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ABSTRACT 
 
We investigate the effect of thickness of the porous material on the peristaltic pumping when the 
tube wall is provided with non-erodible porous lining .The motion is caused by the movement of 
peristaltic waves on the flexible walls of the tube. The effects of yield stress and permeability on 
the pumping characteristics are studied in detail. 
 
Keywords: Peristaltic transport; Newtonian fluid; volume flow rate; pressure rise; pumping 
characteristics. 
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INTRODUCTION 

 
Peristaltic pumping is a form of fluid transport, generally from a region of lower to higher 
pressure, by means of a progressive wave of area contraction or expansion which propagates 
along the length of a tube-like structure.  Peristalsis occurs naturally as a means of pumping 
biofluids from one place of the body to another. This mechanism occurs in the gastrointestinal, 
urinary and reproductive tracts and many other glandular ducts in the living body.  The early 
reviews of Ram Chandra Rao and Usha [12], Jaffrin and Shapiro [4,5], Brasseur et al [2], 
Srivastava and Srivastava  [15], Provost and Schwarz [11], Shukla and  Gupta [13], Subba Reddy 
et al [16,17], Srinivas et al [8,14], Kavitha et al [6,7] and Vajravelu et al [19,20,21] deal with  the 
peristaltic transport  of viscous fluids  through tubes  and channels having impermeable flexible 
walls.  Recently Usha, Sreenadh and Arunachalam [18], Mishra [9], Misra [10] made detailed 
analysis on the peristaltic transport through uniform and non-uniform tubes with permeable 
walls.  Channabasappa et al [3] discussed the effect of porous lining on the walls of tubes and 
channels in ordered to have a better understanding of the increased mass flow rate due to 
permeable boundaries.  
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Motivated by these facts, it is interesting to study the fluid mechanical aspects of peristaltic 
pumping when the walls are provided with non-erodible porous lining.  This study can be applied 
to blood flow in small blood vessels and biofluid flow in the stomach.  
 
In this chapter peristaltic transport of a viscous fluid in a tube of radius ‘a’ is investigated.   The 
wall of the tube is lined with non-erodible porous material of thickness h1.  The free flow past the 
porous material is governed by Navier-Stokes equations and the flow in the permeable wall is 
described by Darcy’s law.   Applying Beavers and Joseph [1] slip condition at the permeable 
wall, the velocity field, the stream function, the volume flow rate, the pressure rise and the 
frictional force are determined.  The effect of thickness of porous lining on the pumping 
characteristics is discussed.  
 
Mathematical formulation and solution 
Consider the peristaltic transport of a viscous fluid in a tube of radius 'a’.  The wall of the tube is 
lined with porous material of permeability ‘k’.  The thickness of the porous lining is 1h  (see 
Figure 1).  The flow surrounded by the porous lining is governed by Nervier-Stokes equations 
and the flow in the porous layer is according to Darcy’s law. The flow is axisymmetric, 
cylindrical polar co-ordinate system ( )R, , ZΘ   is used.  The wall deformation due to the 

infinite train of peristaltic waves is represented by   
 

( ) ( )2
R H Z, t a bsin Z ct

π= = + −
λ

            (1) 

 
where b is the amplitude, λ  is the wavelength and c is the wave speed.  

 
Figure1 .Physical Model 

 
Equations of motion  
Under the assumption that the tube length is an  integral multiple  of the wavelength λ  and the  

pressure  difference across the ends of the tube is  a constant, the flow is inherently unsteady in 
the laboratory frame ( )R, , ZΘ   and becomes steady in the wave frame ( )r, , zθ  which  is 

moving with  velocity c  along the wave.  The transformation between these two frames is given 
by  

( ) ( )
2R

r R; ; z Z ct; p z P Z, t ;
2

= θ = Θ = − = ψ = Ψ −      (2)  

where  ψ  and Ψ  are stream functions in the wave and laboratory frames  respectively. We 

assume that the flow is inertia-free and the wavelength is infinite.   
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Using the non-dimensional quantities  
 

1r Q h z h w
r ; Q ; ; z ; h ; w

a c a a c
= = ∈= = = =

λ
   

2
B

B 2
1

a p w k 1 1
p ; w ; Da ; u ; w

c c a r z r r

∂ψ ∂ψ= = = = − =
λµ ∂ ∂

 

 
where  u  and w  are the radial and axial  velocities in the wave  frame.   Now the equations 

governing the motion becomes (dropping the bars).  
  

  
p 1 w

r
z r r r

∂ ∂ ∂ =  ∂ ∂ ∂ 
        (3) 

  
p

0
r

∂ =
∂

         (4) 

The dimensionless boundary conditions are  

 
w

0
r

∂ =
∂

    at    r 0=        (5) 

 Bw 1 w= − +  at r h= − ∈        (6) 

 ( )B

w
w Q

r Da

∂ α= −
∂

at  r h= − ∈     (7) 

where  
Da p

Q
z

∂= −
µ ∂

 

  1

2

µµ =
µ

 

  1µ = Viscosity in the free flow region  

  2µ = Viscosity in the porous flow region  

  α =  Slip parameter    

Solution  
Solving (3) and (4) subject to the boundary conditions (5) to (7), we obtain the velocity as  
 

( ) ( )22p Da Da
w r h 2 h 4 1

4

 
= − − ∈ + − ∈ − − α µ 

      (8) 

 where  
p

p
z

∂=
∂

 

Integrating the equation (8) and using the conditions 0ψ =  atr 0= , we get the stream function 
as  

22 2 2 2

2 2

ph r r 2 Da 4 Da r
1 1

4 4h 2 h h h h 2

  ∈ ∈    ψ = − − − − − −      α µ       
   (9)  

 The volume flux q through each cross-section in the wave frame is given by   
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h

0

q 2 wrdr
−∈

= ∫   

 
( )

( ) ( )
( )4 2

2

p h hDa 8Da
q 1 4

8 h 2h

 − ∈ − ∈
= − − + − 

− ∈ α µ − ∈  
    (10) 

The instantaneous volume flow rate ( )Q z, t   in the laboratory frame between the centre line and 

the wall is   

( ) ( )
( )h

0

Q Z, t 2 w 1 r dr
−∈

= +∫  

 = 
( )

( ) ( )

4

2

p h 4 Da 8Da
1

8 h h

 − ∈
− − + 

− ∈ α µ − ∈  
     (11) 

From equation (10) we have  

 
( )

( ) ( ) ( )

2

4

2

8 q hdp

dz 4 Da 8Da
h 1

h h

 − + − ∈
 =

 
−∈ − + 

 α − ∈ µ −∈ 

     (12) 

Averaging equation (11) over one period yields the time mean flow (time-averaged volume flow 

rate) Q  as  

 

  ( )
( )hT

0 0

2
Q w 1 r dr dt

T

−∈

= +∫ ∫  

  ( )
T

2

0

1
q h dt

T
= + − ∈∫  

 ( )
2

2
q 1

2

φ= + −∈ +         (13) 

 
The pumping characteristics 
Integrating the equation (12) with respect to z over one wavelength, we get the pressure rise 
(drop) over one cycle of the wave as 

 
( ) ( )

( ) ( ) ( )

2
2 2

1

0 4

2

8 Q 1 h
2

p dz
4 Da 8Da

h 1
h h

  φ− − − ∈ − + − ∈  
  ∆ =

 
− ∈ − + 

 α − ∈ µ − ∈ 

∫     (14) 
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The pressure rise required to produce zero average flow rate is denoted   by 0p∆ .  Hence  0p∆   is 

given by    

( ) ( )

( ) ( ) ( )

2
2 2

1

0

0 4

2

8 1 h
2

p dz
4 Da 8Da

h 1
h h

  φ− − − ∈ − + − ∈  
  ∆ =
 

− ∈ − + 
 α − ∈ µ − ∈ 

∫     (15) 

It is observed that Da 0→  and 0∈→ , equation (9), (10) and (14) reduce to the corresponding 
results of Jaffrin and Shapiro [14] for the peristaltic transport of a Newtonian fluid in a circular 
tube. 
 
The dimensionless frictional force F at the wall across one wavelength in the tube is given by  

 ( )
1

2

0

dp
F h dz

dz
 = − ∈ − 
 

∫    

( )
( ) ( )

( ) ( ) ( )

2
2 2

1
2

0 4

2

8 Q 1 h
2

h dz
4 Da 8Da

h 1
h h

   φ − − − ∈ − + − ∈  
   = − ∈  

  − ∈ − +   α − ∈ µ − ∈   

∫     (16)  

 
DISCUSSIONS AND RESULTS 

 
From equation (14), we have calculated the pressure difference as a function of Q   for different 
values of ∈  (thickness of the porous lining), when  0.6,φ =  Da 0.01,=  0.1,µ = 0.5α = , 

and is shown in Figure.2.   It is observed that the peristaltic wave passing over the tube wall 
pumps against more pressure rise ( )p∆  due to increase in the thickness of the porous lining.  

Further there is no difference in the flux due to variation in ∈ for free pumping case( )p 0∆ = .  

 
The  variation of pressure rise with time averaged flow rate is calculated from  equation (14)  for 
different Darcy numbers  and is shown in Figure.3, for fixed 0.6,φ =   0.01,∈=   0.1,µ =   

0.5α = ,  we observe that  the smaller the Darcy number, the greater the pressure rise against  

which  the pump works.  For a given p,∆  the flux  Q  depends on Da  and it decreases with the 

increasing Darcy number.  
 

From equation (14)  we have  calculated the pressure rise  as  a function of Q   for different 
values of    α   and is shown in Figure.4,  for fixed Da 0.01= ,  0.01,∈=  0.1,µ =   0.6φ = .   

We observe that with a given  Q,   the value of  p∆  decreases with an increase in the slip 

parameter' 'α .   For free pumping there is no difference in the flux due to an increment inα .   
 
The variation of pressure rise with time averaged flow rate is  calculated  from (11)  for different  
µ   ( ratios  of viscosities  in the  free flow  region and the porous  region) and is  shown in  
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Figure.5,  for fixed  Da 0.01,=  0.01,∈=   0.5,α =   0.6φ = ,  we observe that the larger  the 

value of µ ,  the  greater  the  pressure  rise against  which  the pump works.   For a given p,∆   

the flux Q    depends on µ   and it increases with increasingµ .   

 

From equation (14) we have calculated the pressure  difference as  a function of Q   for  different  
values of  amplitude  ratios  and  is  shown in Figure.6, for fixed Da 0.01,=   0.01,∈=   

0.5,α =   0.1µ = ,  for  given  amplitude  ratios   the pressure difference  p∆   decreases with 

increasing  Q .  For a given  p∆   the flux  Q  increases with increasing   amplitude ratioφ .  For 

free pumping the flux increases with increasing amplitude ratio. For a given Q the pressure 
difference increases with increasingφ .   
 

Finally from equation (16) we have calculated frictional force F as a function of Q    fixed∈, Da,  

,α  µ   and  φ  depicted in Figures.7 to 11.   It is observed that the frictional force F has the 

opposite behavior compared to pressure rise   ( )p∆ .   

 

 
Figure 2. The variation of   p∆  with Q  for different values of ∈ 

with 0.6,φ =   Da 0.01,=  0.1,µ =   0.5α =  
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Figure 3. The variation of   p∆  with Q  for different values of Da 

with 0.6,φ = 0.01,∈=  0.1,µ = 0.5α =  

 

 

Figure 4. The variation of   p∆  with Q  for different values of  α  

With Da 0.01= ,  0.01,∈=  0.1,µ =   0.6φ =  
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Figure 5. The variation of   p∆  with Q  for different values of  µ  

With Da 0.01,=  0.01,∈=   0.5,α =   0.6φ =  

 

Figure 6. The variation of   p∆  with Q  for different values of    φ  

With Da 0.01,=   0.01,∈=   0.5,α =   0.1µ =  
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Figure 7. The Variation of F with Q  for different values of  ∈∈∈∈ 

with 0.6,φ = Da 0.01,=  0.1,µ =   0.5α =  

 

 

Figure 8. The Variation of F with Q  for different values of  Da 

with 0.6,φ = 0.01,∈=  0.1,µ = 0.5α =  
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Figure 9. The Variation of F with Q  for different values of  α  

With Da 0.01= ,  0.01,∈=  0.1,µ =   0.6φ =  

 

 

Figure10. The variation of  F with Q  for different values of  µ  

With Da 0.01,=  0.01,∈=   0.5,α =   0.6φ =  
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Figure 11. The variation of  F with Q  for different values of    φ  

With Da 0.01,=   0.01,∈=   0.5,α =   0.1µ =  
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