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ABSTRACT 
 
This paper deals with the Rayleigh-Taylor Instability (RTI) at the interface between heavy poorly conducting fluid 
supported by a lighter poorly conducting fluid in the presence of transverse electric field, thermal radiation and 
roughness with slip boundary condition at bottom rough wall and no-shear condition at the top interface.  
Analytical solutions are obtained for modified Navier-Stokes and energy equations in the presence of applied 
electric field and laser radiation.  These solutions are computed for different values of electric number, Bond 
number, roughness parameter and laser frequency parameter and found that roughness of the wall and electric field 
reduce the growth rate of RTI considerably. 
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INTRODUCTION 

 
The interfacial science continues to be the frontier area of research in view of its importance for the understanding, 
control, and exploitation of the many physical, chemical and biological processes, such as, Inertial Fusion Energy 
(IFE), heat transfer across barriers, friction between surfaces and its mitigation, catalysis, adhesion, failure of 
polymers, biomechanical and bio medical engineering.  Of the three types of surface instabilities, namely Rayleigh-
Taylor Instability (RTI), Kelvin-Helmholtz Instability (KHI) and Richtmyer-Meshkov Instability (RMI), the RTI, 
that is instability of heavy fluid layer supported by a lighter fluid, has attracted considerable attention because of its 
wide variety of applications in engineering, physical and biological sciences.  RTI can occur under gravity and 
equally under an acceleration of a lighter fluid in the direction towards denser fluid.  The RTI in the case of 
gravitational field in hydrodynamics and magnetohydrodynamics(MHD) has been investigated extensively (see[1]) 
in the literature but much attention has not been given to its study in electrohydrodynamics (EHD) caused by 
acceleration of the lighter poorly conducting fluid arising in solidification of alloys in material science processing.  
For example, in the area of failure of metallic glasses, grain boundary layer in metals and crazing in amorphous non-
cross link polymers (see [7] and [10]).  These polymer failures have been known to occur normally by the formation 
and growth of planar defects.  These defects look like cracks but, in fact, are load bearings.  Both craze slip advance 
and widening are thought to occur due to RT instability process.  In such situations it is important and desirable to 
suppress the growth rate of RTI because of its importance in biomedical engineering and in IFE.   
 
In bio-medical engineering alloys like Nickel-Titanium and Titanium based alloys are of interest due to their high 
level of bio compatibility and bio integration with human body. These alloys are poorly electrically conducting 
where the electrical conductivity is a strong function of temperature. The variation of conductivity with the 
temperature arising in the solidification of these alloys releases charges which in turn generates an electric field 
known as thermally induced electric field.  In addition there may be an applied electric field due to embedded 
electrodes at the boundaries.  The total electric field (that is sum of induced and applied electric field) together with 
density of charge distribution give rise to electric force.  This in turn produces surface instability of Rayleigh-Taylor 
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type, which may cause the side effects like haemolysis (see [1]) and also erode the endothelium, the walls of the 
arteries in coronary artery diseases (CAS), due to laser surgery used to dissolve plaques formed on the endothelium. 
These side effects have to be controlled for efficient functioning of implanted artificial organs in the body.  Such 
replacements with built in mechanisms to control surface instabilities are shown to be superior to metal organs made 
up of Steel or Cobalt–Chromium-Molybdenum implants (see [15] and [16]). For success of bio-integration with 
surrounding host tissues involving fixed charge density (FCD) implant surface must be stabilized using surface 
roughness and naturally available electric field in the body.  In addition, this mechanism is also desirable to promote 
the growth of the bone tissue around the implant.   
 
Apart from this biomedical engineering application, the control that is reduction of growth rate, of RTI is also of 
importance for efficient extraction of Inertial Fusion Energy (IFE).  In IFE, it is known (see [3]) that the accelerating 
frame moving with the ablative front, there is a dense fluid adjacent to a lighter fluid with the effective inwardly 
directed gravitational force leading to instability known as Rayleigh-Taylor Instability (RTI).  The main challenge in 
IFE is to control the RTI growth rate to achieve high gain in the IFE target.   
 
In the present paper we propose to overcome this difficulty by making use of Navier-slip due to rough surface of the 
IFE target wall assuming Deuterium and Tritium (DT), the two Hydrogen isotopes, are poorly conducting 
incompressible alloys and symmetrically irradiated by high power laser beams of intensity of order of 2 x 1014 
W/cm2. The assumption of incompressibility assumed in this paper are adequate because the perturbation considered 
here are not bounded by gravitational scale heights (see [8]) but depends on the surface tension scale of the system.  
Therefore, the primary objective of this paper is to show that the Navier-slip produced by the roughness at the 
ablative surface of IFE target and the combined induced and applied electric field suppress the growth rate of 
Electrohydrodynamic Rayleigh-Taylor Instability (ERTI) in the presence of laser radiation. 
 
To achieve this objective, this paper is planned as follows. The required basic equations along with 
electrohydrodynamic (EHD) approximations and the relevant boundary conditions are given in section 2.  In section 
3 we obtain the solution of the problem as well as the dispersion relation incorporating the effect of laser radiation.  
Some limiting cases and important conclusions are drawn in the final section 4. 
 
2. Mathematical Formulation 
We consider a thin film, denoted as Region 1 (see fig. 1) of unperturbed thickness h filled with an incompressible, 

viscous, poorly electrically conducting light fluid of constant density 1ρ  bounded below by a rough rigid surface 

which is at a constant temperature T0 at y = 0 and above by a dense incompressible, viscous, poorly conducting 

liquid of density 2ρ  denoted as region 2 as shown in figure 1.  

 
 

Fig 1: Physical configuration 
 
Laser radiation is used to overcome the repulsive force between DT and to fuse them. The fluid in the thin film is 
then set in motion by acceleration normal to the interface and small perturbations are amplified when acceleration is 
directed from light poorly conducting liquid in the film towards heavy poorly conducting liquid above the interface. 
This instability at the interface, by definition, is RTI. We consider a rectangular coordinate system (x, y) as shown in 
figure 1 with x-axis parallel to the film and y-axis normal to the film with )( t,xη  as the perturbed interface 

between two fluids in regions R1 and R2, where R2 is a region of dense liquid and R1 is a region of light liquid. For 
this configuration the required basic equations following [11] are: 
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The conservation of momentum: 

( ) Eρqµpqq
t

q
ρ e

rrrr
r

+∇+−∇=






 ∇⋅+
∂
∂ 2  .                                    (2.1) 

The conservation of mass for incompressible fluid: 

0=⋅∇ q
r

.                                                  (2.2) 

The conservation of energy including the effect of laser radiation: 

( ) 2. y
p

T
c q T k T Ie

t
ρ −Ω∂ + ∇ = ∇ + Ω ∂ 

r
.       (2.3) 

To obtain relevant Maxwell’s equations we use the following EHD approximations: 
(i) σ <<  1, that is the electrical conductivity of the liquid, is negligibly small because we are considering poorly 
conducting liquid. This approximation implies that the induced magnetic field is negligible and there is no applied 
magnetic field, hence the electric field is conservative so that   

    φ−∇=E
r

              (2.4) 

where φ  is the electric potential. 

(ii)  The assumption (i) given above limits the modulation frequency and electrical conductivity of the liquid. That is 

h

c<<
π

ω
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,   
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<<

h

e

h µ
ε

σ  where c is the phase velocity of the electromagnetic wave in the liquid. These 

show that we can easily neglect the induced magnetic field.   

(iii)  Non-uniform polarization and electric charge injection are negligible, so that convection current qρe
r

 is 

negligible.   
(iv) The film thickness h is much smaller than the thickness H of the dense fluid above the film.  That is h < < H. 
(v) The surface elevation η is assumed to be small compared to film thickness h. That is η < < h. 
(vi) The Strouhal number ε, which is a measure of the local acceleration to inertial acceleration in equation (2.1) is 
negligibly small.  That is  

1<<=
Ut

L
ε

o

 

where 
δ

γ
L = , 

23o
δh

γµ
t =  and U are respectively the characteristic length, time and velocity, γ  is the surface 

tension and δ = g (ρ2 – ρ1).  
(vii) We consider high viscous fluid so that inertial acceleration term in equation (2.1) can be neglected in 
comparison with viscous term.   
 
The Maxwell equations needed, after using the above EHD approximations, are 

The Gauss Law:   
e

e

E
ρ
ε

∇ ⋅ =
r

.                    (2.5) 

The Faraday’s law:   0E∇× =
r

.              (2.6) 
The conservation of electric charges: 

0=⋅∇+
∂

∂
J

t
e

rρ
,                                              (2.7) 

where J
r

 is the sum of the conduction current σ E
r

 and convection current qρe
r

due to the fluid motion. That is  

EJ
rr

σ= + qρe
r

           (2.8) 

where ( )[ ]01 TTho −+= ασσ . Sinceσ << 1, it depends on the conduction temperature 0T T yβ− = .  Then σ  

takes the form 

[ ]yho βασσ += 1                            (2.9) 
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Here ),u(q v=r  the velocity, ρ the density of the fluid, eρ  the density of electric charges, p the pressure, E
r

 the 

electric field, µ the viscosity of fluid, T is the temperature, k is the thermal conductivity, Cp is the specific heat at 

constant pressure, I is the intensity of laser radiation, Ω is the absorption coefficient, J
r

 is the current density, eε  is 

the dielectric constant of free space, σ  is the electrical conductivity of the fluid, 
T

h
β ∆=  and T∆  is the 

difference in temperature. 
 
The EHD assumptions discussed in section 2 also enabled us to use the creeping flow approximations, which allow 
us to neglect certain terms in the perturbation equations in order to arrive at closed form asymptotic solution for the 
interface evolution. Under these approximations the basic equations (2.1) to (2.3) reduce to: 
 
For region 1: 

  xe2
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For region 2: 

yl
l eI

y
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∂
∂

= 02

2

0 κ      (2.14) 

where va is the velocity of the ablative surface, ± depends on whether I0 is in the direction or opposing gravity. 
 
From eqn.(2.5), using eqns.(2.4), (2.8), (2.9) and the approximations discussed above, we get  

  
y

γερ ee ∂
∂= φ

1
,         (2.15) 

where  
1 hα βγ = . 

 
From the continuity of charges given by eqn.(2.7), for steady charge density distribution, using eqns. (2.8) and (2.9), 
we get 
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Equation (2.16) has to be solved using the boundary conditions 
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We have to find the solution of eqn.(2.10) using the boundary conditions     
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the second condition in eqn. (2.18) is the Navier-slip condition (see [9]) valid for rough surface at y = 0 where β1 is 
the slip coefficient. 
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Also eqns.(2.12) and (2.14) are solved using the boundary conditions 
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where λ is the heat transfer coefficient, suffices f and l denote film in region 1 and liquid in region 2 respectively and 
T0 is the temperature of rigid boundary. 
 
3. Method of solution 
 
Eqns. (2.10) to (2.19) are made dimensionless, using  
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Where the asterisks (*) denote the dimensionless quantities and neglecting *s, we get  
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where  ∆=
3

0

2

h

Ve
δ
ε

 electric number, Ra = 
f

h

µκ
δ 3

0  Rayleigh number, Nf = 

0
2

0

00Ω
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 and         

0 0

0
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l
 dimensionless laser intensity in regions 1 and 2 respectively, Ω0=Ωh absorption 

coefficient, 1 1 / hβ β=  Roughness parameter, Bi = /iB hλ κ=  Biot number. 

 
Solving eqn.(3.7) using eqn. (3.8), we get  
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Solving eqns.(3.1) to (3.3) by assuming 
x
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= constant (i.e., independent of y but function of x) using eqns.(3.9) and 

(3.12), we get 
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Solutions of eqns.(3.4) and (3.5), using eqns.(3.10) and (3.11), are  
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3.1 Dispersion relation 
In this section we obtain the dispersion relation by incorporating the effect of laser radiation to study the stability of 
the system.  The interface conditions are  

the kinematic condition  v=
∂
∂+

∂
∂

x
u

t

ηη
 at  y =h      

and for linear theory this takes the form   

hy
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The dynamic condition is 
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Eqns.(3.16) and (3.17) are made dimensionless using dimensionless quantities defined earlier and obtain 
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where ± on right hand side of eqn. (3.19) will depend on whether the applied voltage is in the direction or opposing 

the direction of gravity, B = 
γ

δ 2
0h  the Bond number which measures the relative importance of gravitational effect 

to surface tension γ, ( ) ( )11
11 llff and θθθθ == .  Then eqn. (3.18), using eqns. (3.13) and (3.19), becomes 

 



M. Siddalinga Prasad                                                   Adv. Appl. Sci. Res., 2015, 6(10):149-158        
 _____________________________________________________________________________ 

155 
Pelagia Research Library 

 ( ) 






 −








∂
∂−

∂
∂∆±−−=

∂
∂

14

4

2

2

3

11
11

βθθ
x

η

Bx

η

t

η
fl .    (3.20) 

 
we look for the solution of eqn. (3.20) in the form 
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From eqn.(3.20), using eqn.(3.21), we get the required dispersion relation 
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RESULTS AND DISCUSSION 

 
Our aim in this paper is to predict the effects of Navier – slip due to rough surface of the boundary, surface tension 
at the interface, the applied transverse non-uniform electric field and laser radiation on the growth rate n of the RTI.  
The growth rate n given by eqn. (3.22) can be written as  

   ab Vβnn l−=              (4.1) 

where  

   







−=

B
nb

22

1
3

ll
              (4.2) 

1 1

2

1

1

3a l f

l
V

B
θ θ β   = − − ± ∆ −   

  
l        (4.3)  








 −







∆±−−








 −







∆±−−−








−

=

1

2

1

22

3

1

3

1
1

3

1

11

11

βθθ

βθθ
β

B

l

B

l

B

l

fl

fl

.       (4.4) 

 
Here nb the growth rate coincides with the one given by Babchin et. al. [4] in the absence of roughness, laser 
radiation and applied electric field called classical growth rate, β is a constant and Va is the normal velocity of the 

surface.  The growth rate given by eqn. (4.1) is numerically computed for different values ofl , B, β1, 
11 fl θθ − , 

and ∆ and the results are depicted in figures 2 to 5 and conclusions are drawn below. 
 
Setting n=0 in eqn. (4.1), the cutoff wave number lct above which RTI mode is stabilized, is found to be 
 

   ( )∆±−=
11 flct B θθl              (4.5) 

The maximum wave number ml  obtained from eqn. (4.1) by setting 
n

0
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The maximum value of n, namely nmax, after using ml  given by eqn.(4.6), is  
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3 4
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       (4.7) 

 
From eqn. (4.7), the following three particular cases follow  
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Case (i) : For β1 = 0, ∆ = 0, implying absence of roughness of the boundary and electric field, we get the maximum 
growth rate n1max from eqn. (4.7) in the form  

   
( )
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11 flB

n
θθ −

=           (4.8) 

From eqns. (4.7) and (4.8), we get  
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Case (ii) : For β1 = 0,  ∆ ≠ 0,  implying absence of roughness of the boundary and in the presence of electric field, 
we get, from eqn.(4.7) the maximum growth rate, n2max in the form 
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From eqns.(4.7) and (4.10), we get 
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Case (iii): Similarly, from eqns.(4.8) and (4.10), we get 
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To know the behavior of the ratio of growth rates, Gimax ( i = 1 to 3), it is computed for      i = 1 from eqn. (4.9) , i = 2 
from eqn. (4.11) and i =3 from eqn. (4.12) and the results are tabulated in the Table 1 and also depicted graphically 
in figs. (2) to (5) for different values of  ∆, B, β1 and Nl taking negative sign in ± ∆ which means voltage is applied 
opposing gravity. 
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Fig 2: The growth rate n versus wave number l  for B = 0.01, β1 = 0, Nl 
= 0.01, Bi = 1.3, Ra = 1100, Ω0=0.001 and for different electric numbers 
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Fig 3: The growth rate n versus wave number l  for ∆ = 0.25, β1 = 0, 
Nl = 0.01,                Bi = 1.3, Ra = 1100, Ω0=0.001 and for different 

Bond numbers B 
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Fig 4:The growth rate n versus wave number l  for ∆ = 0.25, B = 0.01, 
Nl = 0.01, Bi = 1.3, Ra = 1100, Ω0=0.001 and for different roughness 

parameter β1 
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Fig 5: The growth rate n versus wave number l  for ∆ = 0.25, B = 
0.01, β1= 6.6x10-2, Bi = 1.3, Ra = 1100, Ω0=0.001 and for different laser 

intensity Nl 
 

                        
Table 1: Ratio G1max (= nmax/n1max) and the percentage of reduction in the maximum growth rate  

 
β1 

 
∆ 

 
0 
 

 
3.3x10-2 

0.0 
1.00 0.9010 

100 % 90.10 % 

0.25 
0.9359 0.8433 

93.59 % 84.33 % 

0.50 
0.8741 0.7875 

87.41 % 78.75 % 

0.75 
0.8143 0.7337 

81.43 % 73.37 % 

1.00 
0.7566 0.6817 

75.66 % 68.17 % 
 

Table 2: Comparison of our results with the existing literature 
 

Authors Gm Percentage of reduction 
Takabe et. al. (1985) 0.45 45% (for compressible fluid) 
Rudraiah (2003 a) 0.79 79% (αp = 0.1, σp = 0.1) (for porous lining) 

Rudraiah et. al. (2004) (for MHD) 

0.9960 99.60% for M = 10-1 
0.7152 71.52 % for M = 100 
0.027 2.7 % for M = 101 
0.0003 0.03 % for M = 102 

Rudraiah et. al. (2007) Table 3 (for EHD) 
Present paper Table 1 (for EHD) 

 
Table 3: % of reduction of growth rate 

 
β1 
∆ 

0 3.3×10-6 3.3×10-5 3.3×10-4 3.3×10-3 

0 100 99.999 99.9901 99.901 99.01 
0.25 56.25 56.25 56.24 56.19 55.69 
0.50 25 24.9998 24.9975 24.975 24.7525 
0.75 6.25 6.2499 6.2494 6.2438 6.188 
1.0 0 0 0 0 0 

 
Figure 2 depicts the effect of applied transverse electric field in the direction opposing gravity represented by 

01to0 .=∆  for fixed values of B = 0.01 ,Ra = 1100,     Bi = 1.3, Ω0 = 0.001, Nl = 0.01 and 01 =β .  This figure 

reveals that an increase in ∆ decreases the growth rate of RTI.  From this we conclude that the effect of applied 
electric field is to reduce the growth rate, and hence makes the interface stable.    
 
Figure 3 reveals the effect of varying surface tension represented by B = 0.01 to 0.04 for fixed values of ∆ = 0.25, Ra 

= 1100, Bi = 1.3, Ω0 = 0.001, Nl = 0.01 and 1β =0 .  It shows that a decrease in B implying an increase in surface 
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tension (because B is the reciprocal of surface tension γ) decreases the growth rate of RTI.  This implies that the 
increase in surface tension makes the interface more stable as expected on physical grounds. 
 
Figure 4 shows the effect of varying roughness coefficient β1 = 0, 3.3x10-2 for fixed values of B = 0 .01, ∆ = 0.25, Ra 
= 1100, Bi = 1.3, Ω0 = 0.001 and Nl = 0.01.  This figure reveals that an increase in roughness decreases the growth 
rate of the RTI. Hence, the effect of increase in roughness makes the interface stable. 
 
Figure 5 shows that an increase in laser intensity Nl=  0.001, 0.01 for the fixed values of B = 0 .01, ∆ = 0.25, Ra = 
1100, Bi = 1.3, Ω0 = 0.001 and β1 = 6.6x10-2, increases the growth rate of RTI and hence makes the system unstable 
because an increase in laser intensity increases the energy.  From figures 2 – 5 we note that all the three modes of 
instability namely stable, neutrally stable and unstable modes are possible for certain values of the parameters in the 
dispersion relation given by eqn. (4.1).   
 
From Table 1 for ∆ = 0.75 and β1 = 3.3x10-2, we find Gm = 0.7337 that is the maximum growth rate is reduced to 
73.37% of the classical value.  Also, Gm = 0.8741 for ∆ = 0.5 and β1 =0, so that the maximum growth rate is reduced 
to 87.41% of the classical value.  Therefore, Table 1 gives the amount of reduction in the maximum growth rate for 
different values of ∆ and β1. Table 2 gives the amount reduction in maximum growth rate compared to those exist in 
the literature. 
 

CONCLUSION 
 
Finally, we conclude that with a proper choice of the strength of applied voltage, laser intensity and suitable 
roughness of the rigid surface in the film, it is possible to reduce the growth rate of the RTI. This is useful in 
efficient extraction of IFE by maintaining the symmetry of the target and also favorable to reduce the side effects 
like haemolysis in biomedical engineering problems. 
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