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ABSTRACT 
 
The effects of radiation on MHD free convection of a viscous incompressible fluid confined between two vertical walls in 
a rotating system have been studied. We have considered the flow due to the impulsive motion of one of the walls and the 
flow due to accelerated motion of one of the walls. The governing equations are solved analytically using the Laplace 
transform technique. The variations of fluid velocity components, fluid temperature and shear stress at the moving wall 
are presented graphically. It is found that the velocity components decrease for both the impulsive as well as the 
accelerated motion of one of the walls with an increase in radiation parameter. There is an enhancement in fluid 
temperature as time progresses. An increase in the radiation parameter leads to decrease the temperature of the flow 
field. The absolute value of the shear stresses at the moving wall due to the primary and the secondary flows for both the 
impulsive and the accelerated motion of one of the walls increases with an increase in either rotation parameter or 
radiation parameter. The rate of heat transfer at the moving wall increases with an increase in radiation parameter. 
 
Keywords: MHD Couette flow, free convection, fluid pressure, radiation, rotation, Prandtl number, Grashof number, 
impulsive motion and accelerated motion.  
______________________________________________________________________________________________ 
 

INTRODUCTION 
 
Couette flow is one of the basic flow in fluid dynamics that refers to the laminar flow of a viscous fluid in the space 
between two parallel walls, one of which is moving relative to the other. The flow is driven by virtue of viscous drag 
force acting on the fluid. In space technology applications and at higher operating temperatures, radiation effects can be 
quite significant. Since radiation is quite complicated, many aspects of its effect on free convection or combined 
convection have not been studied in recent years. Radiative convective flows are frequently encountered in many 
scientific and environmental processes, such as astrophysical flows, water evaporation from open reservoirs, heating and 
cooling of chambers and solar power technology. The hydrodynamic rotating flow of an electrically conducting viscous 
incompressible fluid has gained considerable attention because of its numerous applications in physics and engineering. 
The free convection in channels formed by vertical plates has received attention among the researchers in last few 
decades due to it's widespread importance in engineering applications like cooling of electronic equipments, design of 
passive solar systems for energy conversion, design of heat exchangers, human comfort in buildings, thermal regulation 
processes and many more. Many researchers have worked in this field such as Singh [1], Singh et. al. [2], Jha et.al. [3], 
Joshi [4], Miyatake et. al. [5], Tanaka et. al. [6]. The transient free convection flow between two vertical parallel plates 
has been investigated by Singh et al. [7]. Jha [8] has studied the natural Convection in unsteady MHD Couette flow. 
Thermal radiation effect on fully develop mixed convection flow in a vertical channel has been studied by Grosan and 
Pop [9]. Jha and Ajibade [10] have studied the unsteady free convective Couette flow of heat generating/absorbing fluid. 
Al-Amri et al. [11] have discussed the combined forced convection and surface radiation between two parallel plates. The 
effects of thermal radiation and free convection on the unsteady Couette flow between two vertical parallel plates with 
constant heat flux at one boundary have been studied by Narahari [12]. Rajput and Pradeep [13] have presented the effect 
of a uniform transverse magnetic field on the unsteady transient free convection flow of a viscous incompressible 
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electrically conducting fluid between two infinite vertical parallel plates with constant temperature and Variable mass 
diffusion. Rajput and Kumar [14] have discussed combined effects of rotation and radiation on MHD flow past an 
impulsively started vertical plate with variable temperature. Reddy et al. [15] have presented the radiation and chemical 
reaction effects on free convection MHD flow through a porous medium bounded by vertical surface. The unsteady 
MHD heat and mass transfer free convection flow of polar fluids past a vertical moving porous plate in a porous medium 
with heat generation and thermal diffusion has been studied by Saxena and Dubey [16]. The mass transfer effects on 
MHD mixed convective flow from a vertical surface with Ohmic heating and viscous dissipation have been investigated 
by Babu and Reddy [17]. Saxena and Dubey [18] have analyzed the effects of MHD free convection heat and mass 
transfer flow of visco-elastic fluid embedded in a porous medium of variable permeability with radiation effect and heat 
source in slip flow regime. Devi and Gururaj [19] have studied the effects of variable viscosity and nonlinear radiation on 
MHD flow with heat transfer over a surface stretching with a power-law velocity. The radiation effect on the unsteady 
MHD convection flow through a non uniform horizontal channel has been studied by Reddy et al. [20]. Das et. al. [21] 
have investigated the radiation effects on free convection MHD Couette flow started exponentially with variable wall 
temperature in presence of heat generation. The effect of radiation on transient natural convection flow between two 
vertical walls has been discussed by Mandal et al.[22]. Recently, Sarkar et. al. [23] have studied the effects of radiation 
on MHD free convective couette flow in a rotating system. 
 

 
The object of the present investigation is to study the effects of radiation on free convective MHD Couette flow of a 
viscous incompressible electrically conducting fluid in a rotating system in the presence of an applied transverse 
magnetic field. It is observed that both the primary velocity 1u  and the secondary velocity 1v  increase with an increase in 

magnetic parameter 2M  while the velocity components decrease with an increase in radiation parameter R  for both the 
impulsive as well as the accelerated motion of one of the walls. The fluid temperature decreases with an increase in either 
radiation parameter R  or Prandtl number Pr  whereas it increases with an increase in time τ . The absolute value of the 
shear stress 

0xτ  at the wall ( 0)η =  due to the primary flow and the shear stress 
0y

τ  at the wall ( 0)η =  due to the 

secondary flow for both the impulsive and the accelerated motion of one of the walls increase with an increase in either 
radiation parameter R  or rotation parameter 2K . Further, the rate of heat transfer (0)'θ−  at the wall ( 0)η =  increases 

whereas the rate of heat transfer (1)'θ−  at the wall ( 1)η =  decreases with an increase in either radiation parameter R  

or Prandtl number Pr . 
 
FORMULATION OF THE PROBLEM AND ITS SOLUTIONS 
Consider the unsteady free convection MHD Couette flow of a viscous incompressible electrically conducting fluid 
between two infinite vertical parallel walls separated by a distance h . Choose a cartesian co-ordinates system with the 
x - axis along one of the walls in the vertically upward direction and the z - axis normal to the walls and the y -axis is 

perpendicular to xz-plane [See Fig.1]. The walls and the fluid rotate in unison with uniform angular velocity Ω  about 
z  axis. Initially, at time 0t ≤ , both the walls and the fluid are assumed to be at the same temperature hT  and stationary. 

At time > 0t , the wall at ( 0)z =  starts to move in its own plane with a velocity ( )U t , and is heated with temperature 

( )0
0

h h

t
T T T

t
+ − , 0T  being the temperature of the wall at ( 0)z =  and 0t  being constant. The wall at ( )z h=  is stationary 

and maintained at a constant temperature hT . A uniform magnetic field of strength 0B  is imposed perpendicular to the 

walls. It is also assumed that the radiative heat flux in the x -direction is negligible as compared to that in the z - 
direction. Since the walls are infinitely long along x  and y -directions, all physical quantities will be function of z  and 

t  only but the pressure is independent of z . 
   
Under the usual Boussinesq's approximation, the fluid flow be governed by the following system of equations  

 
22
0

2

1
2 ( ) ,h

Bu p u
v g T T u

t x z

σν β
ρ ρ

∗∂ ∂ ∂− Ω = − + + − −
∂ ∂ ∂

 (1) 

 
22
0

2
2 ,

Bv v
u v

t z

σν
ρ

∂ ∂+ Ω = −
∂ ∂

 (2) 

 
2

2
,r

p

qT T
c k

t zz
ρ ∂∂ ∂= −

∂ ∂∂
 (3) 

where u  is the velocity in the x -direction, v  is the velocity in the y -direction, p  the modified fluid pressure including 

centrifugal force, g  the acceleration due to gravity, T  the fluid temperature, hT  the initial fluid temperature, β ∗  the 

coefficient of thermal expansion, ν  the kinematic coefficient of viscosity, ρ  the fluid density, σ  the electric 
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conductivity, k  the thermal conductivity, pc  the specific heat at constant pressure and rq  the radiative heat flux. 

 

    
Fig.1: Geometry of the problem 

 
The initial and the boundary conditions for velocity and temperature distributions are as follows  

0 , for 0 and 0,hu v T T z h t= = = ≤ ≤ ≤  

( )0
0

( ), 0, at 0 for > 0,h h

t
u U t v T T T T z t

t
= = = + − =  (4) 

0 , at for > 0.hu v T T z h t= = = =  

It has been shown by Cogley et al.[18] that in the optically thin limit for a non-gray gas near equilibrium, the following 
relation holds  

0
4( ) ,pr

h
h

h

eq
T T K d

z T
λ

λ
λ

∗∞ ∗
∗

∂ ∂
 = −
 ∂ ∂ 

∫  (5) 

where Kλ
∗  is the absorption coefficient, λ∗  is the wave length, 

p
e

λ∗  is the Plank's function and subscript 'h′  indicates that 

all quantities have been evaluated at the temperature hT  which is the temperature of the walls at time 0t ≤ . Thus our 

study is limited to small difference of wall temperature to the fluid temperature. 
On the use of the equation (5), equation (3) becomes  

( )
2

2
4 ,p h

T T
c k T T I

t z
ρ ∂ ∂= − −

∂ ∂
 (6) 

 where  

0
.p

h
h

e
I K d

T
λ

λ
λ

∗∞ ∗
∗

∂ 
 =
 ∂ 

∫  (7) 

Introducing non-dimensional variables  
2

1 1 0 02
0 0

( , )
, , ( , ) , , ( ) ( ), ,h

h

T Tz t u v h
u v U t u f t

h u T Th

νη τ θ τ
ν

−
= = = = = =

−
 (8) 

equations (1), (2) and (6) become  
2

2 21 1
1 12

2 ,
u u

K v P Gr M uθ
τ η

∂ ∂
− = + + −

∂ ∂
 (9) 

2
2 21 1

1 12
2 ,

v v
K u M v

τ η
∂ ∂

+ = −
∂ ∂

 (10) 

2

2
,Pr R

θ θ θ
τ η

∂ ∂= −
∂ ∂

 (11) 

where 
2 2

2 0B h
M

σ
ρν

=  is the magnetic parameter, 
2

2 h
K

ν
Ω=  the rotation parameter, 

24I h
R

k
=  the radiation parameter, 

2
0

0

( )hg T T h
Gr

u

β
ν

∗ −
=  the Grashof number, pc

Pr
k

ρν
=  the Prandtl number, 

2

0

h p
P

u xρν
∂= −
∂

 the non-dimensional fluid 
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pressure. 
 
The corresponding initial and boundary conditions for 1u  and θ  are  

1 10 , 0 for 0 1 and 0,u v θ η τ= = = ≤ ≤ ≤  

1 1( ), 0, at 0 for > 0,u f vτ θ τ η τ= = = =  (12) 

1 10 , 0 at 1 for > 0.u v θ η τ= = = =  

 
Combining equations (9) and (10), we get 

2
2

2
,

F F
P Gr Fθ λ

τ η
∂ ∂= + + −
∂ ∂

 (13) 

 
 where  

2 2 2
1 1, 2 and 1.F u iv M i K iλ= + = + = −  (14) 

 
The initial and the boundary conditions for F  and θ  are  

0, 0 for 0 1 and 0,F θ η τ= = ≤ ≤ ≤  

( ), at 0 for > 0,F f τ θ τ η τ= = =  (15) 

0, 0 at 1 for > 0.F θ η τ= = =  

 
Taking Laplace transformation, the equations (13) and (11) become  

2
2

2
,

P d F
sF Gr F

s d
θ λ

η
= + + −  (16) 

2

2
,

d
Prs R

d

θθ θ
η

= −  (17) 

 where  

0 0
( , ) ( , ) and ( , ) ( , ) .s sF s F e d s e dτ τη η τ τ θ η θ η τ τ

∞ ∞− −= =∫ ∫  (18) 

 
The corresponding boundary conditions forF  and θ  are  

2

1
(0, ) ( ), (0, ) ,F s f s s

s
θ= = (1, ) 0, (1, ) 0.F s sθ= =  (19) 

where ( )f s  is the Laplace transform of the function ( )f τ . 

 
The solution of the equations (16) and (17) subject to the boundary conditions (19) are given by  

2

2

sinh (1 )1
for 1

sinh

( , )

1 sinh (1 )
for 1,

sinh

sPr R
Pr

s sPr R

s

s R
Pr

s s R

η

θ η
η

 + −
≠

+
= 
 + − =
 +

 (20) 
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2

2

2

2 2

2 2
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λ η
λ
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λ

λ η λ η
λ λ λ
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λ η
λ
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=

+ −

+

+
−

2

2 2

2 2

2 2 2

sinh (1 ) sinh (1 )

sinhsinh

sinh sinh (1 )
1 for 1,

( ) sinh sinh

s s R

s s Rs

P s s
Pr

s s s s

λ η η
λ

λ η λ η
λ λ λ

















  + − + −
 − 

+  + 

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 (21) 

where 
2

1

R
b

Pr

λ−=
−

. 

Now, we consider the following cases: 
(i) When one of the wall ( 0)η =  started impulsively: 

In this case ( ) 1f τ = , i.e. 
1

( )f s
s

= . The inverse Laplace transforms of the equations (20) and (21) give the solution for 

the temperature and the velocity distributions as 
 

2

1

2
=1 1

2

1

2
=1 1

sinh (1 )
(1 )cosh (1 )sinh

sinh 2 sinh

sinh (1 )cosh 2 sin for 1

( , )

sinh (1 ) 1
(1 )cosh (1 )sinh

sinh 2 sinh

sinh (1 )cosh 2 sin for 1

s

n

s

n

R Pr
R R

R R R

e
R R n n Pr

s Pr

R
R R

R R R

e
R R n n Pr

s

τ

τ

ητ η η

η π πη

θ η τ

ητ η η

η π πη

∞

∞

− + − −

− − + ≠

=

− + − −

− − + =

∑

∑ ,







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
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

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 (22) 

2

1
=1 2

2

2
=1 2

sinh (1 )
2 sin ( , , , , ) for 1

sinh

( , )

sinh (1 )
2 sin ( , , , ) for 1,

sinh
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λ η π πη η τ λ
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η τ
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∞

∞

 − + + ≠

= 
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∑

∑

 (23) 

where 

1 2

1 sinh (1 ) sinh (1 )
( , , , , ) ( 1)

1 sinh sinh

Gr R
F Pr R b

Pr b R

λ η ηη τ λ τ
λ

  − − = − −  −    
 

{ }
2

1
(1 )cosh (1 )sinh sinh (1 )cosh

2 sinhb
η λ η λ λ η λ

λ λ
+ − − − −  

{2
(1 )cosh (1 )sinh

2 sinh
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R R

b R R
η η− − − }sinh (1 )coshR Rη− −  
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2 1

2 2
=1 2 2 1 1

2 sin
( ) ( )

s s

n

e e
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s s b s s b Pr

τ τ

π πη
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n

n
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, ( ),
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λ  is given by (14). On separating into a real and imaginary parts one can easily obtain the velocity components 1u  and 

1v  from equation (23). 

For large time τ ,  the equations (22) and (23) become 
 

2

2
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(1 )cosh (1 )sinh

sinh 2 sinh

sinh (1 )cosh for 1
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sinh (1 ) 1
(1 )cosh (1 )sinh

sinh 2 sinh
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λ  is given by (14). 
 
(ii) When one of the wall ( 0)η =  started accelerately: 

In this case ( )f τ τ= , i.e. 
2

1
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= . The inverse Laplace transforms of equations (20) and (21) yield  
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where λ  is given by (14), 1( , , , , )F Pr Rη τ λ , 2 ( , , , )F Rη τ λ , 1s  and 2s  are given by (24). On separating into a real and 

imaginary parts one can easily obtain the velocity components 1u  and 1v  from equation (29). 

For large time τ , equations (28) and (29) become  
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
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
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 (31) 

where λ  is given by (14), 1( , , , , )F Pr Rη τ λ  and 2 ( , , , )F Rη τ λ  are given by (27). 

 
In the absence of fluid pressure ( 0)P = , the equations (23) and (29) are identical with the equations (23) and (29) of 

Sarkar et. al. [23]. 
RESULTS AND DISCUSSION 

 
We have presented the non-dimensional velocity and temperature distributions for several values of magnetic parameter 

2M , Rotation parameter 2K , Grashof number Gr , radiation parameter R , Prandtl number Pr  and time τ  in Figs.2-14 
for both the impulsive as well as the accelerated motion of one of the walls. It is seen from Fig.2 that the primary velocity 

1u  increases for both impulsive and accelerated motion of one of the walls with an increase in magnetic parameter 2M . 

This indicates that the applied magnetic field is effectively moving with the free stream. The resulting Lorentizian body 
force will therefore not act as a drag force as in conventional MHD flows, but as an aiding body force. This will serve to 
accelerate the primary velocity. Fig.3 reveals that the primary velocity 1u  decreases near the wall ( 0)η =  while it 

increases in the vicinity of the wall ( 1)η =  for impulsive motion of one of the walls whereas the primary velocity 1u  

increases for accelerated motion of one of the walls with an increase in rotation parameter 2K . The rotation parameter 
2K  defines the relative magnitude of the Coriolis force and the viscous force in the regime, therefore it is clear that the 

high magnitude Coriolis forces are counter-productive for the primary velocity. It is observed from Fig.4 that the primary 
velocity 1u  decreases in the region 0 < 0.46η≤  and then it increases for both impulsive and accelerated motion of one 

of the walls with an increase in Grashof number Gr . It is seen from Fig.5 that an increase in radiation parameter R  leads 
to a decrease in primary velocity for both impulsive and accelerated motion of one of the walls. It indicates that radiation 
has a retarding influence in primary velocity. It is revealed from Fig.6 that the primary velocity 1u  decreases in the 

region 0 < 0.61η≤  and then increases for impulsive motion whereas it increases in the region 0 < 0.54η≤  and then 

decreases for accelerated motion with an increase in time τ . It is noted from Figs. 2-6 that the primary velocity for the 
impulsive motion is greater than that of the accelerated motion. It is observed from Fig.7, and Fig.9 that the magnitude of 
the secondary velocity 1v  increases for both impulsive and accelerated motion of one of the walls with an increase in 

either magnetic parameter 2M  or Grashof number Gr . It means that magnetic field and buoyancy force tend to enhance 
the secondary velocity. It is illustrated from Fig.8 and Fig.10 that the magnitude of the secondary velocity 1v  decreases 

for both impulsive and accelerated motion of one of the walls with an increase in either rotation parameter 2K  or 
radiation parameter R . It indicates that rotation and radiation have retarding influence in secondary velocity. Fig.11 
reveals that the magnitude of the secondary velocity 1v  increases for impulsive motion whereas it decreases for 

accelerated motion of one of the walls with an increase in time τ . From Figs.7-11, it is interesting to note that the 
magnitude of the secondary velocity for the accelerated motion is greater than that of the impulsive motion of one of the 
walls. 
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Fig.2: Primary velocity for 2M  with 5R = , 2 5K = , 0.03Pr = , 5Gr =  and 0.5τ =  

 

 
 

Fig.3: Primary velocity for 2K  with 5R = , 2 15M = , 0.03Pr = , 5Gr =  and 0.5τ =  
 
 

 
Fig.4: Primary velocity for Gr  with 2R = , 2 10M = , 0.03Pr = , 2 5K =  and 0.5τ =  
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Fig.5: Primary velocity for R  with 5Gr = , 2 10M = , 0.03Pr = , 2 5K =  and 0.5τ =  

 

 
Fig.6: Primary velocity for τ  with 1R = , 2 10M = , 5Gr = , 2 5K =  and 0.03Pr =  

 

 
Fig.7: Secondary velocity for 2M  with 5R = , 2 5K = , 0.03Pr = , 5Gr =  and 0.5τ =  
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Fig.8: Secondary velocity for 2K  with 5R = , 2 15M = , 0.03Pr = , 5Gr =  and 0.5τ =  

 

 
Fig.9: Secondary velocity for Gr  with 2R = , 2 10M = , 0.03Pr = , 2 5K =  and 0.5τ =  

 

 
Fig.10: Secondary velocity for R  with 5Gr = , 2 10M = , 0.03Pr = , 2 5K =  and 0.5τ =  
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Fig.11: Secondary velocity for τ  with 1R = , 2 10M = , 5Gr = , 2 5K =  and 0.03Pr =  

 
The effects of radiation parameter R , Prandtl number Pr  and time τ  on the temperature distribution have been shown 
in Figs.12-14. It is observed from Fig.12 that the fluid temperature θ  decreases with an increase in radiation parameter 
R . This result qualitatively agrees with expectations, since the effect of radiation decrease the rate of energy transport to 
the fluid, thereby decreasing the temperature of the fluid. Fig.13 shows that the fluid temperature θ  decreases with an 
increase in Prandtl number Pr . Prandtl number Pr  is the ratio of viscosity to thermal diffusivity. An increase in thermal 
diffusivity leads to a decrease in Prandtl number. Therefore, thermal diffusion has a tendency to reduce the fluid 
temperature. It is revealed from Fig.14 that an increase in time τ  leads to rise in the fluid temperature distribution θ . It 
indicates that there is an enhancement in fluid temperature as time progresses. 
  

 
Fig.12: Temperature profiles for R  with 0.2τ =  and 0.03Pr =  
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Fig.13: Temperature profiles for Pr  with 0.2τ =  and 1R =  

 

 
Fig.14: Temperature profiles for τ  with 1R =  and 0.03Pr =  

 
 
EVALUATION OF PRESSURE 
To determine the fluid pressure P , we assume  

 
1

0
( , ) 1.F dη τ η =∫  (32) 

 For impulsive motion of one of the walls , on the use of (23) and integrating equation (32), we get the fluid pressure  

 

3 1

2

3 52

2

1 ( , ) ( , )
1 for 1

( , )

1 ( , ) ( , )
for 1,

( , )
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Gr
H H

Pr Pr
H
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H H

R Pr
H

λ τ λ τ

λ τ

λ τ λ τ
λ

λ τ

 + − − ≠

= 

 + −

− =


 (33) 

 And for large time τ , (33) becomes  
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3 1
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 (34) 

where 'im′  stands for impulsive motion of one of the walls. 
Similarly, on use of the equation (32), equation (29) gives the fluid pressure due to accelerated motion of one of the walls 
as  
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 And for large time τ , (35) becomes  
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 (36) 

 where 'ac′  stands for accelerated motion of one of the walls 
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Numerical values of fluid pressure calculated from equations (33) and (35) are presented in Tables 1 and 2 for several 
values of magnetic parameter 2M , rotation parameter 2K  and radiation parameter R  when the wall at ( 0)η =  starts 

either impulsively or accelerately. Table 1 and 2 show that for both the impulsive as well as the accelerated start of one of 
the walls, the fluid pressure increases with an increase in either magnetic parameter 2M  or rotation parameter 2K  or 
radiation parameter R . Further, the fluid pressure due to impulsive motion of one of the walls is larger than that due to 
accelerated motion of one of the walls. 
 

Table 1. Values of the pressure due to impulsive motion and accelerated motion of the wall ( 0)η =
 

 
 

imP  acP  

2 2\M K  4  6  8  10  4  6  8  10  

2 
3 
4 
5 

1.20349 
1.98450 
2.76548 
3.55301 

1.75101 
2.62209 
3.50039 
4.38909 

2.23953 
3.15573 
4.07881 
5.01059 

2.64573 
3.57895 
4.51813 
5.46371 

0.63891 
1.32449 
2.00325 
2.68090 

1.38152 
2.18911 
3.00437 
3.83179 

2.07798 
2.95002 
3.83150 
4.72502 

2.66429 
3.56221 
4.46875 
5.38453 

 

Table 2. Values of the pressure due to impulsive motion and accelerated motion of the wall 0)=(η  

 
 

imP  acP  

2 \M R  2  4  6  8  2  4  6  8  

2 
3 
4 
5 

1.34393 
2.21529 
3.09097 
3.97220 

1.42019 
2.26510 
3.11660 
3.97762 

1.55017 
2.37524 
3.20233 
4.03616 

1.70768 
2.52942 
3.34718 
4.16449 

0.87173 
1.66406 
2.45855 
3.25729 

0.94799 
1.71386 
2.48418 
3.26271 

1.07796 
1.82401 
2.56991 
3.32125 

1.23547 
1.97818 
2.71476 
3.44959 

  
For the impulsive motion of one of the walls, the non-dimensional shear stresses at the walls ( 0)η =  and ( 1)η =  are 

respectively given by  
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and 
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For accelerated motion of one of the walls, the non-dimensional shear stresses at the walls ( 0)η =  and ( 1)η =  are 
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whereλ  is given by (14), 1(0, , , , )G Pr Rτ λ , 1(1, , , , )G Pr Rτ λ , 2 (0, , , )G Rτ λ  and 2 (1, , , )G Rτ λ  are given by (40). 

Numerical values of the non-dimensional shear stresses at the wall ( 0)η =  are presented in Figs.15-18 against magnetic 

parameter 2M  for several values of rotation parameter 2K  and radiation parameter R  when 0.2τ = , 5Gr =  and 
0.03Pr = . Figs.15 and 16 show that the absolute value of the shear stress 

0xτ  at the wall ( 0)η =  due to the primary 

flow increases with an increase in either rotation parameter 2K  or radiation parameter R  or magnetic parameter 2M  for 
both the impulsive as well as the accelerated motion of one of the walls. It is observed from Figs.17 and 18 that the shear 
stress 

0y
τ  at the wall ( 0)η =  due to the secondary flow increases with an increase in either rotation parameter 2K  or 

radiation parameter R  whereas it decreases with an increase in magnetic parameter 2M  for both the impulsive and the 
accelerated motion of one of the walls. Further, it is observed from Figs.15-18 that the shear stresses at the plate ( 0)η =  

due to the primary and the secondary flow for the impulsive start of one of the walls is greater than that of the accelerated 
start. 
  

 
Fig.15: Shear stress 

0xτ  due to primary velocity for 2K  when 1R =  
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Fig.16: Shear stress 

0xτ  due to primary velocity for R  when 2 5K =  

 
Fig.17: Shear stress 

0y
τ  due to secondary velocity for 2K  when 1R =  

 
Fig.18: Shear stress 

0y
τ  due to secondary velocity for R  when 2 5K =  

The rate of heat transfer at the walls ( 0)η =  and ( 1)η =  are respectively given by  
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where 1s  is given by (24). 

Numerical results of the rate of heat transfer (0)θ ′−  at the wall ( 0)η =  and the rate of heat transfer (1)θ ′−  at the wall 

( 1)η =  against the radiation parameter R  are presented in the Table 3 and 4 for several values of Prandtl number Pr  

and time τ . Table 3 shows that the rate of heat transfer (0)θ ′−  increases whereas (1)θ ′−  decreases with an increase in 

Prandtl number Pr . It is observed from Table 4 that the rates of heat transfer (0)θ ′−  and (1)θ ′−  increase with an 

increase in time τ . Further, it is seen from Table 3 and 4 that the rate of heat transfer (0)θ ′−  increases whereas the rate 

of heat transfer (1)θ ′−  decreases with an increase in radiation parameter R . 

 
Table 3. Rate of heat transfer at the plate ( 0)η =  and at the plate ( 1)η =  

 
 (0)θ ′−  (1)θ ′−  

\R Pr  0.01 0.71 1  2  0.01 0.71 1  2  

0.5 
1.0 
1.5 
2.0 

0.23540 
0.26555 
0.29403 
0.32102 

0.44719 
0.46614 
0.48461 
0.50262 

0.52178 
0.53808 
0.55407 
0.56976 

0.72549 
0.73721 
0.74881 
0.76030 

0.18277 
0.16885 
0.15635 
0.14509 

0.08573 
0.08117 
0.07690 
0.07290 

0.05865 
0.05599 
0.05346 
0.05106 

0.01529 
0.01483 
0.01438 
0.01394 

 

Table 4. Rate of heat transfer at the plate 0)=(η  and at the plate 1)=(η  

 

 (0)'θ−  (1)θ ′−  

\R τ  0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 

0.5 
1.0 
1.5 
2.0 

0.12551 
0.14014 
0.15398 
0.16712 

0.24165 
0.27144 
0.29960 
0.32631 

0.35779 
0.40275 
0.44522 
0.48550 

0.47392 
0.53405 
0.59084 
0.64469 

0.08767 
0.08110 
0.07518 
0.06984 

0.17980 
0.16619 
0.15396 
0.14292 

0.27193 
0.25128 
0.23273 
0.21601 

0.36405 
0.33637 
0.31151 
0.28909 

  
CONCLUSION 

 

The radiation effects on MHD free convective Couette flow in a rotating system confined between two infinitely long 
vertical walls with variable temperature have been studied. Magnetic field has an accelerating influence whereas 
radiation has a retarding influence on the velocity components for both the impulsive as well as the accelerated motion of 
one of the walls. The effect of the rotation is very important in the velocity field. An increase in either radiation 
parameter R  or Prandtl number Pr  leads to fall in the fluid temperature θ . There is an enhancement in fluid 
temperature as time progresses. Both the rotation and radiation enhance the absolute value of the shear stress 

0xτ  and the 



Bhaskar C Sarkar et al                                                Adv. Appl. Sci. Res., 2012, 3(5):3291-3310      
 _____________________________________________________________________________ 

3310 
Pelagia Research Library 

shear stress 
0y

τ  at the wall ( 0)η =  for both the impulsive as well as the accelerated motion of one of the walls. It is to be 

noted that the shear stresses at the plate ( 0)η =  due to the primary and the secondary flow for the impulsive start of one 

of the walls is greater than that of the accelerated start. Further, the rate of heat transfer (0)'θ−  at the wall ( 0)η =  

increases whereas the rate of heat transfer (1)'θ−  at the wall ( 1)η =  decreases with an increase in radiation parameter 

R . 
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