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ABSTRACT 
 
A Mathematical model for the pulsatile blood flow through stenosed artery with the effect of body acceleration and 
slip velocity is proposed. Blood has been represented by casson fluid equation. Analytic expression for velocity, flow 
rate, wall shear stress and effective viscosity is derived. Flow variables with the change of parameters are 
represented graphically. The effect of pulsatility, stenosis, body acceleration, slip velocity, yield stress has been 
investigated. It is found that yield stress of the fluid and body acceleration highly influenced the velocity of the fluid, 
shear stress, flow rate in a stenosed artery. High blood viscosity is dangerous in the cardiovascular disorders; the 
present model may be used as a tool for reducing the blood viscosity by using slip velocity at the constricted wall.  
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INTRODUCTION 
  
Blood flow through normal as well as stenosed artery is a very important field of study because of fact that the cause 
and development of many cardiovascular diseases are depends on the nature of blood flow and mechanical 
properties of blood vessel walls. The presence of stenosis in one or more locations restricts the blood flow through 
the lumen of the coronary arteries into the heart leading to cardiac ischemia. The experimental studies and the 
theoretical treatment of blood flow phenomena are very useful for the diagnosis of a number of cardiovascular 
diseases and development of pathological patterns in the human and animal physiology and for other clinical 
purpose and practical application by Sud and Sekhon [15]. 
 
To understand the effect of stenosis in the lumen of an artery many researchers investigated the flow of blood 
through stenosed arteries treating blood as a Newtonian fluid. However, experimental studies show that in the 
vicinity of the stenosis, the shear rate of the blood is less and therefore the non-Newtonian behavior of blood is quite 
prominent. Sapna [11] has studied the effect of non-Newtonian behavior of blood flow by considering blood as 
Power-law fluid model.  The non-Newtonian flow behavior of blood for steady flow in stenosed arteries was studied 
by many researchers [7, 17, 18, 22] by treating blood as Herschel Bulkley fluid. Many researchers have used the 
Casson fluid model for mathematical modeling of blood flow in narrow arteries at low shear rates. Blair [3] 
demonstrates that the casson fluid model is adequate for the representation of the simple shear behavior of blood in 
arrow arteries. Casson [5] studied the validity of casson fluid model in his studies pertaining to the flow 
characteristics of blood and reported that at low shear rates the yield stress for blood is non-zero. Chaturani and 
Samy[6] have analyzed the pulsatile blood flow through stenosed arteries.  
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Externally imposed body acceleration also has major influence on the flow through stenosed artery. In many 
situations in our life while fast body movements in sports activities, driving vehicles, human body experiences the 
body accelerations. Due to this body acceleration different health problem such as headache, loss of vision, increase 
in pulse rate, abnormal pain etc. occurs. Sud and sekhon [15] studied the pulsatile flow of blood through a rigid 
circular tube subject to the periodic body acceleration, treating blood as a Newtonian fluid. On the basis of 
experimental results, it is observed that the body acceleration might change the heart beat and might have a negative 
impact on the circulatory system. So the study of the effect of the magnitude, frequency and duration of the periodic 
acceleration may play a significant role in the diagnosis and treatment of the health problems.  
 
In many situations there may be a partial Slip between the fluid and the boundary for many fluids, the motion of 
fluid is still governed by the Navier-Stokes equations, but the usual no slip condition at the boundary should be 
replaced by the slip condition. Several authors in   [4, 8, 19] carried out the role of slip velocity in blood flow 
through stenosed arteries and suggested the presence of red blood cell occurring in slip condition at vessel wall. To 
understand the existence of slip at the tube wall Nubar [9], Brunn [4] have reviewed the several treatments of slip at 
the walls of the capillary tubes. In view of theoretical and experimental observations implying the existence of slip 
at the wall, it is improper to ignore the slip in blood flow. It is also noted that in literature, there is no direct formula 
to calculate the slip velocity. It is therefore worthwhile to find a formula to calculate the slip velocity at the wall. 
Pulsatile flow of blood through a catheterized artery in presence of different geometry of stenosis with a velocity 
slip at a stenotic wall has been investigated by several researchers [1, 2, 17, 20]. It is found that the wall shear stress 
and effective viscosity decreases while axial velocity increases with velocity slip at wall. Recently several authors 
[8, 12] have developed Mathematical models for blood flow through stenosed arterial segment by considering 
velocity slip condition at the constricted wall.  
 
The aim of present paper is to study the effect of blood flow with slip velocity and body acceleration in a stenosed 
artery. The analytical solution is obtained by using appropriate method. The graphical representations have been 
presented for the different flow variables with the appropriate discussion. Finally the comparison is made with the 
other existing results to justify the applicability of the present model. 
 
Formulation of the problem   
Let us consider one dimensional pulsatile, axially symmetric, laminar, fully developed flow of blood by considering 
blood as a casson fluid in the presence of externally imposed periodic body acceleration. It is assumed that the 
stenosis develops in the arterial wall in an axially non-symmetric but radially symmetric manner and depends upon 
the axial distance ‘z’ and the height of it’s growth.  
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The geometry of the flow is shown in Figure (1) and is given by  
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Where  and   is the radius of the artery with and without stenosis respectively. 0L  is the length of the 

stenosis and d indicates it’s location, 2n ≥  is the stenosis shape parameter and the parameter ‘A’ is given by  
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Where δ  denotes the maximum height of the stenosis at 1/(n 1)
0( )z d L n −= +  such that 0/ 1Rδ < The periodic 

body acceleration ( )F t  in the axial direction is given by 

 

( ) ( )0 coscos ,bt tF a ω ϕ= +                                                                                                                                 (2) 

                                                                                                    
 

 
where 0a  is the amplitude of body acceleration, 2 ;b b bf fω π=  is it’s frequency in Hz. The frequency of the body 

acceleration bf  is assumed to be small so that wave effect can be neglected. 

 

Since the pressure gradient is the function of z  andt , we take 
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where 0A  is the steady state pressure gradient,1A  is the amplitude of the fluctuating component, 2 ,p pfω π=  

where pf  is the pulse rate frequency. 

 
The Navier-Stokes equations governing the fluid flow is given by Schlichting and Gersten [12]. 
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where u  represent the axial velocity along z-direction,p  is the pressure, ρ is the density, t  the time, τ  the shear 

stress and ( )F t  the body acceleration. Mathematically ( )F t   is described in equation (2). 
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The casson fluid equation is given by 

;

0,

y y

y

u
if

r

u
if

r

τ τ µ τ τ

τ τ

 ∂
= + − ≥ 
∂  
∂ = < 

∂                                                                                                                     

(6) 

 

where yτ denotes yield stress and µ denotes the viscosity of the blood. 

 
Boundary conditions 
The boundary conditions are 

( ) ,su u at r R z= =                                                                                                                                                 (7) 

τ is finite at 0r =                                                                                                                                                       (8) 

 

where su  is the slip velocity at the stenotic wall. 

 
By introducing the following non-dimensional variables 

0 0 02
0 0

2
02

0 2
0 00 0

1 0 0 0
0 0

, / , (z) (z) / , / , ,
4

/ , / , , , ,
24

/ , / ,
2

p

ps
b p s s s

y

u
u z z R R R R r r R t t

A R

Ru
R u

A RA R

e A A B a A
A R

ω
µ

ω ρτω ω ω δ δ τ α
µµ

τ
θ


= = = = = 



= = = = = 


= = =

                                              (9) 

 
The non-dimensional equation (4) becomes 
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where 2 2 ( ),p oRα ω µ ρ=  is called Womersley frequency parameter. 

 
Equation (6) can be written as 
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The boundary conditions reduces to 
 

( )su u at r R z= =
                                                                                                                                                 (12) 

 

andτ is finite at 0r =                                                                                                                                               (13)                                                                                                               
 
The geometry of stenosis in the non-dimensional form is given by 
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The non-dimensional volumetric flow rate is defined by 
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Effective viscosity eµ
   

defined as
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can be expressed in the dimension less form  as 

( ) ( )4 1  , .e R ecos t Q z tµ = +
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Analysis 
Let the velocity u and shear stress τ can be expressed in the following form 
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Substituting the value of u  and τ from equation (18) and (19) in equation (10) and equating the constant term and 

2α term, we get  
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Integrating equating (20) and using boundary condition (13), we get 

0 (t)f rτ = −
                                                                                                                                                            (22)

 

where, ( )(t) 1 cos cos( )f e t B tω φ= + + +                                                                                                       (23)
 

Substituting u from equation (18) into condition (12), we get 
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Substituting equation (18) and (19) in equation (11), we get 
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Integrating equation (25), and using relation (22) and relation (24), we obtain 
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Similarly the solution for 1u and 1τ can be obtained by using equations (21), (26) and (27). 
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On substituting the value of 0u and 1u  in equation (18) we get the velocity as 
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The wall shear stress ωτ can be written as 
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The volumetric flow rate Q is given by 
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The effective viscosity in the non-dimensional form is given by 
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RESULTS AND DISCUSSION 

 
The aim of resent model is to analyze the combined effects of body acceleration and slip velocity 
 
on the flow variables viz., axial velocity, flow rate, shear stress and effective viscosity of blood, flowing in an artery 
with the axially non-symmetric stenosis at the arterial wall. On using perturbation method, the velocity u  is 

expanded in terms of womersely frequency parameter2α  
 
The assumption of the small value of α  is valid for the physiological situations in small blood vessels. In the 
present analysis blood is modeled as casson fluid model. In our analysis the value of shape parameter of stenosis is 
considered to be 2. The body acceleration parameter B is considered in the range 0-2. The pressure gradient 
parameter e is taken in the range0-7, magnitude of lead angle φ  is taken as 0.2. 
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In figure 2 and figure 3 the variation of axial velocity u at the throat of the stenosis i.e. at z=0 with radial distance r, 

for fixed values of stenosis height sδ , pressure gradient e, time t and for different values of body acceleration 

parameter B, are presented. It is observed from the figure that axial velocity is maximum at 0r = and decreases 
with the increase in the radius of artery r. it is also found that axial velocity attains it’s minimum value at the 
stenotic wall at ( )r R z= . Use of slip at the wall increases the velocity. It is found that body acceleration parameter 

B plays a very important role in flow; it brings not only quantitative changes but also qualitative changes in velocity 
profiles. In the presence of body acceleration more flow takes place because with the increase in body acceleration 
the plug flow region shrinks and hence velocity is more. It is observed that the magnitude of velocity is almost 
doubled when the body acceleration is 2 to the case when body acceleration is not present, for the same values of 
pressure gradient and yield stress. 
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Figures (4, 5) also shows the variation of axial velocity u with radial distance r. it is depicted that when the yield 
stress is not present i. e. for Newtonian fluid velocity increases sharply on the axis of the tube. On the application of 
yield stress velocity profile is reduced and becomes blunt in the mid region of the tube which indicates the plug 
flow. Figure 5 show that axial velocity decreases with time in a stenosed artery for a fixed value of body 
acceleration and yield stress. Figure 6 represent the variation of flow rate with pressure gradient e for different flow 

parameters( , , , , )s st B uθ δ . It is observed that flow rate increases gradually with the increases in pressure 

gradient e for any value of B andθ  . However the magnitude of flow rate in the presence of yield stress is less than 

it’s magnitude in the absence of yield stress (θ =0). Increase in θ  results substantial decreases in flow rate. This 
occurs due to the increases in width of plug flow region It is further observed that employment of body acceleration 
as well as slip velocity enhances the flow rate.    
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Wall shear stress is a very important factor in hemodynamics. Figure 7 and figure 8 show the variation of wall shear 

stress with time t for different values of , , ,sB e δ θ .It is observed that the behavior of wall shear stress is 

symmetrical about 0180t = .wall shear stress decreases with the increase in t till a certain limit, then increases with 
t. in the absence of body acceleration, wall shear stress is less compared to the case when body acceleration is 
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present and it steadily decreases with time with the point of minimum at 0180t = which is showing that there could 
be a chance of more friction on the wall in a stenosed artery under the influence of body acceleration. It is noticed 
that the effect of yield stress and pressure gradient is small but enhances shear stress.  

 

 
 

CONCLUSION 
 
In the present mathematical model, pulsatile blood flow through stenosed artery with periodic body acceleration and 
axial slip velocity at the constricted wall has been considered. Analytic expressions for flow variables are obtained 
and their variations with different flow parameters are presented graphically. It is observed that effective viscosity 
and wall shear stress decreases with body acceleration but velocity and flow rate increases. It is also found that axial 
velocity and flow rate increases but effective viscosity decreases due to the wall slip. This model concludes that slip 
velocity play a very important role in blood flow modeling in a stenosed artery. It may also be concluded that with 
slip, damages to the vessel wall could be reduced. Reduction in wall shear stress and effective viscosity gould be 
exploited for good function of stenosed arterial system. Therefore we use the devices and medicines so that slip can 
be produced and use them for treatment of arterial disease. So this study may help the physicians in estimating the 
severity of stenosis and it’s consequences. This study may further extend by the introduction of more rheological 
and physical parameters in the case of more sever stenosis.    
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