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ABSTRACT 
 
The Problem of peristaltic transport of a fluid with magnetic fluid with variable viscosity through 
the gap between coaxial tubes where the outer tube is non-uniform with sinusoidal wave 
traveling down is wall and the inner tube is rigid. The relation between the pressure gradient, 
friction force on the inner and outer tube are obtained in terms of magnetic fluid and viscosity. 
The numerical solution of pressure gradient, outer friction and inner friction force and flow rate 
are shown graphically.  
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INTRODUCTION 
 

The purpose of this paper is an attempt to understand the fluid mechanics in a physiological 
situation with the presence of an endoscope is placed concentrically. The pressure rise, peristaltic 
pumping, augmented pumping and friction force on the inner tube (endoscope) and outer tube is 
discussed by the Srivastava et.al [1], and Siddiqui and Schwarz [2]. Latham [3] investigated the 
fluid mechanics of peristaltic pump and since then, other work on the same subject has been 
followed by Burns and Parker [4]. Barton and Raynor [5] have studied the case of a vanishingly 
small Reynolds number. Lyokoudis and Roos [6] studied the fluid mechanics of the ureter from a 
lubrication theory point of view. Zien and Ostrach [7] have investigated a long wave 
approximation to peristaltic motion, and the analysis is aimed at the possible application to urine 
flow in human ureters. Rose Lykoudis [8] studied the effect of the presence of a catheter upon 
the pressure distribution inside the ureter. Ramachandra and Usha [9] studied the influence of an 
eccentrically inserted catheter on the peristaltic pumping in a tube under long wavelength and 
low Reynolds numbers approximation Abd El Naby and El Misery [10] studied the effect of an 
endoscope and generalized Newtonian fluid on peristaltic motion .Gupta and Seshadri [11] 
studied peristaltic transport of a Newtonian fluid in non- uniform geometries. Srivastava and 
Srivastava [12] have investigated the effect of power law fluid in uniform and non-uniform tube 
and channel under zero Reynolds number and long wavelength approximation. Provost and 
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Schwarz [13] have investigated a theoretical study of viscous effect in peristaltic pumping and 
assumed that the flow is free of inertial effect and that non-Newtonian normal stresses are 
negligible. Bohme and Friedrich [14] have investigated peristaltic flow of viscoelastic liquids 
and assumed that the relevant Reynolds number is small enough to neglect inertia forces, and 
that the ratio of the wavelength and channel height is large, which implies that the pressure is 
constant over the cross-section. El-Misery et .al [15] have investigated the effect of a Carreau 
fluid in peristaltic transport for uniform channel. Elshehaway et .al [16] studied peristaltic 
motion of generalized Newtonian fluid in a non-uniform channel under zero Reynolds number 
with long wavelength approximation. Most of studies on peristaltic motion, that assume 
physiological fluids behave like a Newtonian fluid with constant viscosity fail to give a better 
understanding when peristaltic mechanics involved in small blood vessel, lymphatic vessel, 
intestine, ducts efferent of the male reproductive tracts, and in transport of spermatozoa in the 
cervical canal. According to Haynes [17], Bugliarllo and Sevilla [18] and Goldsmith and Skalak 
[19] it is clear that in pre mentioned body organs, viscosity of the fluid varies across the 
thickness of the duct. Cotton and Williams [20] study the practical gastrointestinal endoscope. 
Rathod and Asha [21] studied the peristaltic transport of a couple stress fluids in uniform and 
non-uniform annulus moving with a constant velocity. Rathod and Asha [22] studied the effect 
of couple stress fluid and an endoscope on peristaltic motion. 
 
The effect of magnetic field with variable viscosity through the gap between inner and outer 
tubes where the inner tube is an endoscope and the outer tube has a sinusoidal wave traveling 
down its wall is the aim of present investigation. 
 
Formulation and analysis: Consider the two-dimensional flow of an incompressible 
Newtonian fluid with variable viscosity through the gap between inner and outer tubes where the 
inner tube is an endoscope and the outer tube has a sinusoidal wave traveling down its wall. The 
geometry of the two wall surface is given by the equations:  
 

     
1 1

,r a=                                                                                                            (1) 

     
1 20

2
sin ( )r a b z ct

π
λ

= + −                                                                     (2) 

Where 
1

a is the radius of endoscope 
20

a  is the radius of the small intestine at inlet, b is the 

amplitude of the wave, λ  is the wavelength, t  is time and c is the wave speed. 
 

In the fixed coordinates (,r z ) the flow in the gap between inner and outer tubes is unsteady but 

if we choose moving coordinates (,r z ) which travel in the z - direction with the same speed as 
the wave, then the flow can be treated as steady. The coordinate’s frames are related through:    
  

, ,z Z ct r R= − =                                           (3) 

, ,w W c u U= − =                                                            (4) 

WhereU ,W  andu , w  are the velocity components in the radial and axial direction in the fixed 
and moving coordinates respectively.  
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Equations of boundary condition in the moving coordinates are: Continuity equation: 
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0,
r u w

r r z

δ δ
δ δ

+ =                                                                                                        (5) 

 
And the Navier Stokes equation: 
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                                             (7) 

 
p  is the pressure , ( )rµ  is the viscosity function,σ  is Electric conductivity and B0 is  applied 

magnetic field. The boundary condition are   
 
   

21
w c at r r r r= − = =                                                      (8a) 

  
2

1
0u at r r= =                                                                                       (2.8b) 

 
The following are the non dimensional variables, the Reynolds number (Re) and the wave 
number (δ )   introduced: 

101
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Where ε  is the radius ratio, φ  is the amplitude ratio and 0µ  is the viscosity on the endoscope. 
Then the equation of motion and boundary conditions in the dimensionless form become: 
1 ( )

0
ru w

r r z

∂ ∂+ =
∂ ∂

                                                                                                         (10) 
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2

2 2
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δ µ δ
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                                                (12) 

0 20M B a
σ
µ

=  is the Hartmann number ,σ  is Electric conductivity 

 
The dimensionless boundary conditions are: 
                   1 21 ,w at r r r r= − = =                                                                (13a) 

                     0u =        at   1.r r=                                                                                (13b) 

         
Using the long wavelength approximation and neglecting the wave number ( 0δ = ), one can 
reduce Navier-Stokes equation: 

                             0
p

r

∂ =
∂

                                                                                             (14) 

                             21
( ( ) ) ( )

p w
r r M w

z r r r
µ∂ ∂ ∂= −

∂ ∂
                                                      (15) 

       
The instantaneous volume flow rate in the fixed coordinate system is given by: 

2

1

2
r

r

Q WRdRπ= ∫                                                                                                             (16) 

 
Where 1r  is a constant and 2r  is a function of Z andt . On substituting equations (3) and (4) into 

(16) and then integrating, one obtains: 
2 2

2 1( )Q q c r rπ= + −                                                                                                     (17) 

Where 
2

1

2
r

r

q wrdrπ= ∫                                                                                                   (18) 

 
is the volume flow rate in the moving coordinate system and is independent of time. Here, 2r is a 

function of z alone and is defined through equation (2). Using the dimensionless variable, we 
find equation (18) becomes: 

2

1

2
22

r

r

q
F wrdr

a cπ
= = ∫                                                                                                     (19) 

The time- mean flow over a period T
c

λ=  at a fixed Z position is defined as: 

0

1 T

Q Qdt
T

= ∫                                                                                                                 (20) 

 
Using equations (17) and (18) in (20) and integrating we get: 
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2
2 2
2 1( )

2

b
Q q c a aπ= + − +  

 
Which may written as: 

2
2

2 2
20 20

1
(1 )

2 22 2

Q q

a c a c

φε
π π

= + − +                                                                               (21) 

 
On defining the dimensionless time-mean flow as: 

2
202

Q

a cπ
Θ =    

 
We write equation (21) as: 

2
21

(1 )
2 2

F
φεΘ = + − +                                                                                                (22) 

 
Solving equations (13) - (15), we obtain: 
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Where D = 2 1 2 1 1 1 1 2 2 2 1 1 2
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Using equation (19), we obtain the relationship between 
dp

dz
 and F as follows: 
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Solving equation (26) for
dp

dz
, we obtain: 
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The pressure rise Pλ∆ and friction force on inner and outer tubes ( )iFλ and ( )oFλ , in their non-

dimensional forms, are given by: 
1

0

( )
dp

P dz
dzλ∆ = ∫                                                                                                              (29) 

1
( ) 2

1

0

( )i dp
F r dz

dzλ = −∫                                                                                                       (30) 

1
( ) 2

2

0

( )o dp
F r dz

dzλ = −∫                                                                                                      (31) 

 
The effect of viscosity variation on peristaltic transport can be investigated through equation (29) 
- (31) for any given viscosity function( )rµ . 
 
For the present instigation, we assume viscosity variation in the dimensionless form following 
Srivastava et al. [1], as follows: 
 

( ) arr eµ −=                                                                                                                     (32) 
Or  
 ( ) 1r rµ α= −        for α <<1                                                                                       (33) 
 
Where α is viscosity parameter. The assumption is reasonable for the following physiological 
reason. Since normal person or animal or similar size takes 1 to 2L of fluid every day. On the of 
that, another 6 to 7L of fluid received by the small intestine daily as secretion from salivary 
glands, stomach, pancreas, liver and the small intestine itself. This implies that concentration of 
fluid is dependent on the radial distance, hence the viscosity of the fluid adjacent to the wall of 

small intestine is less than the away from the wall. Therefore, the above choice of ( ) arr eµ −= is 
justified.  
 
Substituting from equation (33) into equations (24), (25) and (27) and using equation (28), we 
obtain: 

2
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dp
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2 2 1 2 1
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M
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2 2 2 5 5
2 1 2 1 2 1
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}
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4 42 1
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log( / )

r r
r r

r r

− − −                                 

  (34) 
 
substituting from equation (34) into (29)-(31) yield: 

1 2 2 22
2 2 2 4 42 1

2 1 2 1
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RESULTS AND DISCUSSION 

 
The dimensionless pressure rise (Pλ ) and the friction forces on the inner and outer tube for 

different given values of the dimensionless flow rateΘ , amplitude ratio φ   , radius ratioε , 

magnetic field M and viscosity parameter α are computed using the equations (35), (36) and 
(37). As the integrals of equation (35) to (37) are not integrable in the closed form so they are 
evaluated using       
 
              a20=1.25cm   and λ =0.156  
 
The values of viscosity parameterα  as reported by  Srivastava et.al [1] are α =0.0 and α =0.1 
Furthermore, since most routine upper gastrointestinal endoscopes are between 8-11 mm in 
diameter as reported by Cotton and Williams [20] and radius ratio 1.25cm reported by   
Srivastava and Srivastava [12]. 
 
In figure (1) the pressure against the flow rate is plotted, here it is observed that the pressure 
increases with the increase of flow rate for different values of radius ratio 

0.32, 0.38 0.44andε ε ε= = =  and pressure decreases for the viscosity α=0.0 and α=0.1.                    
Figure (2) shows that as the viscosity α increases the pressure is decreases and for the different 
values of amplitude ratio φ =0.0 andφ =0.4 the pressure is decreases. 
 
In   figures  (3) and (4)  the friction force on the outer tube for different values of radius ratio and 
amplitude ratio are plotted , here  it is observed that as radius ratio ε  increases the friction force 
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also decreases and they are independent of radius ratio at certain values of the flow rate [for the 
values φ=0.4 and α=0.0 and α=0.1].In figures  (5) and (6) it is noticed that the friction force on 
the inner tube (endoscope) and on outer tube is plotted against the flow rate for different values 
of amplitude  ratio φ and for different values radius ratio  0.32, 0.38 0.44andε ε ε= = =  and for 
the values of viscosity α=0.0 and α=0.1 Here  it is noticed that as the amplitude ratio φ increases 
the friction force on the outer tube and inner tube decreases and as the viscosity increases the 
friction force on the outer tube and inner tube decreases. 
 
From Figure (7) it is noticed that the pressure increases for different values of magnetic field 
M=1, 3 and 5. From figures (8) and (9) it is noticed that the friction force decreases on 
endoscope and on the outer tube as magnetic field increases. 
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