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ABSTRACT 

Recently, brain computer interface (BCI) research has increased 
because of its application value in neural engineering and 
neuroscience, BCI Systems can provide online communication 
between a human or animal brain and external devices without 
depending on the normal output pathways of peripheral nerves and 
muscles. BCI applications include communication devices for 
disabled people, neuroprotheses and games. The most popular 
BCIs is based on steady state visual evoked potential (SSVEP) that 
can be recognized through detecting the dominant frequency 
components in the recorded electroencephalography (EEG) 
signals.  BCI performance depends on correctly and fast decoding 
the user intentions and is critical to employ a reliable signal 
processing methods to detect and extract the components of de 
EEG signals recording. In this paper,   mathematical tools used to 
design brain computer interface (BCI) systems based on 
electroencephalogram (EEG) signals obtain by visual stimulus are 
reviewed. 

Keywords: Brain Computer Interface, BCI; Steady State Visual 
Evoked Potential, SSVEP; EEG Signal Analysis. 
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INTRODUCTION 
A brain computer interface (BCI) is a 

system that translates the electrophysiological 
activity of a nervous system signals that can 
be measurable by an electromechanical 
device, generally an electroencephalogram 
(EEG). The BCI systems that are aimed to 
provide a channel of non-muscle 
communication for sending commands to the 
outside world using the electrical activity of 
the brain allowing interaction between the 
human brain and a computer19. 

The electrical activity of the brain 
generates brain states as a result of different 
patterns of neural interaction. These patterns 
result in waves, which are characterized by 
different amplitudes and frequencies. The 
human brain electrical activity present due to 
two causes. The first is internal, that is, due to 
inadvertent operation, such as control of 
respiration, digestion etc. and will of the 
individual, to move your body, speak or think, 
etc. The second cause of brain activity is the 
occurrence of external stimuli, through a 
bodily sense. 

The BCI systems can be classified 
according to the acquisition of signals: 

 
 Endogenous: brain rhythms based systems 

depend on the user's ability to control their 
electrophysiological activity, such as the EEG 
amplitude in a specific frequency band over a 
particular area of the cerebral cortex. We can 
classify the endogenous systems: 

a) Motor Imagery (MI) which are 
based on a paradigm of two or more kinds of 
MI, stroke of the right or left hand, feet, 
tongue, etc., or other brain tasks like rotating 
a cube, performing arithmetic, etc. These 
rhythms have variations for both the 
execution of a real movement to the 
imagination of a move or preparing to it. 

b) Slow Cortical Potentials (SCP), 
which involves slow changes in voltage, 
generated on the cerebral cortex, with a 
variable duration between 0.5 and 10 seconds. 

They are typically associated with movement 
and other functions involving cortical 
activation. It has been shown that people can 
learn to control these potential4. 
 

 Exogenous: These are based on event-related 
potentials (ERP) systems depend on the 
electrophysiological activity evoked by 
external stimuli and do not require intensive 
training stage. We can classify exogenous in 
BCI systems: 

(a) Event-based potentials P300, 
which refer to a peak amplitude on the EEG 
approximately 300 ms after a rare auditory or 
visual stimulus occurred, hence the name 
P300. Usually the person presents a set of 
stimuli that only a few are related to the 
intention of the person. Thus, the stimulus of 
interest, to be infrequent and be mixed with 
other more common stimuli cause the 
appearance of a potential P300 in brain 
activity of the person. This potential is seen 
mainly in the central and parietal areas of the 
cerebral cortex. 

(b) Visual Events Potential (VEP) or 
Potential for Visual Events Steady State 
(SSVEP), which are detected on the EEG in 
the visual area of the cerebral cortex after the 
user a visual stimulus, has been applied. 
When a person focuses his gaze on a 
flickering image at a certain frequency, that 
frequency can be detected by analyzing the 
spectrum of the EEG signal. 

(c) Auditory Events Potentials (AEP), 
which are detected on the EEG auditory 
cortex area presenting the user with sound, 
sources at different frequencies, the user to 
focus on one of them and generates potential 
Systems the same frequency as the stimulus. 
This paper focus on the analysis 
methodologies signals on exogenous BCI 
systems based on VEP and SSVEP. 
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EEG SIGNALS 

The set of signals derived from an 
electroencephalogram (EEG) is composed of 
a series of electrical potentials that fluctuate 
over time on different channels. Each channel 
represents an electrode placed on the scalp. 
Each EEG equipment has a certain sampling 
rate to quantify, which indicates the number 
of updates per second that a signal can be 
output (Figure 1). 

To obtain brain signals an electrode 
grid based on the International System 
Companies EEG 10-20 is used; system 
defined for placing electrodes on the scalp, so 
called because the electrodes are spaced 
between 10% and 20% of the total distance 
between points recognizable brain (Figure 2). 
Reference marks are A1 (nasion) A2 (inion) 
the rest of the electrodes are identified by a 
letter indicating the area on which the 
electrical activity is obtained: "F" (frontal 
lobe), "P" (parietal lobe), "T" (temporal lobe) 
"O" (occipital lobe), "C" (frontal lobe), "FP" 
(frontal pole). The number is used to identify 
the cerebral hemisphere, odd numbers denotes 
the electrodes located on the left side and 
even numbers on the right hand side. The 
suffix "Z" indicates the centerline of the 
brain15, as shown on Figure 3. 

EEG interpretation commonly based 
on the calculation of the amplitude values and 
measures peak values in registers in event-
related potentials (ERP), obtained under 
conditions of absence of external excitation 
and of the person, thus, cortical sources ERP 
assume values different from the spontaneous 
EEG activity nature. The relationship between 
the placements of the electrodes on the scalp 
with different physiological activities of the 
user18. This document shows a review of 
different techniques focused on visual events 
(VEP) for the development of Brain 
Computer Interface systems (BCI)9 Figure 3. 
 
 

STEADY STATE VISUAL EVOKED 
POTENTIAL (SSVEP) 

Visual Evoked Potentials (VEP) which 
appeared in EEG records are the response of 
human brain for visual stimuli such as strobe, 
video display and others image screens. VEP 
is generally used for analyzing the brain 
function on a visual system2. The amplitude 
of a VEP signal is rather small in comparison 
with the activity of EEG background signals. 
Therefore, the stimulus-locked averaging is 
usually adopted for extracting the VEP 
components. Conventional averaging method 
requires enough number of data for an 
accurate estimation of VEP, though the 
quality of recorded raw data is not often 
acceptable7. Other studies uses Steady State 
Visual Evoked Potentials (SSVEP) for BCI 
systems (Friman 2007; Wolpaw, 2000, 2002; 
Kelly, 2005; Xia, 2013; among others). 
SSVEPs are oscillatory brain responses 
produced in the visual cortex by repetitive 
visual stimulus. SSVEP generally occur in the 
occipital and parietal lobes23. SSVEPs 
approach allows to collect a large number of 
trial within a short amount of time1. Many 
studies reported successful integration using 
VEP or SSVEP stimuli for brain computer 
interface (BCI’s) systems. In an SSVEP-BCI 
system, The targets are encoded by a single 
frequency or various combinations of 
frequencies. Different commands can be 
transmitted by shifting the subject’s attention 
to the coded targets23. This document aims to 
show different methodologies used in several 
studies of EEG signals for the development of 
BCIs using different kind of SSVEP stimuli 
on different experimental design and 
applications. 
 
SSVEP METHODS 

SSVEP had been increasingly used for 
the development of BCI human-computer 
communication2. The signal is often extracted 
non-invasively from EEG. Base on the 
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literature, several methodologies had been 
proposed for classification of features2,21,6, 
Table 1. 
 
Assisted Closed Loop (ACL) 

The use of closed loop interaction with 
biological nervous systems for observation 
and control purposes goes back to the 
beginnings of electrophysiology in the 1940s 
when the voltage clamp technique was 
developed. Later on, the dynamic clamp 
technology to implement artificial membrane 
or synaptic conductance has produced many 
examples of successful closed loop 
interactions with neural systems at the cellular 
and circuit levels5. ACL approach to optimize 
the efficiency of SSVEP based BCI which 
might have a large impact for applied uses, 
such as computer control and biomedical or 
prosthetic uses. 

ACL is used to select the set of the 
four top stimulation frequencies by 
compatibility for each subject in a some 
experimental context. Stimulation frequencies 
are defined as valid if their �� exceeds a 

prefixed threshold (set to 10) any time during 
the ongoing visual stimulation. For � valid 
frequencies, the frequency corresponding to 
the largest �� gets an initial score of 

��(0)= �, the second to best ��(0)= � − 1, 
etc. The frequency corresponding to the 
lowest��gets a score of��(0)= 1. Finally, 
the four best scores define the selection of the 
four top stimulation frequencies. 
As the next step, we calculate the following 
compatibility measure between all possible 
pairs of frequencies�and�taking into account 
a measure of their distance and their scores: 
 

���(�)= � ���(�)+ ��(�)� + ����            (1) 

  
 � represents the iteration 
number,�and�weights to the distance and the 
scores respectively (e.g. � = 1.5 and � = 1), 
the values for�and�were set empirically 

based on several trials and���  is a measure of 
the distance between two specific frequencies 
�� and��and is calculated as: 

 

��� = ��� − ���                            (2) 
 

The first step is to identify pairs of 
frequencies with optimal compatibility. This 
search consists of 3� 4⁄  iterations, each of 
them divided in to 16 steps with a resting 
period at its end. The ACL departs from the 
scores calculated in the scanning procedure 
��(0),��(0),...,��(0): they are modified in 
the successive iterations to search for the best 
compatibility. In each iteration, the subject 
has to follow a sequence of visual stimulus 
focusing upon. The stimulus frequencies are 

chosen by selecting ���������� at the end of 
the iteration. To update the scores, take into 
account both the success rate and the time as: 

 
��(�)= ��(�− 1)(� ∙�� − ��)               (3) 
 
Where SR is the success rate (correct SSVEP 
the number of possible detections), � and � 
are parameters of the ACL algorithm (e.g. 
� = 1.2 and � = 0.02). � is the duration of 
the detection in seconds. The values for � and 
� are chosen based upon the range of �� 
and � several simulations. 

Each ��� (�) is updated by the new 
scores after each iteration. Once this 
procedure has run � = ⌊3� 4⁄ ⌋times, the 
highest ���(�)is selected and a new set is 
created with the union of both frequencies. 
The next highest �����(�) disjoint from the 

previous set is chosen and a new set is 
constructed. This is repeated ⌊� 2⁄ ⌋ times 
because this is the total number of possible 
disjoint pairs. It is ensured that each set is 
disjoint from all others.� = ⌊3� 4⁄ ⌋ is chosen 
to test ⌊3� 2⁄ ⌋ frequencies, so that the best 
frequencies are tested more than once. It is 
important to note that the duration of the 
frequency tests has to be restricted. 
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The second step, the selection of the 
four frequencies. The same procedure as in 
the first part is employed, but instead of 
single frequencies, sets of two frequencies are 
used. The values of ���(� + 1)of each set are 
adjusted according to the values ���(�), 

where �′= � ∪ �. In this way, the set with 
the highest value gets ���(� + 1)= ⌊� 2⁄ ⌋, 
the second best ���(� + 1)= ⌊� 2⁄ ⌋− 1and 
soon. The last one gets �⌊� �⁄ ⌋�(� + 1)= 1. 

From this point of the algorithm on, these sets 
are indivisible. 

Using the same procedure performed 
with two frequencies, the process is repeated 
with four of them. The compatibility and the 
score actualization rules are still the same. 
The only difference is the distance measure 
for Equation (1) calculated as: 

 

��� =
∑ ∑ �������

��
���

��
���

��(����)
                  (4)  

 
Where � is the number of frequencies 

of each set (in this case 2), and �� and �� are 
the individual frequencies taken from the 
union of the sets � and �. � and � refer to sets 
of two frequencies while in Equation (2) � 
and � referred to individual frequencies. This 
distance expresses the arithmetic mean of all 
possible pairs in the set resulting from the 
union of the initial sets�and�. Note that 
for� = 1, this distance measure is exactly the 
same distance (2) as used in the first part of 
the algorithm. In this second part ⌊3� 8⁄ ⌋ 
iterations are performed, which is � 2⁄  (the 
number of disjoint sets) times 3 4⁄  (see 
above)5. 
 
Canonical Correlation Analysis (CCA) 

CCA method uses channel covariance 
information, which tends to increase the 
signal to noise ratio (SNR) and reduce the 
computational cost for online systems. CCA 
reflected the correlation relationship between 
EEG response signals and classical Fourier 
series at the stimulus frequency and its 

harmonics. Bin (2009) used CCA algorithm 
to develop an online BCI system for detecting 
SSVEP signals without complicated training 
procedures2. 

CCA is a way of making sense of 
cross-covariance matrices. If we have two 
vectors � = (��,...,��) and � = (��,...,��) 
of random variables with finite second 
moments and there are correlations among the 
variables. Then canonical-correlation analysis 
will find linear combinations of��and��which 
have maximum correlation with each other. 
Consider the source signal for SSVEP,� , is 
the output of linear system with stimulus 
signal, �, as the input.�at certain 
frequency�can be discomposed into Fourier 
series of its harmonics 

(���(2���),���(2���),���(4���),… ): 
 

� =

⎩
⎪⎪
⎨

⎪⎪
⎧
��� (2���)

��� (2���)

��� (4���)

��� (4���)

��� (6���)

��� (6���)

�=
�

�
,�
�

�
,…

�

�
               (5) 

 
Where � is the fundamental  

frequency � is the number of sampling  points 
and � is the sample rate. The algorithm can 
find a pair of linear combinations, � = ��� � 
and � = ��� � for �  and �, to maximize the 
correlation between two canonical variables, 
�and�, by solving the following optimization 
problem: 

���� �� �
�(�,�)=

������

��[���]�[���]
=

��� �
����� ��

���� �
��� �� � ���� �

����� ��

                     (6) 

 
The canonical correlation�is utilized 

as the CCA coefficient obtained with the 
frequency of reference signals2,8. 
 
Common Spatial Pattern (CSP) 

Common Spatial Patterns (CSP) is a 
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powerful signal-processing technique used for 
feature extraction in EEG-based BCIs. The 
CSP algorithm computes spatial filters whose 
purpose is achieving optimal discrimination 
when using band power features; thus, it 
increases the signal-to-noise ratio and reduces 
adverse effects of volume conduction1. 
CSP maximizes the variance on the spatially 
filtered signals under one condition while 
minimizing it for the other condition. CSP 
was developed as a two-class spatial filtering 
technique that aims to maximize feature 
variations for one class and simultaneously 
minimize feature variations for the other 
class16. CSP analysis is applied to band-pass 
filtered signals in order to obtain an effective 
discrimination of mental states between the 
two conditions. CSP projects the signal 
�(�)∈ �� in the original sensor space 
to���� ∈ �� , which lives in the surrogate 
sensor space, as follows: 
 
����(�)= � ��(�)                                      (7)  

 
Each column vector �� ∈ ��,� =

1,2,… ,�of a matrix � = (� ��)� ∈ ��×�  is a 
spatialpattern.While for classifications only 
the special filters are used, only the patterns 
allow or a physiological interpretation of the 
CSP components1. 
 
Distinctive Sensitive Learning Vector 
Quantization (DSLVQ) 

Distinction Sensitive Learning Vector 
Quantization (DSLVQ) is a modified version 
of Kohonen’s Learning Vector Quantization 
(LVQ), classifier (1990) it incorporates an 
additional feature scaling to compensate for 
relevance differences among the input 
features12. LVQ can be applied to many 
pattern recognition domains like, e.g., speech 
recognition Kohonen (1990) or classification 
of EEG patterns, Flotzinger (1991), 
(Pregenzer, 1994). Pregenzer (1999) have 
introduced DSLVQ algorithm, it uses a 
weighted distance function, which affects the 

characteristics that often contribute to 
misclassification, reducing influence of those 
characteristics that are important for correct 
classifications. 

For the weighted distance function of 
DSLVQ a global weights vector � is used. DS 
distance show following: 

 

������(�,�,� )= �∑ (� �[�.− ��])�
�
���   (8) 

 
This vector stores the distinctiveness, 

the relevance, of every single feature. The 
weights vector� can be seen as a scaling 
transformation from the original feature space 
into a DS-feature space. This transformation 
increases distances for very distinctive 
features and decreases distances for common 
features11.�must be updated with every 
learning iteration. It may be assumed that, for 
a learning iteration�, ��(�)and��(�)are the 

two closest vectors to the training 
sample�(�), that��(�)and ��(�)belong to the 

same and to a different class as�(�), 
respectively, and that�(�)falls into the 
"window" learning. The weights learning are 
described with the following equation: 

 

� (�+ 1)= ���� ��ℎ���ℎ��� �� (�)+

�(�)���(�)− � (�)���                              (9) 

 
With 
 

����(�)=
�

∑ |��|
�
���

                                         

�� = �������(�)− ��(�)�                   (10) 

��(�)= |�(�)− ��(�)|  
��(�)= ��(�)− ��(�)� 

 
The thresholding in the weights 

update, which cuts all weights values below 
0.0001 and over 1 to 0.0001 and 1, 
respectively, ensures that the weights values 
cannot become negative. If a large number � 
vectors is employed, it should be considered 
that, when the same learning factor is taken 
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and weights learning, the weights vector is 
updated. � times more often than the average 
vector. Therefore, in the case of many 
vectors, a smaller learning factor might be 
used for weights learning11. 
 
Empirical Mode Decomposition (EMD)  

The EMD approach attempts to 
sequentially decompose a signal into a finite 
number of intrinsic mode functions (IMFs). 
Each IMF represents a simple oscillation 
signal, is an analytical, self-constructed, well-
defined, data-driven, function whose 
amplitudes and frequencies vary with 
time24.The sifting process decomposes each 
EEG epoch into a set of IMFs by the sifting 
process through the following steps: 

 

a) Set ℎ�⃗(1)= �⃗ 

b) identify all the local extrema in ℎ�⃗(�), 
including local maximum and local 
minimum; 

c) connect all the local maxima/minima using a 
cubic spline to generate the upper/lower 
envelopes; 

d) generate a local mean curve, ���⃗, by averaging 
the upper and lower envelopes; 

e) calculate the pre-IMF, ℎ�⃗(�), by subtracting the 

local mean, ���⃗, from ℎ�⃗(�),  

i.e., ℎ�⃗(�) = ℎ�⃗(�)− ���⃗ 
f) Repeat steps (b)–(e) for k iterations until the 

difference between two continuing pre-IMFs, 
���, reaches a userdefined stoppage criterion, 
�, i.e. 

��� =
����⃗(���)����⃗(�)�

�

����⃗(�)�
� < �             (11)  

Where ‖·‖ denotes the Euclidean distance; 

g) Set �⃗� = ℎ�⃗(�) as the first IMF; 
h) Calculate �⃗ = �⃗ − �⃗�; 
i) Replace �⃗ in step (a) by �⃗ and repeating steps 

from (b) to (h)(sifting process), to find other 
IMFs,  �⃗�,�⃗�,… ,�⃗� ; 

j) Stop the sifting process when the residue 

function �⃗ = �⃗ − ∑ �⃗�
�
���  becomes a 

monotonic function that cannot extract any 

more IMFs. 
After applying the EMD process to an 

EEG epoch, �⃗ can be represented by a 
monotonic residue function, �⃗, plus a set of 
posteriori-defined IMF basis, �⃗�,�⃗�,…   and , 
�⃗� , where � is the number of IMFs extracted 

from �⃗ and each �⃗�, 1 ≤ � ≤ �, is a 1 × � 
vector. The IMFs can be arranged in a  
�× � matrix, �, where each row �⃗� 
represents the ��ℎ IMF: 

 

� =

⎣
⎢
⎢
⎡
�⃗�
�⃗�
⋮
�⃗� ⎦
⎥
⎥
⎤

�×�

                                   (12) 

 
Least Absolute shrinkage and selection 
operator (LASSO) 

Proposed by Tibshirani (1996), this 
method can provide an analytical solution and 
a low-variance estimate with high 
interpretability for a linear regression due to 
its sparsity constraint. LASSO method was 
applied to recognize SSVEP signals to 
archive the better effect than of CCA in a 
short time window. Can provide an analytical 
solution and a low-variance estimate with 
high interpretability for a linear regression 
due to its sparsity constraint2. 
Consider a standard linear regression model 
for the observations of the response� ∈ �� 
 

� = �� + �                                   (13) 
 

Where � is a � × 1 vector, � =

���,��,...,��� denotes a � × � design 

matrix, and � represents a noise vector with 
the zero mean and constant variance. The 
LASSO estimate is then given by: 
 

�̂ = ������� (‖� − ��‖�
� + �‖�‖�)     (14) 

 
Where ‖∙‖�,‖∙‖� denote the �� −

���� and �� − ���� respectively. � is a 
penalty parameter which encourages a sparse 
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solution �̂.Quadratic programming can solve 
the optimization problem depicted by Eq. 
(6)21. 
 
Minimum Energy Combination (MEC)  

Minimum Energy Combination is 
derived from the principal component 
analysis (PCA)10. Nan (2011), Volosyak 
(2010) and Friman (2007) used MEC method 
in his research’s. Assuming ��  electrodes, �� 

is data length is and ��  the number of 
harmonics. The formula � = �� + �  
represent the linear EEG signal modeling. � 
contains all the amplitudes for all electrode 
signals, �  is SSVEP information matrix of 
size �� × 2�� , �  is the noise, artifacts and all 
the information that are not relevant to the 
SSVEP response.   

The different electrodes signals must 
be combined into a channel in order to extract 
discriminate features. Define  

 

� = ∑ � ��� = ��
��
���

                     (15)  

  
 � is a channel signal defined as a 
linear combination of each electrode signal 
��� and several sets of weights, � can be used 
to create several channels. 

More generally, we can create several 
channels by making different combinations of 
the original electrode signals  

 
� = ��                                      (16)  
 
Where �  is a �� × �� matrix 

containing the weights for each combination 
in its columns. The optimal choice of weight 
matrix � depends on the nature of the SSVEP 
signal. The noise signals can be canceled as 
much as possible by combining of the 
electrode signals. Firstly, remove any 
potential SSVEP components from all the 
electrode signals by using the orthogonal 
projection 

 
�� = � − �(���)�����                         (17) 

 
               �� contains approximately only 
noise, artifacts and background activity. The 
weight vector �  which minimizes the 
variance of �� can be found by optimizing: 
 
���‖��� ‖� = ���(� ���

���� )         (18) 
 

Which has the solution in the 
eigenvector that corresponds with the smallest 
eigenvalue of the covariance of ��. In order to 
increase the robustness, not only the 
eigenvector of the smallest eigenvalue but 
also those eigenvectors of the next largest 
eigenvalues are utilized here. About 10% of 
the variance of the date is included to 
construct the spatial filter10. 

The SSVEP signal power estimation is 
defined as 

 

�̂ =
�

����
∑ ∑ ‖��

���‖
���

���
��
���                  (19) 

 
EEG signals from multiple channels 

are calculated by the above steps and then the 
stimulus frequency corresponding to the 
maximum signal power is obtained6,10,17. 
 
Multivariate synchronization index (MSI) 

Zhang(2014) proposed a Multivariate 
synchronization index (MSI) for frequency 
recognition. This measure characterized the 
synchronization between multichannel EEGs 
and the reference signals, the latter of which 
were defined according to the stimulus 
frequency. The MSI must also create a 
reference signal from the stimulus frequencies 
used in an SSVEP-based BCI system, 
similarly to CCA and MEC23. 

Consider a EEG data set � ∈ ��×�(� 
channels × � temporal points). To implement 
the MSI for SSVEP recognition, construct a 
reference signal set � ∈ ��� ×�at a certain 
stimulus frequency � as 
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� =

⎣
⎢
⎢
⎢
⎡
��� (2���)

��� (2���)
⋮

��� (2����)

��� (2����)⎦
⎥
⎥
⎥
⎤

,�=
�

��
,
�

��
,⋯

�

��
        (20)  

 
Where �  denotes the number of used 

harmonics and �� is the sampling rate. 
Assuming both the �  and � have been 
normalized to have zero means and unit 
variances, the auto-covariance and cross-
covariance matrices can be respectively 
estimated as 
 

��� =
1

�
��� 

��� =
�

�
���                                            (21)  

��� = ��� =
�

�
���  

 
The cross-correlation matrix without 

autocorrelation is then computed as 
 

� = �
��×� ���

��
�

�
�
������

��
�

�
�

���
��

�

�
�
������

��
�

�
�

��� ×��

�   (22)  

 
Where ��×� denotes the identity 

matrix of dimension �. The synchronization 
index between �  and � can be estimated as 

 

� = 1 +
∑ ����� (��)
� ���
���

��� (���� )
                           (23)  

 
Where �� is the � − �ℎ normalized 

eigenvalue of matrix � . Assume there are �  
stimulus frequencies to be recognize. Through 
constructing the reference signal set at each of 
the stimulus frequency, we estimate the 
synchronization indices ��,��,...,�� for all of 
the �  stimulus frequencies23. The SSVEP 
target frequency is then recognized by 
 
�� = ����������,� = 1,2,… ,�              (24)  

 
 

Power Spectral Density Analysis (PSDA) 
The PSDA method is often used as a 

method of SSVEP detection, which is related 
to signal processing in frequency domain. The 
implementation of the power spectral density 
analysis is performed by looking at the power 
densities around the stimulus frequencies and 
obtaining a signal/noise ratio as  
 

�� = 10����� �
��(��)

∑ �(��������)��(��������)
�
�
���

�   

                                                                   (25) 
 

Where � is the number of points near 
at the frequency stimulus, �(��) is the power 
density of the stimulus frequencies and ���� is 
the resolution frequency, which depends on 
the number of samples used in the Fourier 
transform. �(�� + �����) and �(�� − �����) 
are power densities around the target 
frequency3. 
 
Stability Coefficient (SC) 

The SSVEP signals can be divided 
into two parts, one part is caused by the 
repetitive stimulus, which can be considered 
approximately as a constant, for this part, the 
amplitude difference between near time 
points is approximately zero. The other part 
comes from the spontaneous EEG, and the 
amplitude difference between the near 
temporal points may be not zero, it may vary 
with time. For the existence of the variable 
part, the amplitude difference between near 
time points in SSVEP may be not zero, and it 
may vary with time but not so violently as 
that in spontaneous EEG. Wu (2008) define a 
parameter called the stability coefficient (SC), 
which is the absolute ratio between the 
amplitude difference and the amplitude sum 
of two near temporal points. From this 
definition, it is clear that the average SC of 
SSVEP is smaller than that of the 
corresponding frequency in the spontaneous 
EEG within a given period; the smaller the 
SC, the more stationary the SSVEP.  
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The SC of two near time points is defined as 
 

�� =
|�����|

(�����)
                               (26)  

 
Where �� or �� is the SSVEP 

amplitude obtained by wavelet analysis at two 
near sample points. For a period SC is defined 
as 

�� =
∑ �

�����(���)�

����(���)
��

���

(���)
                     (27)  

 
Where � is the total of sample point 

in this period, and �� to �� mean the SSVEP 
amplitude calculated by wavelet analysis at 
each sample point. The average SC of the 
fundamental frequency in two minutes 
SSVEP was computed independently for each 
electrode, and the electrode, which had the 
smallest SC under each stimulus, was selected 
as the signal electrode24. 
 
Sequence Detection (SD) 

Consider the EEG signal is divided 
into several subsequences.  The subsequence 
consists of EEG data within a time window 
(TW) and slides on a sliding window (MW) 
between consecutive subsequences (Fig. 4). 
In a subsequence, the CCA coefficients � are 
compute first. Then the instantaneous 
probability ratio of ���of the stimulus 
frequency � is calculated as 
 

��� =
��

�
                                   (28) 

 
where � is defined as 
 

� =
∑ ���

�
� = 1,2,… ,�                       (29)         

 
and � is the number of stimulus 

frequencies. After � subsequences, the SD 
coefficient ��

�, which denotes the probability 

ratio of thestimulus frequency �, can be 
formulated as 
 

��
� = ���

� × ���
� × … × ���

���            (30) 

 
A defined threshold of SD, �, is used 

for making a decision. If ��
� ≥ �, the 

stimulus frequency � is determined as the 
target frequency. If ��

� < �, the SD is 

continued to compute the ��
��� in the next 

subsequence2.  
 

COMPARISON BETWEEN METHODS 

Table 2 shows a comparative of 
methodologies and algorithms presented 
above based on its main features. 

Other important features to determine 
the performance of BCI systems based 
SSVEP are the Signal Noise Radio (SNR) and 
the Information Transfer Rate (ITR), which 
are defined as 

��� = 10���
�������

������
= 10���

�
�

√�
�

��
            (31) 

 
Where ������� and ������are de power 

of the signal and the power of the noise, 
respectively. � is the amplitude of de signals 
and �� is the variance of the noise10,13,21,22,23. 

 

��� = ������ + ������ + (1 −

�)���� �
���

���
����                                  (32) 

 
Where � is the possible targets in a 

SSVEP-BCI system, � is t he probability that 
the desired choice will be selected by the 
users; and ��is the number of correct 
commands per minute2,3,5,8,10,21-23. 
 
DISCUSSION 

Develop techniques to improve the 
performance of BCI systems is priority for 
researchers in this area. Future work in the 
area of BCI systems should be based on 
improving their performance as well the SNR 
and ITR. Knowledge of the techniques used 
currently open possibility of such techniques 



Fernandez-Fraga et al _____________________________________ ISSN 2349 – 7238 

AJCSES[4][1][2016] 001-018                                            

wet or creating new paradigms. These 
challenges have led to develop hybrid 
techniques (BCI-Hybrids) which aims to use 
the combination of neuro-mecanism based 
SSVEP and some others, as motor imagery 

(MI) or P300, it is considered that the 
combination of these elements opens up the 
possibility of greater BCI accuracy in systems 
claiming control devices. Hybrid Systems 
BCI techniques may be revised in the future.

 
CONCLUSION 

In this paper a review of the main 
methods for analyzing EEG signals for the 
development of BCI systems based on 
SSVEP performed. Techniques for single-
channel and multichannel signals analysis are 
presented, and the use of different 
experiments as blinking and performing tasks 
for the evaluation of the techniques review. 
The technical explained, extracted main 
signal characteristics and have different ways 
of performing wet BCI systems. 
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Table 1. List of the most used methodologies for the analysis of signals SSVEP-based BCI 

Method Author(s) Year 

Assisted Closed Loop (ACL) Fernandez-Vargas et al 2013 

Canonical Correlation Analysis (CCA) 

Lin et al 
Bin et al 

Wenya et al 
Zhang et al 

Castillo-Garcia et al 
Jian et al 
Cao et al 

2006 
2009 
2011 
2012 
2014 
2014 
2015 

Common spatial patern (CSP) 
Song et al 

Acqualagna et al 
2013 
2015 

Distinctive Sensitive Learning Vector Quantization 
(DSLVQ) 

Müller-Putz et al 2005, 2008 

Empirical Mode Decomposition (EMD) Chi-Hsun et al 2011 

Least absolute shrinkage and selection operator 
(LASSO) 

Zhang et al 
Cao et al 

2012 
2015 

Minimum Energy Combination (MEC) 
Friman et al 

Volosyak et al 
Wenya et al 

2007 
2010 
2011 

Multivariate synchronization index (MSI) Zhang et al 2014 

Power Spectral Density-Based Analysis (PSDA) 

Liavas et al 
Middendorf et al 

Gao et al 
Lalor et al 

Mukesh et al 
Castillo-Garcia et al 

1998 
2000 
2003 
2005 
2006 
2014 

Stability Coefficient (SC) Nan et al 2008 

Sequence detection (SD) 
Wald 

Cao et al 
1943 
2015 
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Table 2. Describe SSVEP Methods, their critical properties and features 

Method Analysis Type Feature Advantage Disadvantage 

Assisted Closed 
Loop (ACL) 

Single Channel 

 Optimize 
parameters of the 
stimuli 

 Improve real time 
BCI systems 

 Adaptive to user 
differences 

 Improve ITR1 
performance 

 

Canonical 
Correlation 

Analysis (CCA) 
Multichannel 

 method that 
considers a periodic 
pattern with the 
same frequency as 
the stimulus 
frequency 

 measure the 
correlations 
between the brain 
signals and the 
given stimuli 
frequencies 

 obtains the 
maximum similarity 
between two data 
sets 

 

 has lower 
deviation, 

 higher detection 
accuracy and higher 
SNR2 

 Require fixed TWL3 
for estimation of 
the dominant 
frequency 
components 

Common Spatial 
Patern (CSP) 

Multichannel 

 spatial filtering 
technique that 
maximizes the 
variance of band-
passed EEG signals 

 maximizing the 
variance on the 
spatially filtered 

 band-pass filtered 
signals in order to 
obtain an effective 
discrimination of 
mental states 
between the two 
conditions 

 efficient tool to 
identify 
discriminative 
spatial brain activity 

 BCI classification 
tasks 

 

Distinctive 
Sensitive 

Learning Vector 
Quantization 

Single Channel 
 feature extraction 

based on spectral 
information 

 Uses strategy to 
divide a 
classification 
problem into 

 

                                                      

1 Information Transfer Rate 
2 Signal to Noise Ratio 
3 Time Window Length 
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(DSLVQ) subproblems and to 
find an optimal 
linear 
approximation for 
each subproblem. 

Empirical Mode 
Decomposition 

(EMD) 
Single Channel 

 used to extract 
time-frequency 
information from a 
nonlinear and 
nonstationary signal 

 efficient method of 
analyzing nonlinear 
and non-stationary 
data. 

 Noise reduction  

Least Absolute 
Shrinkage and 

Selection 
Operator (LASSO) 

Single Channel 

 analytical solution 

 low-variance 
estimate 

 high interpretability 
for a linear 
regression 

  

Minimum Energy 
Combination 

(MEC) 
Multichannel 

 Combines multiple 
electrode signals to 
less number of 
channels in order to 
cancel noise as 
much as possible 

 high detection 
accuracy 

 high SNR 

 no calibration data 
for noise estimation 

 remove noises in 
multichannel data 

 Require fixed TWL 
for estimation of 
the dominant 
frequency 
components 

Multivariate 
synchronization 

index (MSI) 
Multichannel 

 estimate the 
synchronization 
between the actual 
mixed signals and 
the reference 
signals as a 
potential index for 
recognizing the 
stimulus frequency 

 

 Require fixed TWL 
for estimation of 
the dominant 
frequency 
components 

Power Spectral 
Density-Based 

Analysis (PSDA) 
Multichannel 

 looking the power 
densities around 
the stimulus 
frequencies and 
obtaining a SNR 

Improve de average 
classification accuracy 

 Require fixed TWL 
for estimation of 
the dominant 
frequency 
components 

 Sensitive external 
noise 

 Require calibration 
methods 

 High computational 
cost 
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Stability 
Coefficient (SC) 

Single Channel  
 Frequency 

recognition within a 
short time period. 

 

Sequence 
detection (SD) 

Multichannel 

 Improve the 
performance of 
SSVEP recognition 

 Improve occurrence 
selection 

 High SNR 
 High ITR 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
Figure 1. Set of EEG signals, 16 channels for 16 seconds sampling25 
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Figure 2. Identifying parts of the brain and location of electrodes in the International System 10

Figure 3. Identification of electrodes international 10
location of the electrodes on the scalp
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Figure 4. EEG signal with SSVEP stimuli. The test is form by 
subsequences (����
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EEG signal with SSVEP stimuli. The test is form by 
(�����) within a time window (TW) and it is a slid with a 

moving window (MW)2. 
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