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ABSTRACT 
 
In this paper, the peristaltic flow of a Jeffrey fluid in a tube with variable viscosity under the assumptions of long 
wavelength is investigated. The flow is investigated in a wave frame of reference moving with velocity of the wave. 

The effects of 1λ , viscosity parameterα and amplitude ratio φ on the pumping characteristics and friction force 

are discussed in detail through graphs.   
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INTRODUCTION 
 

Since the first investigation of Latham [11] several theoretical and experimental attempts have been made to 
understand peristaltic action in both mechanical and physiological situations under various approximations. Based 
on the experimental work, Burn and Parks [4] have studied the peristaltic flow of a viscous fluid through a pipe and 
a channel by considering sinusoidal variation at the walls. Shapiro et al. [14] have analyzed peristaltic pumping with 
long wavelength at low Reynolds number, in a wave frame of reference. Whereas Fung and Yih [5] and Yih and 
Fung [16] have obtained analytical solutions for peristaltic flow by assuming small amplitude but arbitrary Reynolds 
number, in a fixed frame of reference. Many of the contributors to the area of peristaltic transport have either 
followed Shapiro or Fung.  
 
Most of the studies on the peristaltic transport assume the physiological fluids to behave like Newtonian fluids with 
constant viscosity. However, this approach fails to give and adequate understanding of the peristaltic mechanism 
involved in small blood vessels, lymphatic vessels, intestine, and ductus efferentus of the male reproductive tracts. 
In these body organs, the viscosity of the fluid varies across the thickness of the duct (Gold Smith and Skalak [6]). 
Provost and Schwarz [13] have explained a theoretical study of viscous effects in peristaltic pumping and assumed 
that the flow is free of inertial effects and that non-Newtonian normal stresses are negligible. Abd El Hakeem et al. 
[1] have investigated the peristaltic flow of a fluid with variable viscosity under the effect of magnetic field. Abd El 
Hakeem et al. [2] have investigated the effect of endoscope and fluid with variable viscosity on peristaltic motion. 
Hayat et al. [7] have investigated the effect of endoscope on the peristaltic flow of a Jeffrey fluid. Ali et al. [3] have 
investigated peristaltic flow of MHD fluid in a channel with variable viscosity under the effect of slip condition. 
Hayat and Ali [8] have investigated the effect of variable viscosity on the peristaltic flow of a Newtonian fluid in an 
asymmetric channel. Peristaltic motion of a Jeffrey fluid under the effect of a magnetic field in a tube was discussed 
by Hayat and Ali [9].  Recently, Jayarami Reddy et al. [10] have studied the peristaltic flow of a Williamson fluid in 
an inclined planar channel under the effect of a magnetic field. Subba Reddy et al. [15] have investigated the slip 
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effects on the peristaltic motion of a Jeffrey fluid through a porous medium in an asymmetric channel under the 
effect magnetic field.  
 
In view of these, we investigated the peristaltic flow of a Jeffrey fluid with variable viscosity under the long 
wavelength and low Reynolds number assumptions. The velocity components and axial pressure gradient are 
obtained analytically. Physically, our model corresponds to the transport of chyme in the small intestine (as the 
radius 1.25 cm of the small intestine is small compared with the long wavelength 8.01 cm). The effects various 
emerging parameters upon the flow are examined. We make comparison with other studies. 
 
2. Mathematical formulation and solution 
We consider the flow of a Jeffrey fluid with variable viscosity through an axismymmetric tube of uniform thickness 

with a sinusoidal wave traveling down its wall. We choose cylindrical coordinates ( ),R Z such that R  is the radial 

coordinate and Z  is the axial coordinate. Fig. 1 shows the physical model. The geometry of the wall surface is 
described mathematically as  
 

2
( , ) sin ( )H Z t a b Z ct

π
λ

= + −      (2.1) 

 
in which a  is the radius of the tube at inlet, b  is the wave amplitude, λ  is the wavelength, c  is the wave speed 
and t  is the time.   

In the fixed frame of reference ( ),R Z the flow is unsteady. However, in a coordinate frame moving with the wave 

speed c  wave framed ( ),r z the boundary shape is stationary. The transformation from fixed frame to wave frame 

is given by 
 - ,  ,  ,  z Z ct r R w W c u U= = = − =    (2.2) 

where ( ),u w and ( ),U W are velocity components in the wave and fixed frames of reference respectively.  

 
Fig. 1. Physical Model 

 
In the wave frame, the equations governing the flow are 

1
( ) ( )rr rz

Su u p
u w rS S

r z r r r z r
θθρ ∂ ∂ ∂ ∂ ∂ + = − + + − ∂ ∂ ∂ ∂ ∂ 

  (2.3) 

1
( ) ( )rz zz

w w p
u w rS S

r z z r r z
ρ ∂ ∂ ∂ ∂ ∂ + = − + + ∂ ∂ ∂ ∂ ∂ 

   (2.4) 

0
u u w

r r z

∂ ∂+ + =
∂ ∂

       (2.5) 
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where p is the pressure and ρ  is the density of the fluid. 

The constitute equation of S  for Jeffrey fluid is  

( )2
1

( )

1

r
S

µ γ λ γ
λ

= +
+

& &&                    (2.6) 

where ( )rµ is the viscosity function, 1λ  is the ratio of relaxation to  retardation times, λ2 is the retardation time, γ&  

is the shear rate and dots over the quantities denote differentiation with time.  
 
The boundary conditions in the wave frame are  

0,   0
w

u
r

∂= =
∂

   at  0r =       (2.7) 

w c= −         at r h=       (2.8) 
Introducing the following non-dimensional variables   

2

0

0

( )
, , , , ( ) , , ,

, , 1 sin(2 ).

o

r z u pa r w a
r z u p r w

a c c c

aS b
S h z

c a

µµ δ
λ δ µ λ µ λ

φ φ π
µ

= = = = = = =

= = = +
 

where φ  is the amplitude ratio 0µ  is the viscosity δ is the wave number in the equations (2.3)- (2.8) (dropping 

bars), we get 

3 2Re ( ) ( )rr rz

u u p
u w rS S S

r z r r r z θθ
δδ δ∂ ∂ ∂ ∂ ∂ + = − + + − ∂ ∂ ∂ ∂ ∂ 

 (2.9) 

1
Re ( ) ( )rz zz

w w p
u w rS S

r z z r r z
δ δ∂ ∂ ∂ ∂ ∂ + = − + + ∂ ∂ ∂ ∂ ∂ 

  (2.10) 

0
u u w

r r z

∂ ∂+ + =
∂ ∂

       (2.11) 

where  

2

1

22

1

2 ( )
1 ,

1

( )
1 ,

1

rr

rz

r c u
S u w

a r z r

r c w u
S u w

a r z r z

δµ λ δ
λ

µ λ δ δ
λ

 ∂ ∂ ∂ = + +  + ∂ ∂ ∂  

 ∂ ∂ ∂ ∂   = + + +    + ∂ ∂ ∂ ∂    

 

2

1

2 ( )
1 ,

1

r c u
S u w

a r z rθθ
δµ λ δ

λ
 ∂ ∂ = + +  + ∂ ∂  

 

2

1

2 ( )
1

1zz

r c w
S u w

a r z z

δµ λ δ
λ

 ∂ ∂ ∂ = + +  + ∂ ∂ ∂  
, 

and 
0

Re
acρ

µ
=  is the Reynolds number.  

The corresponding non-dimensional boundary conditions are 

 0,   0                 at            0
dw

u r
dr

= = = ,    (2.12) 

 1                             at              1 sin 2w r h zφ π= − = = + , (2.13) 

Using the long wavelength approximation ( 1δ << ) and low Reynolds number ( Re 0→ ), assumption the 
equations (2.9) and (2.10) become 
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0
p

r

∂ =
∂

,        (2.14) 

1

1
( )

(1 )

p w
r r

z r r r
µ

λ
∂ ∂ ∂ =  ∂ + ∂ ∂ 

.     (2.15) 

From Eqs. (2.14) and (2.15), we have 

 
1

1
( )

(1 )

dp w
r r

dz r r r
µ

λ
∂ ∂ =  + ∂ ∂ 

.     (2.16) 

The effect of viscosity variation on peristaltic flow can be investigated for any given function ( )rµ . For the present 

investigation, we assume the viscosity variation in the dimensionless form as  

( )    or    ( ) 1      for       1rr e r rαµ µ α α−= = − <<    (2.17) 

 
3. Solution 
Solving Eq. (2.16) using the boundary conditions Eqs. (2.12) and (2.13) we get  

11
1

2 ( )

r

h

dp r
w dr

dz r

λ
µ
 + = − +    

   
∫     (3.1) 

The dimensionless volume flow rate in the wave frame is given by 

2
1

0 0

2 (1 )
( )

h h r

h

dp r
q wrdr h dr rdr

dz r
λ

µ
 

= = − + +  
 

∫ ∫ ∫    (3.2) 

Eq. (3.2) can be rewritten as  
2

1 1

( )

(1 ) ( )

dp q h

dz I hλ
+=

+ ×
       (3.3) 

where 1

0

( )
( )

h r

h

r
I h dr rdr

rµ
 

= =  
 
∫ ∫ . 

Substituting Eq. (2.17) in Eq. (3.3), we get 
2

4
1

8 ( ) 4
1

(1 ) 5

dp q h
h

dz h
α

λ
− +  = − +  

     (3.4) 

The dimensionless instantaneous volume flow rate in the fixed frame of reference is given by 

0

( , ) 2
h

Q x t WRdr= ∫
2

0

2 ( 1)
h

w rdr q h= + = +∫     (3.5) 

The dimensionless time mean flow over a period T(=λ/c) of the peristaltic wave, is defined as 
1 2

2

0 0

1
( , ) 1

2

T

Q Q x t dt q h dx q
T

φ= = + = + +∫ ∫    (3.6) 

From Eq. (3.4) and Eq. (3.6), we have 
 

2
2

4
1

4
1 1

2 58

(1 )

Q h h
dp

dz h

φ α

λ

  − − + −  −   =
+

    (3.7) 

The pressure rise p∆ per one wave length and friction force F  (on the wall) are respectively given as 
1

0

dp
p dz

dz
∆ = ∫                      (3.8) 
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and 

1
2

0

dp
F h dz

dz
 = − 
 

∫       (3.9) 

 
DISCUSSION OF THE RESULTS 

 

 In order to study the effects of viscosity parameterα , 1λ and amplitude ratio φ on the pressure rise p∆ and 

friction force per wavelength, the integrals Eqs. (3.8) and (3.9) are solved numerically. Numerical simulation here is 
performed using the computational software Matlab.  
 

Fig. 2. shows the relation between pressure rise p∆  and time averaged flux Q  for different values of for different 

values of 1λ  with 0.6φ = and 0.1α = . In the pumping region ( 0p∆ > ), the time averaged flux Q  increases 

as 1λ  decreases. Whereas in the co-pumping region ( 0p∆ < ),  Q  increases by increasing the 1λ . Also, it is 

noticed that the pumping is more for Newtonian fluid ( 1 0λ → ) than the Jeffrey fluid. 

 

The variation of pressure rise p∆  with time averaged volume flux Q  for different values of viscosity parameter 

α  with 0.6φ =  and 1 0.3λ =  as shown in  Fig.3. It is observed that, increasing α  decreases the pumping 

( 0p∆ > ) but free pumping ( 0p∆ = ) and co-pumping ( 0p∆ < ) are increases. When 0α → , our results 

coincide with those results obtained by Nagendra [12]. Furthermore, as 0α →  and 1 0λ → our results agree 

with the results of Shapiro et al. [14]. 
 

The effect of amplitude ratio φ on the pumping characteristics is plotted in Fig. 4. for 1 0.3λ = and 0.1α = . We 

observed that the larger the amplitude ratio, greater the pressure rise against which the pump works. In the co-

pumping region Q  decreases as amplitude ratio φ  increases for appropriately chosen 0p∆ < .   

 

In order to illustrate the effect of 1λ , viscosity parameterα and amplitude ratio φ on the friction force on the tube 

wall, figures 5-7 are plotted. From Fig. 5, it is observed that the friction force first increase and then decrease with 

an increase in 1λ . From Fig. 6, it is concluded that the magnitude of the friction force decreases with increasing 

viscosity parameterα . The friction force first decrease and then increase with the increase in amplitude ratio as 
shown in Fig. 7. In general, figures 2-7 show that the friction force has an opposite character in comparison to the 
pressure rise. 
 

CONCLUSION 
 

In this paper, we studied the peristaltic motion of a Jeffrey fluid with variable viscosity through an axisymmetric 

tube is studied under the assumptions of long wavelength and negligible inertia. The effect of 1λ , viscosity 

parameterα and amplitude ratio φ on peristaltic pumping and friction force are examined.  With the increase in 1λ , 

the pressure rise decreases first and then increases. The behaviour of viscosity parameterα  on the pressure rise is 

similar to that of 1λ . The pressure rise first increases and then decreases with increase in amplitude ratio. The 

friction force has an opposite character in comparison to the pressure rise. Furthermore, our results agree with the 

results of Shapiro et al. (1969) when  0α →  and 1 0λ → .  
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Fig. 2. The variation of pressure rise p∆ with time averaged volume 

flow rate Q  for different values of 1λ with  0.6φ =  and 0.1α =  

 
 

 
 

Fig. 3. The variation of pressure rise p∆ with time averaged volume 

flow rate Q  for different values of α  with  0.6φ =  and 1 0.3λ = . 
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Fig. 4. The variation of pressure rise p∆ with time averaged volume 

flow rate  Q   for different values of φ  with  0.1α =  and 1 0.3λ = . 

 

 
 

Fig. 5. The variation of friction force F with time averaged volume 

flow rate Q  for different values of 1λ with  0.6φ =  and 0.1α = . 
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Fig. 6. The variation of friction force F with time averaged volume 

flow rate Q  for different values of α  with  0.6φ =  and 1 0.3λ = . 

 
 
 

 
 

Fig. 7. The variation of friction force F with time averaged volume 

flow rate Q  for different values of φ  with  0.1α =  and 1 0.3λ = . 
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