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Abstract
Autism spectrum disorder (ASD) is a serious
neurodevelopmental disorder for children and adolescent.
Accurate diagnosis of ASD plays a key role in improving the
life quality of individuals with ASD and reducing the burden
of healthcare system. Currently, Functional Connectivity (FC)
analysis based on functional Magnetic Resonance Imaging
(fMRI) has become a popular approach in diagnosis of ASD,
but majority of previous studies were based on the
assumption that FC is stationary throughout the entire scan
session, ignoring the fluctuations over the course of the
scan. Previously sliding window based Dynamic FC (DFC)
method was proposed to estimate the dynamic changes,
but it has a limitation that all observations within the
window are weighted equally. To address the issue, we have
proposed Dynamic Weighted FC (DWFC) method in this
study to extract features from resting-state fMRI (rs-fMRI)
and applied it to distinguishing ASD patients from Normal
Controls (NC). Experiments were carried on subjects from
the Autism Brain Imaging Data Exchange (ABIDE) database.
The classification accuracy is 0.8525 and 0.8061 on two
independent datasets. Results showed that the proposed
method significantly outperformed conventional FC and
DFC approaches, as well as other state-of-the-art ASD
classification methods, which suggests this method as a
promising computer-acid diagnosis tool for ASD.

Introduction
Autism Spectrum Disorder (ASD) is a prevalent

neurodevelopmental disorder characterized by significant
impairments of social-communication deficits and stereotyped
or repetitive behaviors and interests [1,2]. At present, the
clinical diagnosis of ASD is mainly behavior-based and depended
on some clinical measures that quantify the severity of the
disorder [3,4]. However, the approach may be not accurate

because many behavioral phenotypes are associated with
numerous other psychological and psychiatric disorders due to
the similar symptom [1,5,6]. To address this issue, combined
brain imaging and machine learning methods have been
proposed as aided diagnostic tools [7,8] to automatically identify
ASD in a non-invasive fashion.

Machine learning techniques have been widely used in the
diagnosis of various diseases, such as mild cognitive impairment
[9], Alzheimer ’ s disease [10], Parkinson disease [11],
schizophrenia [12,13] and ASD [3,4]. Functional magnetic
resonance imaging (fMRI), which measures synchronized brain
activity via blood oxygenation, holds great promises for
exploring the in vivo neuronal underpinnings of ASD. Functional
connectivity (FC) describes temporal correlation among spatially
distant brain regions and resting-state fMRI (rs-fMRI) is
commonly used to investigate brain disorders by using pattern
classifiers. For example, Iidaka [14] classified autism and control
based on resting-state FC with neural network; Chen et al. [15]
using FC network based on two different frequency bands to
identify individuals with ASD; Zhao et al. [3] proposed a machine
learning-based method with feature fusion via hierarchical
supervised local Canonical Correlation Analysis (CCA) for
diagnosis of ASD based on structure Magnetic Resonance
Imaging (sMRI) and rs-fMRI; recently, Subbaraju and colleagues
[16] proposed a new spatial feature based detection method,
which extracts discriminative features based on connectivity for
ASD classification based on rs-fMRI data.

Although some promising results were obtained using these
methods, all of these studies were based on the assumption that
FC is stationary throughout the entire scan session, which may
be not true, because some studies have shown that FC among
brain regions is time-varying in fact.

Hence a better method is to involve the dynamic
characteristics of FC. The most common approach for estimating
these dynamic changes is to use the sliding window technique.
But this approach still has the drawback, i.e., all observation
within the window is weighted equally [17-19], which overlooks
the difference of different time points contributing to the
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connection. To address the issue, a Dynamic Weighted FC
(DWFC) method is proposed in current study to distinguish ASD
patients from normal controls based on resting-state fMRI.
Briefly, DWFC was established using sliding window (different
time points within each window with different weight)
technology in the first. The advantages of this measure includes:
(1) time-varying character is captured in the process of
establishing connectivity network; (2) the different contributions
at different time points are quantified through different weights.
Then, variance matrix was calculated to extract features.
Subsequently, to remove the redundancy information and select

the most relevant features with the target from feature set, the
feature selection strategy was adopted. Support vector machine
(SVM) has been applied in classifying individuals with ASD from
normal controls.

Materials and Methods
Figure 1 shows a flowchart of the proposed classification

framework, which mainly including the following procedures:
Image obtain and processing, construction of DWFC, feature
extraction and selection, and classification.

Figure 1: Flowchart of the proposed method.

Subjects
The data used in this work was selected from the publicly

available Autism Brain Imaging Data Exchange (ABIDE) database
[20], which was established as a data repository for facilitating
scientific discovery and accelerate our understanding of the
neural bases of autism. Subjects with were drawn from the
following two centers have the largest sample size in ABIDE
database, including New York University (NYU) Langone Medical
Center and University of California, Los Angeles (UCLA).
Specifically, we focused on rs-fMRI data. The demographic
information and scanning parameters of the data were
summarized in Table 1. For more detailed information about the
data collection, please refer to http://
fcon_1000.projects.nitrc.org/indi/abide/.

Table 1: The demographic information and acquisition
parameters of images used in current study.

Center  NYU  UCLA

Variable ASD NC ASD NC

Number of subjects 58 64 55 43

Gender (male/
female) 51/7 46/18 49/6 37/6

Age
10.48 ±
2.40

11.19 ±
2.54

12.02 ±
1.93

12.14 ±
1.52

MRI vendor  Siemens  Siemens

TR (ms)  2000  3000

TE (ms)  15  28

Flip angle (deg)  90  90

Voxel size (mm3)
3.0 × 3.0 ×
4.0  

3.0 × 3.0 ×
4.0  

Volumes  180  120

Standard fMRI image preprocessing was carried out using the
Data Processing Assistant for Resting-State fMRI (DPARSF) [21]
toolbox, which is based on Statistical Parametric Mapping
(SPM8) (http://www.fil.ion.ucl.ac.uk/spm) and Resting-State
fMRI Data Analysis Toolkit [22] (REST, http://www.restfmri.net).
For each subject, the first 10 images of the functional images
were discarded before any further analysis to ensure
magnetization equilibrium. Slice timing correlation, realignment
and normalization were then performed. Next, the images were
normalized into the Montreal Neurological Institute (MNI)
space. The resulting images were temporally filtered with a
band-pass filter (0.01-0.08 Hz) [23]. The rs-fMRI image was
regressed to reduce the effects of nuisance signals including six
head-motion parameters, white matter signals and
cerebrospinal fluid signals. Then, the automated anatomical
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labeling (AAL) [24] template was used to divide the rs-fMRI
image into 116 regions of interesting (ROIs), including 90
cerebrum regions (45 in each hemisphere) and 26 cerebellum
regions (9 in each cerebellar hemisphere and 8 in the vermis).
The mean time series of each brain region were obtained for
each individual by averaging the fMRI time series within the
region [25].

Suppose �� = (��(1), ��(2), ..., ��(�))and�� = (��(1), ��(2), ..., ��(�)) are two L length time series of
brain region i and j, the Pearson’s correlation (PC) between

them can calculated as���� = cov(��,��)������ (1)Where, cov covers��� and ��� are the standard deviation of ith and jth time series,
respectively.

Although above measure can capture the interaction between
regions, it depends on the assumption that the connectivity
remains constant throughout the entire scan session, which
ignores the fact that an individual subject is likely to engage in
slightly different mental activities at different time points. Some
studies have reported that the connectivity could change over
the course of the scan, and these dynamics can also be linked to
changes in human behavior [26,27].

To estimate the dynamic change of time series, sliding
window strategy is adopted in this work. Dynamic FC between
two time series was computed with pairwise Pearson ’ s
correlation using rectangular sliding windows of length N TRs

and step size 1 TR, thus generating T=L-N+1 windows. The k th
window pairwise correlation of two regions can be computed as:

�����(�) = cov(��(�),��(�))���(�)���(�) , (� = 1, 2, ...,�) (2) Where ��(�)
represent the k -th window in i -th time series, and analogously
for ��(�) However, the approach has shortcoming, since all
observations within the time window is weighted equally. To
better capture the characteristics of different time instances
that could generate different contributions to connectivity,
dynamic weighted FC (DWFC) method was proposed in this
work. In this approach, the interaction between i-th and j-th
brain region within k-th window in DWFC model can be

�[�(�)��(�)(�)− ��(�)] . [�(�)��(�)(�)− ��(�)]������(�) = � = 1�� = 1� [�(�)��(�)(�)− ��(�) �� = 1� [�(�)��(�)(�)− ��(�)
(3)Where ��(�)= �� = 1� [�(�)��(�)(�)and ��(�)(�) represent the �th

element within k-th window in i-th time series. Among various
financial studies, most operators would judge the information
from recent events as more valuable than from remote ones for
both descriptive and forecasting purpose [28], so weighted
recent events more heavily. In this work, to take advantage of

the time information within the window, we defined�(�) = �� .

Figure 2: The calculation process of DWFC.

The variance of the time series of correlation coefficient
obtained by Eqn. 3 was computed to assess temporal variability
according to the following equation:

��� = 1� − 1 �� = 1
� (������(�)− 1� �� = 1

� ������(�))2 (4)

Figure 3 illuminates how to obtain the variance of the
correlation between two different regions. Due to symmetry,
only the upper triangular of the variance matrix obtained by
Eqn.4 was used. For each sample, all elements in upper
triangular part of the variance matrix were concatenated to form
a feature vector with 116 × (116-1)/2=6670 elements. Feature
extraction and feature selection are the two important aspects
in machine learning and image processing areas. In order to
avoid the curse of dimensionality, the feature selection strategy
was adopted to remove the irrelevant and redundancy
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information, which will lead to poor classification performance.
In current study, the LASSO (Least Absolute Shrinkage and

Selection Operator) [29] was utilized to select a small feature
subset relevant to ASD disease.

Figure 3: Illuminates the calculation process of variance.

Classification
Support vector machine (SVM) [30-32] is an effective tool in

machine learning and pattern recognition fields. It has been
widely used in bioinformatics [33,34] and diagnosis of diseases
[13,35,36]. The basic idea of SVM is to establish a hyper-plane to
maximize the margin between the positive sample and negative
sample. We use SVM with a simple linear kernel in current study.

Given the limited number of samples in the dataset, the
Leave-One-Out cross-validation (LOOCV) approach was used to
evaluate the performance of the proposed framework.
Specifically, suppose that there are m subjects in the dataset,
then m-1 subjects are used for training; the remaining one is
used for testing. The entire process was repeated m times, each
time leaving out a different subject for testing.

The proposed method was evaluated based on data scanned
at two different centers (NYU Langone Medical Center and
University of California, Los Angeles) in this section. We
employed the following six different metrics to evaluate its
diagnostic power for ASD: Classification Accuracy (ACC),
Sensitivity (SEN), Specificity (SPE), Positive Predictive Value
(PPV), Negative Predictive Value (NPV), F-score (F). They are
defined respectively as,

 (5)

Where TP, FP, TN, FN denote the number of true positive, false
positive, true negative and false negative, respectively.

Precision=PPV= ����+ �� ; recall=SEN= ����+ ��  (6)

Besides, to better evaluate the classification performance of
the proposed model on imbalanced classes of these datasets,
the area under receiver operating characteristic (AUC) was also
adopted.

Results

The proposed DWFC was compared with Pearson’s correlation
(PC) and DFC measure. The results by these methods were
summarized in Tables 2 and 3. It can be observed that our DWFC
can achieve the best classification performance compared to
other methods. Specifically, the yield classification accuracy of
the proposed method is 0.8525 and 0.8061 on NYU and UCLA,
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respectively, whereas the best classification accuracy is 0.6885,
0.7143 and 0.7951, 0.7857 for PC and DFC. To confirm whether
our method has statistical significance, permutation test (1000
times) was performed, the corresponding p-values are 0.001
(NYU) and 0.004 (UCLA), respectively, which verified the efficacy
of proposed model.

Table 2: The achieved classification results using different
methods on NYU dataset.

AAC SEN SPE PPV NPV F AUC

PC
0.688
5

0.655
2

0.718
8

0.678
6 0.697

0.666
7 0.734

DFC
0.795
1

0.758
6

0.828
1 0.8 0.791

0.778
8 0.903

DWFC
0.852
5

0.827
6 0.875

0.857
1

0.848
5

0.842
1

0.931
6

Table 3: The achieved classification results using different 
methods on UCLA dataset.

AAC SEN SPE PPV NPV F AUC

PC
0.714
3 0.8

0.604
7

0.721
3

0.702
7

0.758
6

0.808
5

DFC
0.785
7

0.745
5

0.837
2

0.854
2 0.72

0.796
1

0.845
7

DWFC
0.806
1 0.8 0.814

0.846
2

0.760
9

0.822
4

0.860
9

In addition, we also compare the proposed methods with
some other state-of-the-art methods, which also used fMRI
images collected from the New York University Langone Medical
Center, for ASD classification. For example, Wee et al. [37] used
Temporally Distinct Functional Connectivity Networks (TDFCN)
and support vector machine with three different kernels (i.e.,
linear, Radial Basis Function (RBF), and polynomial) to identify
ASD patients; Wang et al.[4] combined the white matter and
grey matter tissue volumes of each brain region as the
classification features, then a novel CCA-based Graph Matching
Sparse Group Lasso (GMSGL) feature selection method was
adopted to classify ASD; Zhao et al.[3] integrated MRI and fMRI

features, and used HSL-CCA method to select the most
discriminative features, finally the linear SVM with default
parameter was used for classification. The classification results
of these methods were listed in Table 4. As we can see from
Table 4, compared against other classification.

Table 4: The classification results about different methods on
ASD classification on NYU dataset.

Method ACC SEN SPE PPV NPV

TDFCN(Linear) 0.707 0.814 0.612 0.79 0.648

TDFCN(RBF) 0.717 0.605 0.816 0.743 0.702

TDFCN(polynomial) 0.641 0.814 0.49 0.583 0.75

GMSGL 0.754
0.746
3

0.759
6

0.747
8 0.762

HSL-CCA 0.816 0.811 0.825 0.815 0.823

DWFC
0.852
5

0.827
6 0.875

0.857
1

0.848
5

Frameworks, our proposed method achieved the best 
classification performance, in terms of classification accuracy, 
sensitivity, specificity or PPV, NPV. Specifically, the classification 
accuracy obtained by the proposed method nearly 14% higher 
than that by TDFCN, which again demonstrating the efficacy of 
proposed method.

SVM is a popular classification algorithm in machine learning
and pattern recognition field, and it has widely used in disease
diagnosis. Besides, random forest (RF) and K nearest neighbors
(KNN) were also draw researchers’ attention. To investigate the
classification performance of different classifiers, additional
experiments were performed on other two classification
algorithms. The results were presented in Figure 4. As observed
in the figure, SVM achieved the highest classification accuracy
on both two datasets. Specially, there is a great gap between
sensitivity and specificity when using RF or KNN as classifier,
primary reason of the phenomenon is due to the imbalance of
data, but it didn’t appear when SVM as the classifier. These may
be the reason why various studies used SVM as the classifier to
identify diseases.
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Figure 4: The classification results of three different classifiers. (a)NYU; (b)UCLA.

Since window length may affect final classification
performance, the window length typically vary from 12.5 to 240
s in previous studies [38,39]. Therefore, to find out the most
optimal value of N for the final classification accuracy, we set N
range from 15 to 100 with an increment of 5. The classification
accuracy was summarized in Figure 5. It’s not difficult found that
when N is 30 and 35 for NYU and UCLA dataset, the highest
classification accuracy was achieved.

Figure 5: The obtained classification accuracy when N has
different values.

The weight of selected brain regions for final classification was
showed in Figure 6. Although the experiments were conducted
on two different datasets, many important brain regions were
included both of the two experiments, such as amygdala,
angular gyrus, and precuneus, besides, some brain regions from
cerebellum were also included, such as Lobule IX of cerebellar
hemisphere, Lobule X of vermis, all of these were play a key role
in ASD identification.
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Figure 6: The weight of selected brain regions for final classification. (a)NYU; (b)UCLA.

The amygdala plays a key role in social behavior and emotion.
It ’ s mainly function appears to be the linking of perceptual
representations to cognition and behavior on the basis of the
emotional or social value of the stimuli [40]. Social impairment is
one of the important dysfunctions of autism, previous studies
[41,42] have reported amygdala volumes abnormality in autism.
The precuneus is an intriguing cortical area, plays an important
role in visuospatial imagery, episodic memory retrieval and self-
processing operations [43]. Besides, cerebellar volume
abnormality was found in individual with autism [41,42,44]. For
example, Sparks et al. [42] conducted an experiment on 71
children (of which 45 ASD patients) between 3 and 4 years of
age, found increased cerebellar volume in ASD group, and the
same finding was reported in Piven’s study on adult individuals.

Discussion
Connectivity network analysis method has widely used in

diseases identification. The key point is how to establish the
network. Currently, the Pearson’s correlation based network is
the most common approach to investigate the interaction
relationship between different brain regions. With the
development of research, more and more evidence shows that
the correlation between regions is time-varying. To some extent,
the changes in FC have been linked to changes in cognitive or
vigilance states [45-47]. To capture the changes, DFC method
was proposed. Previous studies reported on disease-related
alterations in DFC suggested that the temporal features of FC
could serves as a disease biomarker [48], so since DFC network
was proposed, it has widely used in diagnosis of mild cognitive
impairment (MCI) [49], epilepsy [39]. To our knowledge, DFC
method has not utilized in detection of ASD in previous studies.
And conventional DFC has the drawback that all observations
within the time window weighted equally. To address the
problem, in this work, we proposed a DWFC method to
distinguish patients with ASD from normal controls. Different
from the conventional FC method based on PC that considers

pairwise relationship on entire scan session, DWFC can capture
the dynamic changes over the scan session; meanwhile, the
different contribution of different time point was also taken into
account. Results indicated that our proposed framework could
deliver significant higher classification accuracy than
conventional FC and DFC in distinguishing ASD patients from
normal controls.

It is noteworthy that high sensitivity is very important for the
purpose of measure the power of the proposed classification
framework, because there would generate different costs for
misclassifying a normal control to be a patient or misclassifying a
patient to a healthy person. Compared with the former, the
latter may cause some more severe consequences, because if a
patient is misdiagnosed as a healthy person, necessary
treatments to delay or cure the disease may not be provided on
time during the critical treatment period. This would accelerate
the progression of disease from mild to severe, a point where no
effective treatment is available, eventually causing death of
patient [50].

Many psychiatric disorders are thought to be brain
connectivity disorders. Figure 7 shows the most discriminative
inter-regional functional features selected from rs-fMRI. The
thickness of each arc in the figure represents the discriminating
power of the corresponding connection, and the color of each
arc in the figure is randomly assigned just for better
visualization. It can be observed from the figure that many of
the connection located in frontal area and temporal regions.
Previous studies have found abnormal level of connection in
regional activation in the frontal regions in autism [51-53]. Keller
et al. [54] have reported reductions in the structural integrity of
white matter in individual with autism, in frontal lobe areas near
the corpus callosum. Temporal regions are implicated in social
perception and language abilities that are impaired in autism
[55]. Previous studies [56,57] have reported bilateral temporal
hypo perfusion in autistic children.
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Figure 7: The most discriminative features used in classification. (a) NYU; (b) ULCA.

There is a strange phenomenon is that boys were almost 5
times more likely to be identified with ASD than girls. To
investigate the phenomenon whether related to connectivity,
average connectivity matric based on PC was calculated in
Figure 8. It can be observed that there exists stronger

connection between frontal and temporal area, frontal and
cerebellum regions, temporal and cerebellum regions in female
than male, which may provide a reasonable explanation to the
phenomenon.

Figure 8: Average FC matric on ASD subjects. (a)Male; (b) Female.

Although a promising result was achieved by the proposed
framework, it has some limitations. First, sample size is relatively
small for the pattern classification tasks, validation on larger
datasets is demanding. Second, the proposed method is based
on fMRI images, some other imaging modalities, such as
Diffusion Tensor Imaging (DTI), structural Magnetic Resonance
Imaging (sMRI), and Positron Emission Tomography (PET), and
some other information, such as eye movement, facial
expressions should be taken into account to obtain a more
comprehensive measure of the risk of ASD to aid the early

detection for ASD. For example, Liu et al. [58] identifying
children with ASD based on subjects ’  face using a machine
learning framework, and a promising result was achieved. If we
can combine brain data with face images, an unexpected result
might be obtained. Third, most of the samples used in current
work are age between 7 to 15, previous study [59] reported that
behavioral abnormalities can be observed before the age of 30
months in ASD patients, if more samples under the age of 30
months can included in the dataset, a more reasonable
framework may obtained.
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Conclusion
In this paper, a dynamic weighted FC method was proposed to

effectively identify patients with ASD from healthy normal
controls. Compared with the conventional FC study, the method
can better capture the dynamic characteristic and time point
specificity. The experimental results confirmed the effectiveness
of the proposed method; it also demonstrated the superiority of
the proposed method over other state-of-the-art methods.
Furthermore, the proposed method can be extended to
diagnose other mental disorders, such as Parkinson disease,
Alzheimer ’ s disease, Attention Deficit Hyperactivity Disorder
(ADHD), schizophrenia, and so on.
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