσ  increases velocity decreases in both the streams 
when the baffle is placed in the middle of the channel. It is observed that the magnitude of suppression is large when 
the baffle is placed near the cold wall compared to the baffle placed in the middle of the channel. As the mixed 
convection parameterλ  increases velocity increases in both the streams. As the porous parameterσ  and mixed 

convection parameterλ  increases, temperature increases in both the streams. From figure 9  it is seen that the 
porous parameter σ  increases, the velocity decreases in both the streams. 
                                                 

CONCLUSION 
 

In the present study, fully developed flow and heat transfer in a vertical double passage channel containing 
permeable fluid is studied analytically using regular perturbation method. The Brinkman model is used for flow 
through porous media, the velocity and temperature profiles have been presented. Hence one can conclude that 
porous parameter σ  is to suppress the velocity, promotes the temperature where as mixed convection parameter λ  
promotes both the velocity and temperature when the baffle is placed at cold, middle and near the hot walls of the 
channel.  
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