

Pelagia Research Library

European Journal of Experimental Biology, 2013, 3(2):495-498



# Effect of cow dung and variety on the growth and yield of Okra (Abelmoschus esculentus (L.)

Gudugi I.A.S.

Department of Crop Production, Ibrahim Badamsi Babangida University, Lapai

# ABSTRACT

A trial to investigate the effect of cow dung and inorganic fertilizer on the growth and yield of Okra (Abelmoschus esculentus) was conducted in the Teaching and Research Farm of Ibrahim Badamsi Babangida University during the 2011 and 2012 cropping seasons. The trial was a factorial experiment consisting of two varieties of Okra (NHe47-4 and LD88-1) and four levels of cow dung (0, 5 10 and 15 tha<sup>-1</sup>). The inorganic fertilizer was applied at rate of 200kg ha<sup>-1</sup>. The experiment was fitted into randomized complete block design (RCBD). Cow dung applied at 20 t ha<sup>-1</sup> and inorganic fertilizer significantly produced taller plants, more leaves and more fruits. Non application of fertilizer significantly delayed flowering. In 2011, cow dung at 20 t ha-1 and inorganic fertilizer statistically gave similar fruit weight which was significantly higher than other treatments. The highest fruit weight in 2012 was obtained with cow dung at 20 t ha-1. The varietal difference was not significant in most of the parameters measured

Key words: cow dung, inorganic fertilizer and variety

# INTRODUCTION

One of the most important vegetable consumes widely in Nigeria and grown widely in the country is okra. It is also widely cultivated and can be found in almost every market all over Africa [1]. Okra is mostly eaten in cooked or processed form and was reported to contained protein oil, calcium, iron magnesium and phosphorus [2]. Decline in soil nutrient is one of the major constraints of crop production in Nigeria. In the past years, inorganic fertilizer was advocated for crop production to ameliorate low inherent fertility of soils in the tropics [3]. However, high cost and scarcity of inorganic fertilizer as well as possible cause of soil acidity and nutrient imbalance pose a constraint to use of inorganic fertilizer [4, 5]. Nutrient imbalance and soil physical degradation hinder sustainable use of inorganic fertilizers in the tropics [6]. In order to sustain soil fertility over a long period of time the use of organic manure is been advocated. This is because the nutrients contained in organic manures are released more slowly and are stored for a longer time in the soil, thereby ensuring a long residual effect [7]. [8], also reported that manures provide a source of all necessary macro- and micro-nutrients in available forms, thereby improving the physical and biological properties of the soill. There are different types of organic manure including cow dung, compost, green and farm yard manure etc.

# MATERIALS AND METHODS

The experiment was conducted during the 2011 and 2012 cropping seasons at the Teaching and Research Farm of Ibrahim Badamasi Babangida University, Lapai, latitude  $9^{0}$ 2N and longitude  $6^{0}$ 3E, in the Southern Guinea savanna

agroecological zone of Nigeria. The pH ( $H_2O$ ) of the soil was 5.3 (pH meter), 2.4 g kg organic carbon(Walkley and Black), 0.40 g kg total N (Kjeldahl), 12 mg kg P(bray PT) and 0.35 cmol kg K (in NH OAC).

The treatments were two varieties of Okra (NHAe47-4 and LD 88) and five rates of cow dung (0, 5, 10, 15 and 20 t ha<sup>-1</sup>). An inorganic fertilizer, NPK (15:15:15) was applied at the rate of 120 kg ha-1 which served as a check. It is therefore a two factors factorial experiment fitted into randomized complete block design (RCBD) with three replications. Each plot measured 4 x 3 m  $(12m^2)$  with 1 and 0.5 m pathways between each replication and plot respectively. Cow dung was applied in to the soil one week before planting while the inorganic fertilizer was split and applied at two and four weeks after sowing. Okra seeds were planted at a spacing of 30 cm by 50 cm and at rate of three seeds which was thinned to one per hole.

The data collected includes plant height, stem girth, number of leaves per plant, number of fruit per plant, fresh fruit weight and fruit length. All the data collected were subjected to analysis of variance and means separated at 5% probability using least significant difference (LSD).

# **RESULTS AND DISCUSSION**

The effects of different rates of cow dung on plant height and stem girth in 2011 and 2012 were significant as shown on Table 1. The tallest plants were obtained in both 2011 and 2012 cropping seasons when treated with cow dung at rate of 20 t ha<sup>-1</sup> which did not differs significantly with inorganic fertilizer in 2011. In both 2011 and 2012 cropping seasons control plots significantly produced shorter plants. This result is in agreement with the work of [9]. The effects of rates of cow dung on stem girth were also significant ( $P \le 0.05$ ) with inorganic fertilizer, 15 t ha<sup>-1</sup> and 20 t ha<sup>-1</sup> of cow dung statistically producing plants with similar girth which were significantly better than other treatments. The variety effects on plant height and stem girth were not significant. The interaction effects of variety and cow dung were also not significant.

The effects of cow dung and variety on number of leaves per plant was not significant (Table 2). However control plots significantly took more days to 50 % flowering compared to others. This means that fertilizer enhanced the growth of Okra. This work is in agreement with the work of [10] who reported that the earliness to flowering may be traced to relatively inherent nutrient availability which promoted crop performance.

The effects of cow dung on number of Okra fruits were significant ( $P \le 0.05$ ). In both 2011 and 2012 cropping seasons, inorganic fertilizer and rates of cow dung at 15 and 20 t ha<sup>-1</sup> statistically produced similar number of fruits (Table 3) while control plots produced the lowest number of fruits. The effect of fertilizer application on fruit weight was also significant (Table 3). In 2011, inorganic fertilizer and cow dung at 20 t ha<sup>-1</sup> statistically produce similar fruit weight while in 2012 the fruit weight of cow dung at 20 t ha<sup>-1</sup> was significantly higher than that of inorganic fertilizer. Generally the weights of fruits produced by the 0, 5, 10 and 15 t ha<sup>-1</sup> of cow dung were statistically the same except in 2011. This means that cow dung at 20 t ha<sup>-1</sup> had more effect on fruit weight which translated to yield (Table 4).

The effects of rates of cow dung and variety on fruit length and breadth was shown on Table 4. Control plots generally produced shorter fruit length compared to treated plots. This report however contradicted the result of [11] who reported no significantly difference in fruit length and girth and attributed to inherent genetic characteristic.

| Treatment             | Plant hei | ight (cm) | Stem girth (cm) |       |  |
|-----------------------|-----------|-----------|-----------------|-------|--|
| Treatment             | 2011      | 2011 2012 |                 | 2012  |  |
| Variety (V)           |           |           |                 |       |  |
| NHe-47- 4             | 49.34a    | 60.45a    | 2.89a           | 3.23a |  |
| LD 88- 1              | 50.45a    | 58.12a    | 3.23a           | 2.96a |  |
| Cow dung (F)          |           |           |                 |       |  |
| 0 t ha <sup>-1</sup>  | 45.02d    | 40.89d    | 1.78c           | 1.56c |  |
| 5 t ha <sup>-1</sup>  | 47.12bc   | 45.45c    | 2.58b           | 2.45b |  |
| 10 t ha <sup>-1</sup> | 48.34bc   | 47.89bc   | 2.78b           | 2.70b |  |
| 15 t ha <sup>-1</sup> | 56.34b    | 58.45b    | 2.99a           | 2.98a |  |
| 20 t ha <sup>-1</sup> | 60.56a    | 62.24a    | 3.12a           | 3.00a |  |
| Inorganic fertilizer  | 59.56a    | 56.09b    | 3.02a           | 3.23a |  |
| Interaction           |           |           |                 |       |  |
| VxF                   | NS        | NS        | NS              | NS    |  |

Table 1: Effects of rates of cow dung and variety on plant height and stem girth of Okra 2011 and 2012 cropping seasons

Means followed by the same letter(s) in the same column for each factor are not significantly different at  $P \leq 0.05$ 

# Table 2: Effect of rates of cow dung and variety on number of leaves and days to 50 % flowering of Okra 2011 and 2012 cropping seasons

| Treatment                          | Number of | leaves plant <sup>-1</sup> | Days to 50% flowering |         |  |
|------------------------------------|-----------|----------------------------|-----------------------|---------|--|
|                                    | 2011      | 2012                       | 2011                  | 2012    |  |
| Variety (V)                        |           |                            |                       |         |  |
| NHe-47-4                           | 9a        | 10a                        | 30.67a                | 31.45a  |  |
| LD 88-1                            | 10a       | 11a                        | 31.22a                | 30.00a  |  |
| Cow dung (t ha <sup>-1</sup> ) (F) |           |                            |                       |         |  |
| 0 t ha <sup>-1</sup>               | 9ab       | 8b                         | 37.23a                | 35.28ab |  |
| 5 t ha <sup>-1</sup>               | 8b        | 9ab                        | 34.37ab               | 33.12b  |  |
| 10 t ha <sup>-1</sup>              | 9ab       | 10a                        | 32.34b                | 31.22b  |  |
| 15 t ha <sup>-1</sup>              | 10a       | 10a                        | 30.41b                | 31.23b  |  |
| 20 t ha <sup>-1</sup>              | 10a       | 11a                        | 32.11b                | 30.24b  |  |
| Inorganic fertilizer               | 11a       | 9a                         | 30.21b                | 29.11b  |  |
| Interaction                        |           |                            |                       |         |  |
| V x F                              | NS        | NS                         | NS                    | NS      |  |

Means followed by the same letter(s) in the same column for each factor are not significantly different at  $P \leq 0.05$ 

#### Table 3: Effect of rates of cow dung and variety on number of fruits and fresh fruit weight of Okra, 2011 and 2012 cropping seasons

| Treatment                      | Number of | fruit plant <sup>-1</sup> | Fruit weight p[ant <sup>-1</sup> |          |  |
|--------------------------------|-----------|---------------------------|----------------------------------|----------|--|
| Treatment                      | 2011      | 2012                      | 2011                             | 2012     |  |
| Variety                        |           |                           |                                  |          |  |
| NHe-47-4                       | 15.33a    | 13.08a                    | 155.21a                          | 165.30a  |  |
| LD 88-1                        | 14.23a    | 14.21a                    | 156.89a                          | 160.34a  |  |
| Cow dung (t ha <sup>-1</sup> ) |           |                           |                                  |          |  |
| 0 t ha <sup>-1</sup>           | 7.34c     | 8.02c                     | 121.23c                          | 130.23bc |  |
| 5 t ha <sup>-1</sup>           | 8.45c     | 10.45b                    | 135.34b                          | 143.00b  |  |
| 10 t ha <sup>-1</sup>          | 10.23b    | 12.34b                    | 139.31b                          | 143.98b  |  |
| 15 t ha <sup>-1</sup>          | 13.45a    | 12.89b                    | 144.09b                          | 143.98b  |  |
| 20 t ha <sup>-1</sup>          | 14.35a    | 15.23a                    | 158.45a                          | 159.34a  |  |
| Inorganic fertilizer           | 15.12a    | 14.78a                    | 156.11a                          | 147.23b  |  |
| Interaction                    |           |                           |                                  |          |  |
| V x F                          | NS        | NS                        | NS                               | NS       |  |

Means followed by the same letter(s) in the same column for each factor are not significantly different at P≤0.05

#### Table 4: Effect of rates of cow dung and variety on fruit length, girth and fruit yield of Okra 2011 and 2012 cropping seasons

| Treatment                          | Fruit length |        | Fruit girth |       | Fruit Yield (t ha <sup>-1</sup> ) |      |
|------------------------------------|--------------|--------|-------------|-------|-----------------------------------|------|
|                                    | 2011         | 2012   | 2011        | 2012  | 2011                              | 2012 |
| Variety (V)                        |              |        |             |       |                                   |      |
| NHe-47- 4                          | 8.91a        | 9.01a  | 2.87a       | 2.56a | 13                                | 14   |
| LD 88-1                            | 9.82a        | 10.67a | 2.76a       | 2.47a | 13                                | 13   |
| Cow dung (t ha <sup>-1</sup> ) (F) |              |        |             |       |                                   |      |
| 0 t ha <sup>-1</sup>               | 4.56c        | 4.98c  | 2.02c       | 2.12c | 10                                | 11   |
| 5 t ha <sup>-1</sup>               | 5.69b        | 6.45b  | 2.34b       | 2.19c | 11                                | 12   |
| 10 t ha <sup>-1</sup>              | 8.92a        | 9.34a  | 2.56b       | 2.54b | 12                                | 12   |
| 15 t ha <sup>-1</sup>              | 9.02a        | 10.09a | 2.65a       | 2.89a | 12                                | 12   |
| 20 t ha <sup>-1</sup>              | 10.02a       | 10.08a | 2.45b       | 2.76a | 13                                | 13   |
| Inorganic fertilizer               | 8.35a        | 9.45a  | 2.35b       | 2.45b | 13                                | 12   |
| Interaction                        |              |        |             |       |                                   |      |
| VxF                                | NS           | NS     | NS          | NS    |                                   |      |

Means followed by the same letter(s) in the same column for each factor are not significantly different at  $P \leq 0.05$ 

## CONCLUSION

Application of different rates of cow dung to Okra led to significant increase in growth and yield over the control. Use of cow dung at the rate of 15 to 20 t ha-1 will significantly improve the performance of Okra comparable to use of inorganic fertilizer.

# REFERENCES

[1] Schippers, R.R., African Indigenous Vegetables: An Overview of the Species. National Resources Institute /ACP-BU Technical Centre for Agriculture and Rural Cooperation, Cathan, UK, **2000** 

[2] Omotoso, S.O. and Shitu, O.S.; Research Journal of Agronomy, 2007, 1 (2): 84-87

[3] Adekiya, A.O. and Agbede, T.M.; *Emirate Journal of Food and Agriculture*, **2009**, 21 (1): 10 -20

[4] Ogbalu, O.K.; Journal of Agronomy and Crop Science, 1999,182: 65-71

## Pelagia Research Library

[5] Agbede, T. M., Ojeniyi, S. O. and Adeyemo, A. J.; *American-Eurasian Journal of Sustainable Agriculture*. 2008, 2(1):72-77

[6] Ewulo, B.S; Ojeniyi, S.O and Akanni, D.A;. African Journal of Agricultural Research. 2008, 3(9): 612-616

[8] Abou El-Magd, M., Hods, M., Mohammed, A. and Fawz, Z.F.; *Annals of Agricultural Science*, **2005**, 43 (2):791-805.

[9] Odeleye, F.O., Odeleye, O.M.O., Dada, O.A. and Olaleye, A.O.; *Journal of food Agriculture and environment*, **2005**, 3 ( 3&4): 68 – 74.

[10] Donates, F.U., Grace, O. U. and Jennifer, I.; *Journal of Food*, *Agriculture and environment*, **2012**, Vol 10 (1): 748 – 754

<sup>[7]</sup> Sharma, A.R. and Mittra, B.N.; Journal of Agricultural Science, 1991, 117: 313 – 318.