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ABSTRACT 
 
The present paper deals with the study of the effect of slip on peristaltic flow of a Hyperbolic Tangent fluid in an 
inclined asymmetric channel under long wavelength and low Reynolds number assumptions. The non linear 
governing equations are solved using the regular perturbation method. Analysis has been carried out in the 
presence of velocity and slip conditions. Expressions for stream function, pressure gradient and pressure rise 
coefficients are derived. The effect of various parameters on the pumping phenomenon is discussed with the help of 
graphs. 
 
Keywords: Hyperbolic Tangent fluid, inclined asymmetric channel, peristaltic pumping. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

Peristalsis is an important mechanism for pumping biological and industrial fluids, which is generated by 
progressive wave of contraction or expansion moving on the wall of the tube. Due to peristaltic motion, the 
movement of organ walls can propel food, liquid and can also mix the contents within each organ. From industrial 
point of view the peristaltic flows play an important role in sanitary fluid transport, transport of corrosive fluids, a 
toxic liquid transport in the nuclear industry etc. After the first investigation of Latham [1], the initial mathematical 
models for the peristaltic flow in an infinitely long symmetric channel or tube have been investigated by Shapiro et 
al. [2].Many of the contributors to the area of peristaltic pumping have either followed Shapiro or Fung. Most of the 
studies on peristaltic flow deal with Newtonian fluids. The complex rheology of biological fluids has motivated 
investigations involving different non-Newtonian fluids. There are many engineering processes as well in which 
peristaltic pumps are used to handle a wide range of fluids particularly in chemical and pharmaceutical industries. It 
is also used in sanitary fluid transport, blood pumps in heart lung machine  and transport of corrosive fluids, where 
the contact of the fluid with the machinery parts is prohibited. Because most of the physiological fluids behave like a 
non-Newtonian fluid, therefore, some interesting studies dealing with the flows of on-Newtonian fluids are given in 
[3 – 13]. 
 
Nadeem and Akram [14] discussed peristaltic transport of a Hyperbolic Tangent fluid in an asymmetric channel. 
Mekheimer [15] studied the peristaltic transport of MHD flow in an inclined planar channel. Hayat et al. [8] 
extended the idea of Ealshahed et al. [16] for partial slip condition. Srinivas et al. [17] studied the Peristaltic 
transport in an asymmetric channel with heat transfer. .  
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Hence, several non-Newtonian models are being proposed by various researchers to investigate the flow behavior in 
physiological system of a living body. Among them Hyperbolic Tangent model is expected to explain most of the 
features of a physiological fluid.The governing equations of hyperbolic tangent fluid model for peristaltic fluid flow 
in a two dimensional inclined asymmetric channel has been modeled in the present paper. The governing equations 
are reduced using long wave length approximation and then the reduced problem has been solved by using regular 
perturbation method. The expression for pressure rise is computed numerically using Mathematica software. At the 
end, the graphical results are presented to discuss the physical behavior of various parameters of interest. 
 
HYPERBOLIC TANGENT FLUID MODEL 
Consider an incompressible fluid whose balance law of mass and linear momentum are given by 
 
divV=0                                                                                                                                                                          (1) 
 

fSdiv
dt

dV ρρ +=                                                                                                                                                 (2) 

 
where ρ is the density, V is the velocity vector, S is the Cauchy stress tensor, f represents the specific body force and 
d/dt represents the material time derivative. The constitutive equation for hyperbolic tangent fluid is given by  
 

τ+−= PIS                                                                                                                                       (3) 

                                                                                                                                          
                                                                                                                       (4) 

 
in which −PI is the spherical part of the stress due to constraint of incompressibility, τ is the extra stress tensor, �∞is 
the infinite shear rate viscosity, ��is the zero shear rate viscosity, Γ  is the time constant, n is the power law index, 

andγ&  is defined as 

 

Π== ∑∑ 2

1

2

1
ji

i j
ij γγγ &&&

                                                                                                                                 (5) 

( )( ) .
2

1 2TgradVgradVtrac +=Π  

Here Π is the second invariant strain tensor. We consider constitution (4), the case for which �∞= 0 and Γ γ& < 1. 

The component of extra stress tensor, therefore, can be written as  
 

( )[ ] ( )[ ]γγηγγητ &&&&
nn

1100 −Γ+−=Γ−=
  

 

    
= ( )[ ] .110 γγη && −Γ+− n

                                                                                                                                        (6) 
 
MATHEMATICAL FORMULATION 
We consider an incompressible Hyperbolic Tangent fluid in an inclined asymmetric channel of width d1 + d2. The 
angle of inclination is α . A sinusoidal wave propagating with constant speed c on the channel walls induces the 
flow. The geometry of the wall surface is defined as 
 

( )




 −+== tcXadHY
λ
π2

cos111                                                                                                                         (7) 

 

( ) ( )[ ] ,tanh0 γγηηητ &&
nΓ++−= ∞∞
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( ) 




 +−−−== φ
λ
π

tcXbdHY
2

cos122    

where 1a  and 1b  are the amplitudes of the waves, λ  is the wave length, 21 dd +  is the width of the channel, c is 

the velocity of propagation, t  is the time, and X  is the direction of wave propagation.  The phase difference φ  

varies in the range πφ ≤≤0  in which φ =0 corresponds to a symmetric channel with waves out of phase and φ =

π , the waves are in phase, further, 1a , 1b , 1d , 2d , and φ  satisfies the condition 

 

cos2 11
2

1
2

1 baba ++ φ ≤ ( )2

21 dd + . 

 
 

Fig.1. Physical Model  
 
The equations governing the flow are given by 
 

0=
∂
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,                                                                 (8) 
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We introduce a wave frame ( )yx,  moving with velocity c away from the fixed frame ( )YX,  by the 

transformation 
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,,, cUuYytcXx −==−=  ( ) ( ).,, tXPxpandVv ==                                                                (11)           

                                                                                    
 We use the following non-dimensional quantities 
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t
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= ,
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1 d
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c
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Using the above non-dimensional quantities in Eqs. (8) – (10) can be written as(after dropping bars)  
 

x
v
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u

∂
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Ψ∂= ,                                                                                                          (13)                
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Here δ is wave number, Re is Reynolds number and We is Wiessenberg  number. 
 
Under the assumptions of long wavelength δ 1≤  and low Reynolds number, and neglecting the terms of order δ and 
higher, Eqs. (14) and (15) take the form 
 

αη sin11
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0=
∂
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y
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                                                                                     (17) 

Elimination of pressure from Eq.(16) and Eq.(17) yield 
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The dimensionless mean flow Θ is defined as 
 
Θ = F + 1 + d                                                                                                     (19) 
 
In which 
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)(
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xh

xhxhdy
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                                                                     (20) 
where       
 

xaxh π2cos1)(1 +=   and ( )φπ +−−= xbdxh 2cos)(2                                                                   (21)     
                             
The boundary conditions in terms of stream function Ψ are defined as: 
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                                                                 (22) 

where F is the flux, β = =
1d

k

α
 

α
Da

 is the permeability parameter including slip, Da is the Darcy number , α  is 

the slip parameter and k is the permeability.  
 
NUMERICAL SOLUTION 
We used the perturbation technique to find the numerical solution of Eq.(18), which is non linear. 
 
we expand Ψ , P and  F as 
 
Ψ =  Ψ� + �� Ψ� +  	(���),                                                                (23) 
 

 =  
� +  �� 
� +  	(���),                                                        (24) 
 
� =  �� +  �� �� +  	(���),                                                                   (25) 
 
By using  Eqs. (23) – (25), the problem is resolved into zeoth and first order systems as mentioned below. 
 
Zeroth order system (System of order ���): 

 

 

0
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First order system (System of order ���): 
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Zeroth order solution

 

On solving Eqs (26) with the boundary conditions given by Eqs (28), we get the solution to the zeroth order problem 
as
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The axial pressure gradient at zeroth order is 
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For one wavelength the integration of  (33) gives 
 

∫ ∂
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0
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Substituting the zeroth-order solution given by Eq.(32) into (29),the solution of the resulting first order problem  
satisfying the boundary conditions take the following form: 
 

4
1

4

y∂
Ψ∂

=
1

2 2
1 −n

n
A

                                                               (35)
 

4
87

2

6

3

51 !2!3
AyAyA

y
A

y
A ++++=Ψ

                                                          (36)                    
 

 
where  

( )( )
( ) ( ) ,

6

12
2

21
3

21

21121
5

hhhh

hhAF
A

−+−
−−−=

β
( )

( ) ( ) ,
6

6
2

21
3

21

13211
6

hhhh

AhhF
A

−+−
++=

β
( )( )

( ) ( ) ,
6

6
2

21
3

21

1421211
7

hhhh

AhhhhF
A

−+−
+−−=

β
β

 

( )[ ]
( ) ( ) ,

6

63

2 2
21

3
21

152112
2
1

3
111

8
hhhh

AhhhhhhFF
A

−+−
+−−+−+=

β
β ( ) ( )[ ]

( ) ,
2

64

21

2
2

2
1

3
2

3
1

11 β
β

+−
++−=

hh

hhhhA
A  

( )( )[ ] ( ),2
2

64 21
112

1
3
121

2
2

2
112 ββ −−−−−++= hh

A
hhhhhhAA

( ) ( ) ( ),66 21
2

2111
2
2

2
11213 β+−−−−−= hhhhAhhAA  

( )( ) ( ) ( )( )
( ) ( ) ,

6

6626

21
2

21

2121
2
1113112112

14 β
ββββ

+−−
+−−−+−+−−=

hhhh

hhhhAhhAhhhhA
A  

( ) ( ) ( ),62 21
2

21
4
1114

3
1211215 β+−−−−−−= hhhhAhhAhhhAA

 
The axial pressure gradient at first order is 
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For one wavelength, the integration of Eq.(37) yields 
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Summarizing the perturbation results for small parameter We, the expression for stream functions and pressure 
gradient can be written as: 
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The non- dimensional pressure rise over one wavelength for the velocity is
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The frictional forces are given by  
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EXACT NUMERICAL SOLUTION FOR THE LARGE WEISSENBERG NUMBER REGIME 

Let us present the solution to Eq.(18) in the large (We > 0) regime 
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Physically , we expect yu ∂∂ /  to change sign and for 2
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In order to get real valued solutions, integrating Eq. (43) twice gives 
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The explicit formulas for the kj’s ( j= 1, 2, 3, 4) may be obtained from the four boundary conditions Eq. (22) and we 

find k3 (x) and k4 (x) explicity in terms of k1 (x) and k2 (x): 

( ) ( )
( )( ) ( ) ( )[ ] ( ) ( )[ ]

( )xKnWe

KhKnWenKhKnWen

nWe

hhn

hh

F
xK

2
1

23

2

5

211
22

5

221
2

21

21
3 120

4141

4

1 ++−−++−
+

+−
−

−
=

              

(49)

 

( ) ( )( ) ( )( ) ( ) ( )[ ] ( ) ( )[ ]
( )
















++−−++−

+
+−

++−=
xKnWe

KhKnWenKhKnWen

nWe

hhn
hhxKxK

2
1

23

2

5

211
22

5

221
22

2
2
1

2134
120

4141

4

1

2

1

                  (50) 

The relations for k1 (x) and k2 (x) are given in implicit form by substituting the above into 
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  (51)     
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                (52) 
 

And these may be solved numerically for the kj’s ( j= 1, 2, 3, 4) given specific h1 (x), h2 (x) and F . Thus, we have an 

exact relation () for the stream function Ψ, and we may determine y, independent coefficients kj’s ( j= 1, 2, 3, 4) 

numerically from the relations . the velocity u is then given by 
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The axial pressure gradient is given by                 

,0)(1 <=
∂
∂

xk
x

P

                                                                      (54) 

 

The non-dimensional pressure rise over one wavelength is given by 

∫ <=∆
1

0

1 ,0)( dxxkPλ

                                                                                                                                           (55) 
 

 
Fig.2. Variation of λP∆  with Θ for different values of We 

 

Fig.3. Variation of λP∆  with Θ for different values ofφ  
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Fig.4. Variation of λP∆  with Θ for different values of a 

 

Fig.5. Variation of λP∆ with Θ for different values of b 
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Fig.6. Variation of λP∆  with Θ for different values of d  

 

Fig.7. Variation of λP∆  with Θ for different values of n 

 

Fig.8. Variation of λP∆  with Θ for different values of β 
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(a)                                                                                               (b) 

 

 
( c) 

 
Fig. 9. Stream lines for three different values of Q. (a) for Q = 0.25, (b) for Q = 0.27, (c) for Q = 0.29
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(a)                                                                                               (b) 

 

 
( c) 

 
Fig. 10. Stream lines for three different values of We. (a) for We = 0.04, (b) for    We = 0.06, (c) for We = 0.08
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(a)                                                                                               (b) 

 

 
(c) 

 
Fig. 11. Stream lines for three different values of a. (a) for a = 0.42, (b) for a = 0.46, (c) for a = 0.48 
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(a)                                                                                               (b) 

 

 
 

(c ) 
 

Fig. 12. Stream lines for three different values of b. (a) for b = 0.52, (b) for b = 0.54, (c) for b = 0.56 
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(a)                                                                                               (b) 
 

 
  

(c) 
 

Fig. 13. Stream lines for three different values of β. (a) for β = 0.04, (b) for β = 0.06, (c) for β = 0.08 
 

RESULTS AND DISCUSSION 
 
The effect of Weissenberg parameter on the on the pressure rise is observed from Fig.2. It is observed that the 
pressure rise decreases with increasing values of Weisssenberg number in the pumping region ( )0>∆ λP  and in the 

co- pumping region( )0<∆ λP . 

 
From the Fig.3, the effect of amplitude ratio φ on pumping phenomena can studied. It is observed that for a given 
mean flow rate, the pressure rise decreases with an increases in φ. 
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From Figs. 4 and 5, the effect of wave amplitudes a and b on the pumping phenomena is studied. For a given Θ, the 
pressure rise decreases with the increase in a and b in all the pumping regions( )0,0,0 <∆=∆>∆ λλλ PPP . 

 
From Fig.6, the effect of d as pumping phenomena is observed. It is noticed the pressure rise decreases with the 
increase in d. 
 
The effect of permeability parameter on pressure rise is observed from Fig.8. For a fixed Θ, the pressure rise 
decreases with increasing permeability parameter. 
 
TRAPPING PHENOMENA 
A very interesting phenomenon in the peristaltic transport is trapping. In the wave frame, streamlines under certain 
circumstances swell to trap a bolus which travels as an inlet with the wave speed. Figures 9 – 13 illustrate the stream 
lines for different values of Q, We, a, b and β. The stream lines for different values of volume flow rate Q are shown 
in Figure 9. It is found that with the increase in volume flow rate Q, the size and the number of trapping bolus 
increases. In Figure 10 the stream lines are prepared for different value of Weissenberg number We. It is depicted 
that the size of the trapped bolus increases with the increase in We. It is observed from Figure 11 that the size and 
the number of the trapping bolus increases with the increases in amplitude of the wave a. It is observed from Figure 
12 that the size and the number of the trapping bolus increases with the increases in amplitude of the wave b. It is 
observed from Figure 13 that the size and the number of the trapping bolus increases with the increases in amplitude 
of the wave β. 
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