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ABSTRACT

In this paper, Influence of heat transfer on MHD oscillatory flow Jeffrey fluid with variable viscosity model through
porous medium is investigated. The fluid viscosity is assumed to vary as an exponential function of temperature. The
effects of various emerging parameters on the velocity field and temperature field are discussed in detail through
graphs.
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INTRODUCTION

The flow of an electrically conducting fluid hasportant applications in many branches of engingesicience
such as magnetohydrodynamics (MHD) generatorspaastudies, nuclear reactor, geothermal energyeidn,
electromagnetic propulsion, the boundary layer rabrin the field of aerodynamics and so on. Heanhdfer effect
on laminar flow between parallel plates under thiéoa of transverse magnetic field was studied ligalkh and
Singh [1]. Soundalgekar and Bhat [2], have inved&d the MHD oscillatory flow of a Newtonian fluid a channel
with heat transfer. MHD flow of viscous fluid betere two parallel plates with heat transfer was dised by Attia
and Kotb [3]. Raptis et al. [4], have analyzed tiyelromagnetic free convection flow through a porowedium
between two parallel plates. Aldoss et al. [5],éhatudied mixed convection flow from a verticaltplambedded in
a porous medium in the presence of a magnetic. fidlskinde and Mhone [6], have considered heat tearts
MHD oscillatory flow in a channel filled with poreumedium. Mostafa [7], have studied thermal radragffect on
unsteady MHD free convection flow past a verticite with temperature dependent viscosity. Unstelagiyt
transfer to MHD oscillatory flow through a porougdium under slip condition was investigated by Harat al.

[8].

Moreover the non-Newtonian fluids are more appwprithan Newtonian fluids in many practical appimas.

Examples of such fluids include certain oils, lehnts, mud, shampoo, ketchup, blood at low shear casmetic
products, polymers and many others. Unlike theouiscfluids, all the non-Newtonian fluids (in terrog their
diverse characteristics) cannot be described binglesconstitutive relationship. Hence, several eisdf non-
Newtonian fluids are proposed in the literature Kiktib and Wilson [9], have studied the Poiselbev of a yield
stress fluid in a channel. Flow of a visco-plastiid in a channel of slowly varying width was sted by Frigaard
and Ryan [10]. Ali and Asghar [11], have analyzed dscillatory channel flow for non-Newtonian fluid:he
influence of heat transfer on MHD oscillatory flaf Jeffrey fluid in a channel was discussed by lavita et al.
[12].

In view of these we studied the effect of heat ¢sfanon MHD oscillatory flow of a Jeffrey fluid vitvariable
viscosity model through porous medium. The expogssiare obtained for velocity and temperature dically.

The effects of various emerging parameters on #¢hecity and temperature are discussed through grizmptietail.
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2. Mathematical Formulation

We consider the flow of a Jeffrey fluid in a chahokwidth h under the influence of electrically applied magme
field and radioactive heat transfer as depicteBiinl. It is assumed that the fluid has small elegt conductivity
and the electromagnetic force produced is verylsmé choose the Cartesian coordinate systeiy) (wherex - is
taken along center of the channel andythaxis is taken normal to the flow direction.
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Fig. 1 Geometry of the problem

The constitute equation dfor Jeffrey fluid is

M (o
S=r; ) (7+2,9) (1)

where 4 is the dynamic viscosityd, is the ratio of relaxation to retardation timek, is the retardation timey
is the shear rate and dots over the quantitiestdefifferentiation with time.

The basic equations of momentum and energy govgmsioh a flow, subject to the Boussinesq approximatare:

ou__dp_ (1) od%u o H(T)

—=—-—++ —+ -T,)—oBju— u 2

0T K d°T 1 dq

- = e 3
r: c, 0y c, 0y ®
The boundary conditions are given by
U=0 at y=0, and U=0 at y=h (4)
T=T, at y=0, and T=T, at y=h (5)

where U is the axial velocity T is the fluid temperaturep is the pressurep is the fluid density,B, is the
magnetic field strengthg is the conductivity of the fluidg is the acceleration due to gravit is the coefficient

of volume expansion due to temperatugs, is the specific heat at constant presskris, the thermal conductivity
andq is the radioactive heat flux.

Following Cogley et al. [13], it is assumed tha¢ thuid is optically thin with a relatively low dsity and the
radioactive heat flux is given by

0

N = 4a2(1, -T) ®)
ay

here @ is the mean radiation absorption coefficient.
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Introducing the following non-dimensional variables

- — _ £ = 2p?2
x:é’y X E’H:T TO ,t:E,p:p_h’Mz OhB Da_LZ’

h h'™ U T,-T, h ,uU U a -

UC 2142
n ] [ K K
whereU is the mean flow velocitypa Darcy number, Re Reynolds numb@ér, Grashof numberM magnetic
parameter,Pe is the Peclet number afdis the radiation parameter.
Substituting (7) into equations (2)-(6), we obtain
puou_ op  u6) 0°u  pga(T, - To) _ oBgh* - h*1(6) y @®)
M, Ot 0 1+/1 oy’ MU Ho k

ph 0 0? an’a’(T, -T)

3 LT = @, T - oD ©

After simplify, we obtain the following non-dimeisial equations:

2
Rea—u-—@+—'u(9)ﬂ—[M2+—ﬂ[§9)ju+Gr6 J10
a

ot  ox 1+, oy’

96 9%

—=—+N?%@ 11
ot oay
The corresponding non-dimensional boundary conitiare
u=0 at y=0,and u=0 aty=1 (12)
6=0 at y=0,and =1 aty=1 (13)

3. Solution of the Problem
To solve the temperature equation (11) with boupdanditions (13), let

6(y,t) = 6,(y)e (14)
where & is the frequency of the oscillation.

Substituting the equations (14) into the equati{disy, we have

66?0+(N2 iaPe)d, =0 (15)

The solution of equation (15) with boundary corutit 8,(0) = 0 andé, (1) =1 is
6,(y) = csdg)sin(@) (16)

where @=+/N? —iaPe, hence

a(y.t) = csdg)sin(gy)e (17)

To solve the momentum equation (10) for purelyltzory flow, let

—% - Je“ 18]
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u(y,t) =uy(y)e (19)
where A is a real constant.

Substituting the equations (18) and (19) into thgagions (10), we have

- . H(O) 0% (Y) (2, H(O)
Remuo(y)—/]+1+—/117 (M + Da juo(y)+Gr90 (20)

The Reynold model of viscosity is used to desctitgevariation of viscosity with temperature. TheyRad model
of viscosity is defined as Person [14]

u) =e*° (21)

Using the Maclaurin series expansion the aboveesgion can be written as
202

1(6)=1-£0+£9

E<<1 (22)

Here &€ = 0 corresponds to the constant viscosity case.

Compensating equation (22) into equation (20), axeeh

202 2 202
Reia,(y) =4+ L 1-6+ £6 19 uogy) - M2 +i 1—56?+£ 4 Uy(y) +Gré, (23)
1+ A, 2 oy Da 2

Small & suggests the use of perturbation technique tessduation (22). Accordingly, we write:
Up (Y) = Ugo(Y) + &g, (y) + €U, (Y) + O(€) (24)

Substituting equation (24) into equation (23) viittundary conditions (12), then equating the likevpis of £, we
obtain

3.1 Zeros-order system (EO)

0°u .
% —(1+ )Il)(M 2 +iwRet é)um =1+ )N +Grg,) (25)
The associated boundary conditions are
Uy = Ugo @ =0 (26)
3.2 First-order system (&)
0°u . 0°u, (1+A
6y201 -(1+ )Il)(M > +iwRet Dijum :( 6y20 —( 5 ) uOJHO (27)
a a
The associated boundary conditions are
U (0) = Uy, @) =0 (28)
3.3 Second-order system (5‘2)
2 2 iwt 2
aaugz ~(1+ /ll)(M > +iwRet 1Ju02 = {6 Lil - (1+Al)ul _Ge (6 L120 - (1+Al)uoj}90 (29)
Y Da oy Da 2 oy Da
The associated boundary conditions are
U, (0) =up, @) =0 (30)
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3.4 Zeros-order solution
The solution of equation (25) subset to the assegidoundary conditions (26) is;

B -
Ugo = — (1+ /A _ /Ay _glAn y)) 13
AE+ e ’

3.4 First-order solution
The solution of equation (27) subset to the assesidoundary conditions (28) is;

_ e‘ﬁw (1+ eM e1+ﬁ\ 2yl hy (1_ A) - 4el+ﬁ\y (1"' eﬁ)
2V pe’"y(e- A)ll-e* ]+ (e- A)

+ (— A-3e-e"'A(3E+2/A)- AeA (1- 2\/74))&7*y 32)
— /A (A(1+ e’ (A+36) + 2J7A(A—e))

L = Be"4,
" antfi+ el

where A= (1+/11)(M 2 +ia)Re+Dij, andB=(1+A)(A+GCrg,).
a

The formula ofu, is a long.
Finally, the perturbation solutions up to secondeoifor U, is given by

— 2
uO - uOO +£U01 2 u02

Therefore, the fluid velocity is given as
u(y,t) =u,e'“ (33)

RESULTSAND DISCUSSION

In this section, the numerical and computationalits are discussed for the problem of an inconsfsks non-
Newtonian Jeffrey fluid with variable viscosity tugh a porous medium channel in detail throughgtaphical
illustrations. The numerical evaluations of thelginzal results and some important results areldiggg graphically
in figure (2) - (9). MATHEMATICA program is used find out numerical results and illustrations. Tdrelytical
solutions of the momentum equation is obtained &yngi perturbation technique. All the obtained doha are
discussed graphically under the variations of waripertinent parameters in the present section.

Based on equation (33), figures (2) - (6), illustsathe effects of the parametdss, «, A, /]1, Da, M, Re and
Pe on the velocity.

Figure (2) illustrates the effects of the paramefdr and . on the velocity distribution functiomvs.y. It is found

that the velocity profileu decreases with increasin®yl , while u increases with increasing., and attains its
maximum height at the center line of the channke Tluid velocity starts increasing and tends tabestant at the
walls, as specified by the boundary conditions.

From figure (3) one can depict here that the v@oprofile u rising up with the increasing effects of both the
parametersd and /11. Figure (4) contains the behaviorwfinder the variation dba andM, one can depict here
thatu go down with the increasing effects of both theapseterdDa andM.

Figure (5) illustrates the effects of the paranmetee and Pe on the velocity distribution function vs.y. It is

found that the velocity profile increases with increasiniRe, while u decreases with increasirige . Figure (6)
show that velocity distribution increases with thereasing of the parametess.
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Based on equation (17), figures (7) - (9), illusteathe effects of the parameteMd, Pe and &« on the
temperature. Figure (7) illustrates the effectshef parameterdN on the temperaturé vs.y. The temperature
increases with increasin)l . Figure (8) show that temperature increases \mighiicreasing of the parametdfe.

Figure (9) contains the behavior 6f under the variation ot , one can depict here that the temperature go down
with the increasing effects at .

5. Concluding Remarks

The present study deals with the effect of heatsfed on MHD oscillatory flow of Jeffrey fluid witlvariable
viscosity model through porous medium channel. pedurbation series in the viscosity parametéx€l) was
used to obtain explicit forms for velocity field\e obtained the analytical solution of the problem.

The results are analyzed for different values ofipent parameters namely radiation paramd¥er frequency of
the oscillation cc, Darcy numbemDa, Reynolds numbelRe, constant viscosity case, Jeffrey parametevll,
magnetic parametdl and Peclet numbéte. The main findings can be summarized as follows:

1. The axial velocity increases with the increased, A, /]1, Re, and &£ . Further, the axial velocity increases
with increase ing , when 0 <y < 0.77.

2. The axial velocity decreases with the increasili, Da, M, and Pe.

3. The coefficient of temperature increases wittréasing values oN and Pe, while the temperature decreases
with increasingc .

4. The velocity for Jeffrey fluid with variablesdosity is less than velocity of Jeffrey fluid withnstant viscosity,
see Kavita et al. (2012).

012 [+
010 |
008 |
S 006 [
004 |
002 |

0.0 0.2 04 0.6 0.8 10
y 0.0
Fig. 2 Velocity profilefor various values of N ,and @ with

t= 05Re=1Pe=07,Gr=1Da=08M =14 =034=1£=02
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Fig. 3 Velocity profilefor various values of A ,and /]1 with

t= 05Re=1 Pe=07,Gr=1Da=08M =1 N=1a=1£=02
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Fig. 5 Velodity profilefor variousvaluesof R€, and Pe with
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Fig. 6 Velocity profilefor variousvaluesof & with

t= 05Re=1Pe=1Da=08M=1Gr=1N=1a=14 =031=1

Fig. 7 Temperature distribution for variousvaluesof N and t = 05Pe= 07,cc=1.
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Fig. 8 Temperature distribution for various values of Pe and t= O5N=1a=1
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Fig. 9 Temperaturedistribution for variousvaluesof (v and t = 05Pe=Q7,N=1
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