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ABSTRACT

The thermosolutal convection in a compressible couple-stress fluid layer heated and soluted from below through
porous medium is considered in the presence of uniform rotation. Following the linearized stability theory and
normal mode analysis, the dispersion relation is obtained. For stationary convection, the compressibility, stable
solute gradient and rotation have stabilizing effect whereas medium permeability and couple-stress parameter have
stabilizing as well as destabilizing effects on the system. The stable solute gradient and rotation introduce
oscillatory modes in the system, which were non-existent in their absence. The sufficient conditions for non-
existence of overstability are also obtained.
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INTRODUCTION

The study of a layer of fluid heated from belowpiorous media is motivated both theoretically andtdyractical
applications in engineering. Among the applicatiomengineering discipline one can find the foodgass industry,
chemical process industry, solidification and déungal casting of metals. The development of geotta power
resources has increased general interest in theegies of convection in porous medium. When w@dflpermeates
an isotropic and homogeneous porous mediungribes effect is represented by the Darcy’s lawréat number
of applications in geophysics may be found in theks by Phillips [1], Ingham and Pop [2], and Nieldd Bejan
[3].

The theoretical and experimental results on theroalvection in a fluid layer, in the absence anespnce of
rotation, have been given by Chandrasekhar [4]rfibeolutal convection concerns flow that can aniken a layer
of fluid with a dissolved solute (such as salthéated from below. The problem of the onset ofrttainstability in
the presence of a solute gradient is of great itapoe because of its applications to atmosphensiph and
astrophysics, especially in the case of the ionespland the outer layer of the atmosphere. Thentbeslutal
convection problems also arise in oceanographyndiogy and engineering. Examples of particular riege are
provided by ponds built to trap solar heat [Tabad Matz [5]] and some Antarctic lakes [Shirtclifg]]. Veronis'
[7] has investigated the problem of thermohalineveztion in a layer of fluid heated from below aubjected to a
stable salinity gradient. The physics is quite Emin the stellar case in that helium acts liké saraising the
density and in diffusing more slowly than heat. Tduaditions under which convective motions are ingrtt in
stellar atmospheres are usually far removed fronsiceration of single component fluid and rigid bdaries, and
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therefore it is desirable to consider a fluid act@adoy a solute gradient and free boundaries. Stnamd Fedorav
[8] and Linden [9] have remarked that the lengthles characteristics of double-diffusive convectawgers in the
ocean may be sufficiently large that the Earthtation might be important in the formation. Moregvie rotation
of the Earth distorts the boundaries of a hexageonakection cell in a fluid through a porous mediamd the
distortion plays an important role in the extragtiof energy in the geothermal regions. Brakke [@&}lained a
double-diffusive instability that occurs when awimn of a slowly diffusing protein is layered ovardenser
solution of more rapidly diffusing sucrose. Nasomale[11] found that this instability, which islééerious to certain
biochemical separation, can be suppressed by ontdti the ultracentrifuge. The use of the Boussgines
approximation has been made throughout, whichstat the variations of density in the equatiohsotion can
safely be ignored everywhere except in its assodiatith the external force. The approximation islMustified in
the case of incompressible fluids.

When the fluids are compressible, the equationgiging the system become quite complicated. To lffiyrthem,
Boussinesq tried to justify the approximation fangressible fluids when the density variationseapsincipally
from thermal effects. Spiegel and Veronis' [12] dasimplified the set of equations governing thewflof
compressible fluids under the following assumptions

(a) the depth of the fluid layer is much less thta® scale height, as defined by them; and (b)ltieuations in
temperature, density and pressure, introducedalo®tion, do not exceed their total static variadio

Under the above approximations, the flow equatemesthe same as those for incompressible fluidsegixhat the
static temperature gradient is replaced by its &xo&er the adiabatic one angdi€replaced by £ Sharma [13] has
considered the effect of rotation and magnetidfi@h the thermal instability in compressible fluid$ie fluid has
been considered to be Newtonian in all the abaveies. The effect of magnetic field and rotationtie@rmosolutal
convection in Walters B’ elastico-viscous fluid Haesen considered by Kango and Rana [14]. Saravaak [d.5]
have considered the heat and mass transfer omgteady viscoelastic second order Rivlin-Erickdaidfpast an
impulsive started infinite vertical plate in theepence of a foreign mass and constant mass flualéng into
account of viscous dissipative heat at the plateeuthe influence of a uniform transverse magrfegid.

With the growing importance of non-Newtonian fluicsmodern technology and industries, the invetiiga on
such fluids are desirable. Stokes [16] formulatexltheory of couple-stress fluid. One of the agians of couple-
stress fluid is its use to the study of mechanisimsibrications of synovial joints, which has beaithe object of
scientific research. A human joint is a dynamic#tigded bearing which has articular cartilage ashibaring and
synovial fluid as the lubricant. When a fluid filis generated, squeeze-film action is capable o¥igimy
considerable protection to the cartilage surfadee $houlder, ankle, knee and hip joints are theddearing
synovial joints of the human body and these jolse a low friction coefficient and negligible wedlormally
synovial fluid is a viscous, non-Newtonian fluiddais clear or yellowish. According to the theoryStbkes [16],
couple-stress appears in noticeable magnituddsigsfwith very large molecules. Since the longicheyaluronic
acid molecules are found as additives in synoviatl$, Walicki and Walicka [17] modeled the syndwviaid as a
couple-stress fluid. The synovial fluid is the matuubricant of joints of the vertebrates. Theailed description of
the joint lubrication has very important practicaplications. Practically, all diseases of jointe @aused by or
connected with malfunction of the lubrication. Téfficiency of the physiological joint lubricatiors icaused by
several mechanisms. The synovial fluid is duedadntent of the hyaluronic acid, a fluid of higeoosity, near to
gel. Goel et al. [18] have studied the hydromagnstability of an unbounded couple-stress binamdfimixture
under rotation with vertical temperature and coiregion gradients. Sharma et al. [19] have coneder couple-
stress fluid with suspended particles heated fretavi. In another study, Sunil et al. [20] have ¢desed a couple-
stress fluid heated from below in a porous medinnhé presence of a magnetic field and rotatiorm&wuet al. [21]
have considered the thermal instability of layecodfiple-stress fluid acted on by a uniform rotatiamd have found
that for stationary convection the rotation hagabiizing effect whereas couple-stress has babilsting and
destabilizing effects. Thermosolutal convectioraicouple-stress fluid in presence of magnetic fagid rotation,
separately, has been investigated by Kumar andhS{fgg], [23]). Singh and Kumar [24] have considktbe
problem of thermal instability of compressible, atically conducting couple-stress fluid in the sgace of a
uniform magnetic field. The electrically conductifigw of couple-stress fluid in a vertical porows/ér has been
investigated by Sreenadh et al. [25].
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Keeping in mind the importance in geophysics, sciences, ground water hydrology, astrophysics \artbus
applications mentioned above, the thermosolutal/ection in compressible couple-stress fluid in pnesence of
uniform rotation through porous medium has beersictamned in the present paper.

2. Formulation of the problem and perturbation equations
Here we consider an infinite, horizontal comprdssimuple-stress fluid layer of thickness d in agus medium,
heated and soluted from below so that the tempmstdensities and solute concentrations at thehaturface z =

Oare T, P, and G, and at the upper surface z = d agepf and G, respectively, z-axis being taken as vertical, and

d%ZD and a uniform solute gradieft (2 ‘d%J) are maintained.

This layer is acted on by a uniform vertical rasatiQ (O, 0, Q) and gravity fieldé (0,0,—-9)

that a uniform temperature gradi&]‘é=

Assume thatX  is the constant space distribution ¥f , X, is the variation inX in the absence of motion and

X'(x, Y, Z, t) is the fluctuations inX due to the motion of the fluid. Spiegel and Verbfii&] defined X as any
of the state variables (pressure (p), densi@) ©r temperature (T)) and expressed these in time fo

X(x,y,z,t)= X, + X,(2)+ X'(x,y, 2, 1). (1)

The initial state is, therefore, a state in whible fluid velocity, temperature, solute concentmatipressure and
density at any point in the fluid are given by

=0T =T(2,C=C(2), p=p(2,0=p(2), )

respectively, where

T(2)=T,-L z

C(Z)=Co—ﬂ'zy

p(2) = py, - gi(pm + 0p)dz,

P(2) = pyll=ay(T ~T,) +a,(C=Cp)+ Ky (p=py)] .
= la—p = = - la_p =’

and Q= (paij( a,say), an [pacjm( a',say),

Km :(ia_pJ .
pap).

Let &p, Jp, 6, y and q(u, v, W) denote, respectively, the perturbations in prespudensity0 , temperature T,
solute concentration C and fluid velocity (0, O, Dhe linearized perturbation equations, relevarthé problem, are

1oq 1 ) N1 4 L) 2 A

——=-—0%-G§l@d-a'y)-—|v-—0% |[g+=GxQ), 4
s o=, D= glae-ay) kl(v o jq ~(a~a) @
0.q=0, (5)
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06 g 5
E—=| f-— |w+xk[°6, 6
5 (,3 CpJ (6)
E’g—f=,[>"w+/(’ 0% . )

Here Ci is the adiabatic gradiemz(= % j, ,u', K,K', &and k1 stand for kinematic viscosity, couple-
m

P
stress viscosity, thermal diffusivity, solute d#fuity, medium porosity and medium permeabilityspectively.

- _ ) ACs
E=c+(1 5)( 5.C

j is a constant andE’ is a constant analogous to E but correspondingplote
0

rather heat; 0., Cq and P,, C stand for density and heat capacity of solid (psrmatrix) material and fluid,
respectively.

The equation of state is

p=pyll-a(T-T,)+a'(C-C,, ®

wherea is the coefficient of thermal expansion and analogous solute coefficient. The suffix zero refer the
values at the reference level z = 0. The changdeimsity dp caused mainly by the perturbatioBsand ) in

temperature and concentration, is given by
dp=-p,(ab-a'y). ©)

In writing Eq. (4), use has been made of Eq. (9).
Equations (4)-(7) give

19 1 g 2] o 32 92 ,\ 2047

= |y-Lp? || DPw=gl =+ |(@F-ay)- =22 0
£ ot kl[v Pm ﬂ " g(ax2 ay2( Z £ 0z 0
190 1 7 2Q ow

i R —_|:| =)

£ ot kl(v Pm HZ £ 0z e
Ei—mzjez(ﬁ—i}w

ot ; 12
E'— K’DZ)y:B'W’

(13)

ov du
Here { = — —— stands for the z-component of vorticity.
ox oy
Consider the case in which both the boundariedraeeand the temperatures, concentrations at thedavies are
kept constant. Then the boundary conditions apatepto the problem are
0°w
W=F=O,H=O,y=0atz=0andz=d. (14)
Z
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The constitutive equations for the couple-stragisl fare

1( ov, 0v,

r, = Qu-2u 0%e; g == —+—"| 15
i = Qu—24 U7)g ] 2(0)(] GXJ (15)
The conditions on a free surface are the vanistingngential stressasg, andty,, which yield
Ty, =(u—ﬂ’D2)(a—“+a—WJ=0, (16)

0z 0X

ov  ow
T =(u-u 0 =+=2|=0. 17
R (X -

Since w vanishes for all x and y on the boundingese, it follows from (16) and (17) that

(,u—,u'DZ)g—lZJ=O, (,u—,u’Dz)%= ) (18)

From the equation of continuity (5) differentiateih respect to z, we conclude that

(02 9% 92 \|otw _
HoH 6x2+6y2+622 07° =0 (19

which on using (12) and (16) implies that

0*w
0z*

=0atz=0and z=d. (20)

3. Dispersion relation
We now analyze the disturbances into normal moakesjming that the perturbation quantities are @fdhm

W,8,y,¢]=W(@),0@),T (2, Z (2)] explikx+ik,y +nt), 1)

where k , k, are the wave numbers along x- and y- directiospeetively, k(= 1/kf + kj ) is the resultant wave
number and n is the growth rate which is, in gdnaraomplex constant.

Using expression (21), Eqgs. (12) — (15), in nonatisional form, become

F+%{1— F(D? —az)}}(D2 —aﬁlh%zdz(a o-a F)+(29d3JDZ =0, 22

e P Ev

o 1 _(2Qd

[Tﬁ{l_ Fo?-a )}}z (22 Jow, @3
a? - __ 4% 9 5

e -Epolp = & oo e
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(0?-a? - Eqo)r = —(ﬁ:!z )W (25)

2

, X=x*d,y=y*d, z=z*d and D=i. Here p1:K is the
% dz* K

n
where we have pua =kd, g =

vV k '
Prandtl number,q =— is the Schmidt numberB, :d—lz is the dimensionless permeability, F :'Lélz is
K

P,V

dimensionless couple-stress parameter and &= is the dimensionless compressibility parameter. dhall

g

suppress the star (*) for convenience hereafter.

Eliminating ©, ' and Z between Egs. (22)-(25), we obtain
2
[Lg{l_ F(o* _az)}} (0® - a2)D? - a - Ep,o D ~a? - Eqolw + &2°
& R

o 1

2 b(p e or - e+, 07 - oo e - Eaclow
|

- RaZ(G—_lj £+i{1_|:([)2 ~a’}|(p? -a -Eqow, (26)
G e P
4 I 4 244
where R :m is the Rayleigh numbelS = m is the solute Rayleigh number arfd = —492 Ci is
VK VK EV

the modified Taylor number.
The boundary conditions (14), (20), in non-dimenaldorm, using expression (21) transform to
W=DW=0, ©=0,f=0DZ =0 at z=0and z=1. 27)

Using the boundary conditions (27), it can be showmith the help of Egs. (22)-(25) that all the everder
derivatives of W must vanish at z = 0 and z =1. ¢¢etine proper solution of W characterizing the Istweode is

W =W,sinrz, (28)

whereW, is a constant. Substituting the proper solutid) (& Eq. (26), we obtain the dispersion relation

G (1+x 1+x+Ep17;‘2 EZQ-FI}’{H#FE?J (1+x+ Eplgzj
RIZ(G_:J X +Sl(1+x+ E'qaj
n.2
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(1+X+Ep1:2j
EN ) 92
0‘ ——
X —— +—| 1+ T F1+ X
e’ P
R S T a’
WhereRle, =F,TA1=H—/Z,P=7T2P| andx=?.

4. The stationary convection
When the instability sets in as stationary conweettihe marginal state will be characterized dsy= 0. Putting
o =0, the dispersion relation (29) reduces to

(1+ x)? (1+x)P

xP

Rl = (i (30)

1+ m°F1+x [+S +T
G-1 27 Ta

N

X 1+ °F1+ X

Equation (30) expresses the modified Rayleigh nur‘rﬁﬂleas a function of the dimensionless wave numbendk a
the parameter<$s, P, F, TAl and §,. For fixedP, F’TA1 and S, let G (accounting for the compressibility
effects) also be kept fixed.

Then we find that

R = (Gi—lch (31)

where Kand R. denote respectively the critical Rayleigh numbéns the presence and absence of

compressibility.G > 1 is relevant here. The cas& <1 and G =1 correspond to negative and infinite values of
the critical Rayleigh numbers in the presence ahm@ssibility, which are not relevant in the prassindy. The
effect of compressibility is thus to postpone theet of thermosolutal convection.

Equation (30) yield

d_Rlz(_G j (32)
ds, \G-1
dr :( G j P 3
dT, \G-1 .

X 1+ m°F1+ X
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(L+x) 1+ 72F1+ x
T
de:( G ] A _Lex| 3
P \G-1 X ) P
1+ °F1+ X
drR _( G P +x)*| (1+X) T,
dF (G-1 X pz 2 | (35)
1+n2Fm

Equations (32) and (33) imply the stabilizing effetstable solute gradient and rotation on theesys

dR,

In the absence of rotatio(TA{ = 0), equation (34) gives that(F is negative which means that permeability of

the medium has a destabilizing effect for a nomating system. However, for a rotating system, thediom
2

(1+x) 1+ 72F1+x

permeability has still a destabilizing effect'I'fAi( but has a stabilizing effect also if

PZ

2

(L+x) 1+ 72F1+x

TA1> P2

It is evident from Eg. (35) that couple-stress pegter has stabilizing or destabilizing effect adang as
2

(1+x) 1+ 72F1+ X

T,(or) o7
5. Someimportant theorems

Theorem 1: The modes may be oscillatory or non-oscillatorgamtrast to the case of no rotation and in absehce
stable solute gradient where modes are non-osgilafor G > 1.

Proof: Multiplying Eq. (22) by W*, the complex conjugaté @/, integrating over the range of z and using Eqs.
(23)-(25) together with boundary conditions (27§ @btain

o 1 F ga' k'a , (o 1 F
Sl 41, +=2 " (I +Elqo* 1) -d? S+ = |1, ——d?
( PJI F>| 2 v 1] (5 q 6) (8 F>|]7 F>| 8
1 \C.aka*
= (G——ljpT(l s +Epo*ly), 36)
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where

(DW | + a?w|*)dz,

I 1

UDZW\2 +2a?|DW |” + a4|\/v|2jdz,

(Dol +a?e|’)dz,

w
I

|®|2dz,

(or|* +a?r|*)dz,

N

_
o
N

=3
]

|Z|2 dz,

Ot— 1k Ot Ok O O Ok Ot O+—r

@

(o2 + 2%z e,
(37)

ando* is the complex conjugate of The integrals;l— Ig are all positive definite.
Puttingo =g, + ig; in (36) and equating real and imaginary partspitain

2 2 C aka’
g, |_1+90’K'a E'qle_d_|7_i - Ep.!,
£ VB & G-1 v
12 2 C O’Ka2
SO LR AN L O L P M o A
R R v R R G-l
and
For2 2 C aka’
o, L _gaxa E' |6_d_|7+ L Ep,l, |=0. (39)
£ vB' G-1 v

Equation (39) vields tha;, =0o0r g, # 0, which means thanhodes may be non-oscillatory or oscillatory. In
the absence of rotation and stable solute gradient(39) reduces to

C.aka’
o, (I—l R Ep,| 4} =0, (40)

e G-1
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and the terms in brackets are positive definitew@e> 1. Thus; = 0, which means that oscillatory modes are not
allowed and therinciple of exchange of stabilities is satisfied for a porous medium in compressible, couple-
stress fluid in the absence of stable solute gradient and rotation. This result is true for porous medium and
compressible, couple-stress fluid as well as fon-porous medium and incompressible Newtonian fluid
[Chandrasekhar [4]]. The presence of each, thdestsdbute gradient and rotation, brings oscillatorgdes (a;
may not be zero) which were non-existent in thbgemce. Equation (38) simply tells us that therg beastability

or instability in the presence of rotation and Badplute gradient for a porous medium in compbdsstouple-
stress fluid which is also true in their absence.

PrC

m

Theorem 2: {5”(1 E),OSCS} {€+(1 E)'OSCS}K’ and « < H£ [5+(1 g)psC }
PnC’ 0.C K,

m
are the sufficient conditions for the nornseance of overstability.

m

. g _. . . : . .
Proof: For overstability, we putn—2 =10, whereg; is real, in Eq. (29); equating real and imaginpayts and

eliminating R between them, we obtain

Acl+AC +A, =0, (41)

where
AZ _ bqZEIZ(E-I_Ep1j+q2p1E!2b27T2F
e \le P 2P ’
3 b4 b3 , qubS qZpEEIZb
Al—{?+gzp(1+n2Fb)(Epl—Eq)+ - (1+n2Fb)+—1Ps (L+ 2Fb)
qE’Zb2 Sb o EpTF 1) pQ*EE”
1+ 7°Fb b-1)(Ep, - E'q)+T, {bg?E’?| = — = |+ A =[]
SP(+ )g()(pl 'q)+ T, 1bg S 5
3 4
A, = bPEpl(1+n2Fb) ;33(1+n2|=b) Sl?(b—l)(1+n2Fb)2(Epl—E’q)
2
+TAi{b Epl +b3(Eplng —%]} =0, 42)

where we have writteg, = g7 and b=1+x.
Sinceo; is real for overstability, both the values o{(: 012) are positive. Equation (41) is quadraticGp and
does not involve any of its roots to be positive, i

Ep, > E'qand Ep, > # (43)

which imply that

{s +(1- g)'os—cs}/( < [5 +(1- g)ps—cs}/(' and k <+ {s +(1- 5)'03—%} . (44)
PuC' PnC Pk, C

where p,,C, psCs; p,,C', psCg denote respectively the heat capacities of flamid matrix and analogous
solute capacities of fluid, solid matrix.

m m
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Thus {5 +(1- s)'os—cs}/( < {5 +(1- s)'os—cs}/(’ and k < ﬁ[e +(1- s)ps—cs} ,are  the
p.C' p.C o ¢ p.C

m m m 1 m
sufficient conditions for the non-existence of tability, the violation of which does not neceigamply the

occurrence of overstability.
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