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ABSTRACT

The present study reveals the effects of non-homogeneity, viscous, gravity, magnetic and thermal fields in the wave
velocity equations corresponding to Stoneley, Rayleigh and Love waves respectively. The theory of generalized
surface waves has firstly been developed and then it has been employed to study the surface waves. The wave
velocity equations have been obtained for Stoneley waves, Rayleigh waves and Love waves, and are in well
agreement with the corresponding classical result in the absence of viscosity, temperature, gravity, magnetism as
well as non-homogeneity of the material medium.

Keywords. Inhomogeneous media, Variable density, Surface syaWiscosity, Gravity.

INTRODUCTION

When seismic waves propagate underground, themfwenced not only by the anisotropy of the mediat, also by
intrinsic viscosity of media given by Carcione [T[herefore, in order to accurately describe theeugidund
propagation of the seismic waves and then moreigaigc guide seismic data acquisition, processing an
interpretation, media models should be chosen ¢t simultaneously imitate anisotropic charactegsof
formation and viscoelastic characteristics for nrica¢ simulation and analysis of wave fields Asault, the theory
of surface waves has been developed by StoneleB{®En [3], Ewing et. al. [4], Hunters and Jeffsg5].

The effect of gravity on wave propagation in arsttasolid medium was first considered by Bromw(i6h treating
the force of gravity as a type of body force. L§vgextended the work of Bromwich investigated thi#tuence of
gravity on superfacial waves and showed that thdeRgn wave velocity is affected by the gravitylfieSezawa [8]
studied the dispersion of elastic waves propagaecurved surfaces.

The transmission of elastic waves through a siedtifolid medium was studied by Thomson [9]. HdsKE)]
studied the dispersion of surface waves in mukitey media. A source on elastic waves is the maptgof Ewing,
Jardtezky and Press [11]. Biot [12] studied th&ugrice of gravity on Rayleigh waves, assuming tineef of gravity
to create a type of initial stress of hydrostattune and the medium to be incompressible. Takitmaccount, the
effect of initial stresses and using Biot's theofyincremental deformations, Dey modified the wofkJones [13].
De and Sengupta [14] studied many problems ofielastves and vibrations under the influence of gyafield.
Sengupta and Acharya [15] studied the influencgrafity on the propagation of waves in a thermadwidayer.
Brunelle [16] studied the surface wave propagatioder initial tension of compression. Wave propagain a thin
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two-layered laminated medium with stress coupleteuinitial stresses was studied by Roy [17]. DEt&] studied
the effect of gravity on Rayleigh wave propagatiora homogeneous, isotropic elastic solid mediumda&s[19]
studied the effect of inhomongeneity and anisotropystoneley waves. Recently Abd-Alla and Ahmed EQdied
the Rayleigh waves in an orthotropic thermoelasigdium under gravity field and initial stress. Rebe Kakar et
al. [21] investigated surface waves in non homogasg general magneto-thermo, viscoelastic mediaigtier
order.

In this work, the problem of nth order viscoelastirface waves under gravity involving time ratestrin, the
medium being isotropic and non-homogeneous has $teeiied under the influence of gravity, magneiddf and
temperature. Biot's theory of incremental deformasi has been used to obtain the wave velocity moquébr
Stoneley, Rayleigh and Love waves. Further theseateans are in complete agreement with the cormdipg
classical results in the absence of viscosity, igramagnetic and thermal field, hon-homogeneitytted material
medium.

2 FORMULATION OF THE PROBLEM

Let M; and M, be two non-homogeneous, viscoelastic, isotropéenidinite media (Fig.1). They are perfectly
welded in-contact to prevent any relative motiorslling before and after the disturbances andtti@tontinuity
of displacement, stress etc. hold good acrossahermon boundary surface. Further the mechanicalepties of M
are different from those of MThese media extend to an infinite great distdram the origin and are separated by
a plane horizontal boundary and M to be taken above M

Let Oxyz be a set of orthogonal Cartesian co-otdmand let O be the any point on the plane boynalad Oz
points vertically downward to the medium;MWe consider the possibility of a type of wavevéling in the
direction Ox, in such a manner that the disturbasdargely confined to the neighborhood of the tary which
implies that wave is a surface wave.

It is assume that at any instant, all particlesy line parallel to Oy having equal displacemeamd all partial
derivatives with respect to y are zero. Furthemukiassume that u, v, w is the components of dispiants at any

point (X, y, z) at any time t.
> M. >

Surface Waves Surface Waves

™

] Z=0

o

™

Surface ‘ﬁ'ﬂ‘i’f_‘; I\I] Surface ‘Waﬂ;s
7

Semi-infinite

Magneto-Thermo, Nonhomogeneous, Viscoelasic Media

Fig.1 Geometry of the problem

It is also assume that gravitational field produadsydrostatic initial stress is produced by a sppacess of creep
where the shearing stresses tend to become smalhah after a long period of time. The equililbnigconditions of
initial stress are
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~-=0,~-+pg=0 1
o -0, tP (1)

The dynamical equations of motion for three-dimenal non-homogeneous, isotropic, viscoelastic sokdiium in
Cartesian co-ordinates with Eq. (1) are

or,  or,  O0r, ow_ J’u

+ + +pg—=p —-, 2
ox Jdy 0z PO P o e
dTlZ + dTZZ + 0‘, 23 +pgiN = p dzv (Zb)
ax dy 0z oy ot?’
o1,  Or,, Ory ou , ov 2w

+ + —. 2
ax dy 0z P9 ax 6y “P 2

Wherep be the density of the material medium afHd= T Y-i, j are the stress components. Let us considér tha

the medium is a perfect electric conductor, we thlelinearized Maxwell equations governing thegt@magnetic
field, taking into account absence of the displaa@naeurrent (in system-international unit) in tbenfi

OE=00B=00xE=-"",0xB= pe—. 3)
ot ot

Where E , H.and&, are electric field, magnetic field induction, peabdity and permittivity of the medium.
The value of magnetic field intensity is

H(0,0,H) =Ho +H; @)

We consider an orthotropic elastic solid under tamtsprimary magnetic field acting on y-axis andqi is the
perturbation in the magnetic field intensity.

It is assumed that prior to the existence of asyudbance both the media are everywhere at theamnsbsolute
temperature (.

The stress-strain relations for general isotrofiermo, viscoelastic medium, according to Voigt [23

2
Tjj= 2D}.l g + (D)\A—DBT+HO DDme)aij (5)
where,

Ju ov Jw

A=—+ —+ — and B, D,, Dy are elastic constants

ox Jdy 0z

Introducing Eq. (5) in Eq. (2a), Eq. (2b), Eq. (2e¢ get

a\ JD, 0"2 Jdu dD oT J | du 0"W
+2D, 2> -D, % +D, 2 | =+ 22
1 Ix IX ”o"x X Ox ox “dz|dz Ix
dD dD 2
{du o"_vv} £ HD, — b | HD—" ,oga—W = d—l: (6a)
Jdz Ox| 0z ¢ JX o"x 0Xx ot
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v JDA+Q JD, Jw

D, 0°v+ =p—, 6
“ dx dx Jdz 0z P ot? !
oD 2 D,

i(@+d_vvj (du dwj i yop W, 50W D)Ié
Hox\dz Jx dz Jx) Ix 4oz dz 0z 0z
oD, oT _ JdD, D D, ou_Jd*w
+A —D——T—HD —+HD —= . 6
oz Pz a7 - 9z oz PP o ©
We assume that the non-homogeneities for the nigliand My are given by
n K n K n o‘»K n o'»K
D)\:z /]Kemz K Duzz :uKemz_K DB:Z ,BKemZ_K me_Z(/Je)Kemz K
K=0 J K =0 K =0 ot K=0 ot
p=pgeM?
and
D' z A D —Zn: u' e'zi D —Zn: ye/ e'zﬁ D' :Zn:(y') e”‘zd—I<
AT ~ 0-, K u e K= 5K B “ K K’ e T e KE K
p'=ppe? (7)

wherelg, Mg, A'g, g are elastic constants, whergis 'g are thermal parameters gig, p'g, M, n are constants.
)\K, Hy (K=0,1,2, .... n) are the parameters associatddKth order viscoelasticity ariBiK and pe)K K=1,2,...,

n) are the thermal and magnetic parameters assdaith Kth order. T is the absolute temperaturerdfie initial
temperature E)I'

Due to temperature rise of the material mediuninai been observed that all the parameters repiregetastic
property, the effect of viscosity and thermal fielepends on the temperature and ultimately depemdigne t. In a
thermo viscoelastic solid, the thermal paramegr€K = 0, 1, ...... n) are given by

BK = (3?\K + 2uK) at, whereay be the coefficient of linear expansion of solid.

o | A M AW . IT. _aw_ _Fu
(G +G,+HG, );X+G D2u+mG(dZ dxj Gy *PI =R (8a)
2
Gu52v+m6“%:p0%, (8b)
(G+G +HOG‘E)—+AGHH-ZG m+23m?—N G, TnHZ DG, - pgau podzw (8c)
where,
n n n 52 52
Gy = ,G ,G , , = + .
A ;) dtK n- Zoﬂ o"tK B~ é’g o"tK Z(ﬂe)KdtK 2 97
(©)
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To investigate the surface wave propagation albegltrection of Ox, we introduce displacement ptadmp (X, z, t)
andy (x, z, t) which are related to the displacememgonents as follows:

A .

, . (10)
X 0z Jdz OJx
Substituting Eqg. (10) in Egs (8a), (8b) and (8@, get
I, Oy oy ¢
G, 02 GT+g— =—= 11
quGS( 0z o”xj L 9% T (112)
G.02v+mG ov :d—zv (11b)
s Sgz ot*’
I dy __dp Y
GSD2w+mGP5 +2m%z_g& :W, (11c)
Where,
U2.= A+ 24k +Hg (M, ) UES:/’I_K’UliP:AK-'-Hg(me)K U2 = Be
pO pO pO IOO
and
n 5 o‘)K n ) O‘DK n
G = U.,,——, Ge= Ue——,G. = ,G = . 12
RKZ:O KRdtK SKZ:OKSdtK pKz:OKPo‘,K KZOKL 12)
To determine T, Fourier’s law of heat conduction
prir=c, L 41,62 (0% 9), (13)

ot ot

where K be the thermal conductivity and obeys &éveds given by K = [§ €2,
K
p=—2and G be the specific heat of the body at constant velum

Po
Further, similar relations in mediumJwtan be found out by replacihg, Ho BK, PO by)\'K, W B o P and so on.

3 SOLUTION OF THE PROBLEM
Now our main objective to solve Eq. (11a), Eq. (1Hx. (11c) and Eqg. (13).

For this, we seek the solutions in the followingis.
(@Qu, TV)=1[f(2),] (). T (2), h(2)] da(x —ct) 14)

Using Eqg. (12) in Eq. (9a), Eq. (9b), Eq. (9c) &wl (11), we get a set of differential equationstie medium M
as follows:
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d*f df , . .
7 +2mf12—z+hff +({amf’+iag)j—-9,°T=
2
ﬂ+m@+K2h 0,
dz* dz
d’g dg 2: 1 2 .
+2m—+K j+(@aml“-iag)f =0,
a7 dz R 1 g)
2
OITl+AT+B[OI f afj (15)
dz? dz*
where,
anués(—iO’C) 2 2 2.2
(2= i 2 _ a‘c —a? ka2 — a‘c 2
2, Uk (-iac) Y, Uk (iac) 2, Ui (Hac)
K=0 K=0 K=0
n UZ (-iac) n U2 (<iac)" :
112= K=0 g12= K=0 A= Cliac Z,B:IGCTO G, (6)
UZ (<iac)" Ul (Hiac) P P
K=0 K=0
and those for the mediumJ\are given by
d*f df
e —+2f? +h1 f +(alf?+iag)j-gS°T, =0,
d h I®+K *h=0,
42 dz
d’g, ., dg
e Id +K2j+(@all?-iag)f=o,
2
AT, am+e 9l e an
dz dz*
where,
U2 (~i ac)"”
f12 =K=0 © L 2= — a‘c’ -0’ Ky2=— a’c’ -a?
> UZ (-iac) > Uk (Hiac) U (-iac)
K =0 K =0 K=0
U2 (- U2 (- .
, KZ:O & (-iac) , Kz:O & (-iac) et
114 == V014 = ,B'= - GL (18)
U2 (-iac)" U2 (<iac)" P
K=0 K =0
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Eq. (15) and Eq. (17) must have exponential satstio order that f, j, 7, h will describe surface waves, and they
must become varnishing small as.zoo.

Hence for the medium M

¢x z,1)= { Ae™ +B e’ + cle—Aaz} galx-a)
b (x 2, )= { Ae*+B, e’ + cze—Aaz} galxa)
T (X, 2, t):{ A3 e—/llz + 83 e—/lzz + C3 e—/lgz} eia(x—ct)

(x-ct)

v(x zt) =Ce (19a)

and similarly for the medium Mare given by
_ A2 " oAz v A5z da(x-cat)
ox,z,t)={ALe""+Be"*+C' e e
ljJ (X, z, t):{Alz e—)l'lz + B|2 e—/]'zz + Clze—/]'3z} eia(x—ct)
T (X, z, t):{ AI3 e—)l'lz + BI3 e—/]'zz + C|3e—/]'3z} eia(x—ct)
V(x 2, t)=C' g szriala) (19b)
Where)\j and)\'j (=1, 2, 3) are the real roots of the eqgns.
A6+ E A +Eo N+ Eq N3 +E4 N2 +E5 A +Eg = 0, §20
where,

§1=2m {1 +H2}, Ep=Kq2+ A+ 4nP + 2+ B2 £3= 2mA + 252 m (K12 + A) + 2mh 2 + 2mBg 2
4= AKq2 + 4mPA £12 + (K12 + A) b2 + a2 m? 112 £12 + BK;2 g12 — a2 Bgy 2, (21)

&5 = 2mAK2 f12 + 2mA2 - 2ma2 Bg;2, & g = AK12 h12 + Aa2 m2 11212 —a2B K12 g2,
B+ AP+ E N+ BN+ EY N2+ EGAN +E=0 (22)
where,

E1=2{1+f12), Eo=Ky2+ A+ 42+ 2+ B2 &3=2A + 2f1"2 (K12 + A) + 2hy2 + 2 B'gy 2,

E4= AKP2 + 427 112 + (K12 + A) 2 + 0212172112 + B' K12 912 —a2 B' g2, &5 = AAK 2 12 +
2Ahg2 - 24 a2 Bg? & = AKi2 h2 o+ AaZ 12 2 2 - a2B Ky2 g2
(23)

andhs, Ny ={m+(m*-4 K12} 2, {I + (- 4 K1'2) "} 2

Where the symbol used in egns. (21) and (23) aenddy eqns. (16) and (18).

The constantsf,\Bj, CJ (=1, 2, 3) are related withj,A‘B‘-, C] (1=1,2,3)in Eg. (19a) and Eqg. (19b) by meahs
first equations in Eq. (15) and Eq. (17).
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Equating the coefficients o& 4%, @ %% %% e 12 e 2% @3% tg zero, after substituting Eq. (19a) and Eq.

(19b) in the first and 3rd equations of Eq. (15) &u. (17) respectively, we get

Ao=y1 A1, Bo=yp B, Co =y3Cq, and A3= 81 A1, B3 =85 B1, C3 =83 Cq, (24)
where,

e —-iaml? (=123

Foaz-2ma 4k T T

1 . .

&= ? A\2-2m a2+ 2 +iamf2y]j=1,2,3.
1

Similar result holds for medium $and usual symbols replacing by dashes respectively

4 BOUNDARY CONDITIONS
(i) The displacement components, temperature angdgature flux at the boundary surface betweemibeia My

and My must be continuous at all times and positions.

i.e. [U,V,W,T, pﬂ} :[u, I/,W,T,p'ﬂ}
az |, 2z |y,

1

(i) The stress componeritg, 132, T33 Must be continuous at the boundary z = 0.
i.e.[TSl, Ty, T33]M = [TSl, Ty, T33]M at z = 0 respectively
1 2

Where,

’¢p oW Y
13170, (2 Ix0z ¥ o 372 )

ov
275 5z
J’p %
=D, %@+ 2D, | —2+ -D, T+D_H20%g. 25
T33 A ¢ ,u(dzz dXdZ B me  '0 ¢ ( )

Applying the boundary conditions, we get

Al 1- iyl Zl) + Bl 1- iy2 Zz) + Cl 1- iy3 Z3) - All a1- iy’l Z'l) (26a)
-B1(1-iyplp—-C1(1-iy'3{3) =0

c=c (26b)
A1(y1+iCg) + By (Y2 +i(p) + Cp (Y3 +iC3) —AL (Y1 +iC')) =B (y2+i(2) - C1(yY3+i('3) =0 (26¢)
01A1 + 85 B1 +03C1 =81A'1 + 89 B'; +983C (26d)
PA131A1 + PA2O By + pA303Cy — p'N'131 A" + P'A'p0 B'y — pA'383C = 0 (26e)

My [(2 L1+ V1 + 212 y1) A+ (20 + Yo + 102 yp) By + (2il3 +y3+ 132 v3) C1]
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=M [(2i 71 +Y1+ {2V AL+ ITp+Y2 +122Y)) By
+ (23 +y'3+232y3) CY] (26f)

M, [-A4Cl= M’y [-A'4 C] (260)

AL+ (1)« HY) @12 - 1) + 2mi (@42 —i2q) — by 311 + B [(I + (1)« Ho) @22 - 1) + 2my (252 -
iZ0) - by 351 + Cy [(Iy +(14,) « HE) @32 - 1) + 2my

(@32 - itg) - by 3] = A [(I' + (') « HO@12=1)+2m"y (4'2-i7)-b" 31+ By [(1" + (') « He)
(@2~ 1)+ 2m' (22~ 09 - b 8l +Cl(Ie+ (1) « H) @3%1) + 2m' (G52~ iT9) - b’y 83

(26h)

A A
wheregj= —,j=—,j=1,23

a a
and
M= A (- a'c)K M= e (- a'c)K b=>. B (-i ac)K

K=0 K=0 K =0
() = Z (K ) (_i aC)K o= A (_i aC)K . omy= H'y (_i O'C)K . b=
K=0 K=0 K =0

Zn_: IB'K (_i CJ’C)K ) (,L[Ie)*K: Zn_: (,Ule)K (—i O’C)

From Eq. (26b) and Eq. (26g), we have C = C' =HusTthere is no propagation of displacement v. E&id¢-waves
do not occur in this case.

Finally, eliminating the constants;ABq, Cq, A'1, B'1, C'1, from the remaining equations, we get
det (qj): 0,i,j=1,2,3,4,5,6. @7)

Where,

a11=1-¥1 1, 2= 1-¥20, & 3= 1-¥3(3, 14 = (iY1 {'1-1),
y5=(iy'202-1), aqg=(y33-1),

ap1=Yy1ti(1, @p=Y2 + il @3=Yy3+il3, ag= (V1 +1{'1), 5= (2 +il),
g = (Y3 +i('3),

ag1 =91, 332 =0, &33= 03, 34 = -9, &g5= 02, 3= '3,

ay1=Ph1 01, 2= P2 02, 3= Pr3 33, g =—p'A'1 81, y5=—P'A'p 39,
ayp=-P'A'393,

as1= My Qi +y1+y1019. a52= M (il + V2 +V2029),

a3 = m; (il3+y3+Y323?),

a54= M 21 +Y1+Y181D. a5= M (22 +Y2 +Y2029),

5= M'y (2 '3 +Y3+Y3039),

a61= (I + (1) « HY) (42— 1) + 2my (342 -igq) - by 3y,
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a62= (I + (1) « Hg) @22~ 1)+ 2my @2 i) - by &,

a63= (I + (1)« Hg) @32 - 1) + 2m, ((z? - 23) - by 3,

a54= (I + (') « Ho) @12-1) +2m', @1%-iCp)-b'\ 8y,

a65= (I + (')« H) @22 - 1) + 2’y (52~ 09 - b’y 82,

a6=(I"c +(1'e) « Ho) (€32-1) + 2m" (232~ T3 - b'y B3,

From Eq. (27), we obtain velocity of surface wavascommon boundary between two viscoelastic, non-

homogeneous solid media under the influence ofriaband magnetic field, where the viscosity is ehgral nth
order involving time rate of change of strain.

5 PARTICULAR CASES

Stoneley Waves:

It is the generalised form of Rayleigh waves in ahhive assume that waves are propagated along then@o
boundary of the two semi-infinite media{Mand My. Thus Eq. (27) determine the wave velocity equmafior

Stoneley waves in the case of general magneto-thetistoelastic, non-homogeneous solid media of artder

involving time rate of strain. Clearly from Eq. (21t is follows that the wave velocity equatiomnr fdtoneley waves
depends upon the non-homogeneity of the materidiume temperature, gravity, magnetic and viscoaklfiThis

equation, of course, is in well agreement withdberesponding classical result, when the effecth@fmal, gravity,
magnetic and viscous field and non-homogeneityabeent.

Rayleigh Waves:

To investigate the possibility of Rayleigh wavesanthermo viscoelastic, non-homogeneous elasticianed
replace media M by vacuum, in the proceeding problem, we also tiweSH-waves do not occur in this case.

Since the temperature difference across the bowrsiaiways small so thermal condition given by

JaT
32 +hT =0 at z = 0 respectively (28)
Y4

Thus Eq. (26f) and Eq. (26h) reduces to,

(I +y1 +V1 {12 A+ (2o + Yo + Y2 122) B1+(2i {3 + Y3 + Y3 {3%) C1 = 0 (29a)

[(Fe+ (1)« Hy) @2 - 1) + 2my (@42 -iTy) - b 311 Aq

+ [+ (1) '« Hg) @22 - 1) + 2my (22 -itp) - b 551 By

1L+ (1) « HY) @32 -1) + 2my (132 - tg) - by 831 C1 =0 (29b)

From Eg. (27), we have

(A1-Md1 A+ (A2-h)3pB1 +(A3-h)d3C1 =0 (29c¢)
Eliminating A, B1 and G from Eq. (29a), Eq. (29b) and Eq. (29c), we get

det (lqj): 0,i,j=1,2,3. (30)
Where,

b, = Qily+y1+v1 {19, b, = Qilo+ V2 +v2 (D), b, = (213 +y3 +Y3{3?),
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b,, = (I + (14,) « Hy) €22-1) + 2my (442 -iCq) - by 31,
by, = (I + (1)« HO) @22 - 1) + 2y (222 ~iTp) - by 37,
by, = (I + (1) « HO) €32 - 1) + 2y (232 - iCg) - by 3],
bsy = (A — )31, b= (\p— h) B, bs= (A3 — h) 33, (31)

Thus Eqg. (30), gives the wave velocity equation Rayleigh waves in a non-homogeneous, magneto-therm
viscoelastic solid media of nth order involving ¢éimate of strain. From Eq. (30), it is follows tHaispersion
equation of Rayleigh waves depends upon the norebeneity, the viscous, gravity, magnetic and théfiakls.

This equation, of course, is in complete agreemithtthe corresponding classical result by Bullehen the effects
of thermal, gravity, magnetic viscous field and #iammogeneity are absent.

Love Waves:
To investigate the possibility of love waves inanfhomogeneous, viscoelastic solid media, we reptaedium M

is obtained by two horizontal plane surfaces aistadce H-apart, while Mremains infinite. For medium Mthe
displacement componentremains same as in general case given by Eq. Eb8)the medium M we preserve the

full solution, since the displacement componenhglg-axis i.e. no longer diminishes with increasitistance from
the boundary surface of two media.

-A'yz+ia(x-ct)

Thus v =C et ce (32)
In this case, the boundary conditions are
(i) v andt,, are continuous at z = 0
(i) vy,=0atz=-H.
Applying boundary conditions (i) and (ii) and usigg. (19) and Eq. (26), we get
C=C +C, (33a)
~My 44C= (|, )* [X4C, —A4C)]
(33b)
c e’ -c,e =0 (33¢)
On eliminating the constants C, @nd G from Eq. (33a), Eq. (33b) and Eg. (33c), we get
A *
tanh MH):-.L,K* : (34)
Ay (k')

Thus Eq. (34) gives the wave velocity equationLfove waves in a non-homogeneous, magneto, therscoefastic
solid medium of nth order involving time rate ofash. Clearly it depends upon the non-homogengjtayity,
magnetic and viscous fields and independent ofrthEfield.

CONCLUSION

1. The surface waves in a non-homogeneous, isairascoelastic solid medium under gravity of nttder
including time rate of strain are investigatedislbbserved that viscoelastic surface waves asztaffl by the time
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rate of strain parameters. These parameters irfluttre wave velocity to an extent depending orctireesponding
constants characterizing the magneto thermo antbefiasticity of the material. So the results ofthnalysis
become useful in circumstances where these eftestaot be neglected. These velocities depend upmwave
number ‘a’ confirming that these waves are affected by nandgeneity of the material medium.

2. Love waves do not depends on temperature; tresenly affected by viscous, gravity, magnetitd8eand non-
homogeneity of the material medium. In absencelldfiedds and non-homogeneity, the dispersion eigmais in
complete agreement with the corresponding classésailt.

3. Rayleigh waves in a non-homogeneous, generahetaghermo viscoelastic solid medium of highereord
including time rate of change of strain we findtthlee wave velocity equation proves that thereispatsion of

waves due to the presence of non-homogeneity, teyse, gravity, magnetic field and viscosity. Tresults are in

complete agreement with the corresponding claseésallts in the absence of all fields and compoessi

4. The wave velocity equation of Stoneley wavegeiy similar to the corresponding problem in thessical theory
of elasticity. The dispersion of waves is due ® phesence of non-homogeneity, gravity, magnetid fitemperature
and viscoelasticity of the solid. Also, wave vetg@quation of this generalized type of surface e@gaig in complete
agreement with the corresponding classical resuhié absence of all fields and non-homogeneity.

5. The solution of wave velocity equation for Stiegewaves cannot be determined by easy analytiethodls
however we can apply numerical techniques to stitie determinantal equation by choosing suitableies of
physical constants for both medig &hd M.
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