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Despite having no mammary glands, Drosophila is a very useful 
model for conducting research on molecular mechanisms as well 
as the regulation of transcription including epigenetic changes 
associated with breast cancer development. Drosophila has been 
used as one of the model systems since it was first introduced by 
Thomas Morgan, a pioneer in genetics for the study of heredity, in 
the early 20th century [1]. The complete mapping of all Drosophila 
chromosomes was completed by Dr. Morgan and his colleagues. 
Drosophila has extremely large polytene chromosomes in the 
salivary glands. These polytene chromosomes have enabled us 
to directly observe chromosomal structures and band-patterns 
including euchromatin and heterochromatin since the early 
1960s [2,3]. Most notably, the loci involved in gene activation can 
be visualized as chromosome puffing [3,4]. When chromosomes 
including puffs are immuno-stained using antibodies against 
factors associated with transcription and chromatin structures 
such as RNA polymerase II and histones, we can evaluate the 
state of transcription as well as modification of histone tails which 
are epigenetic markers on genes of interest [4,5]. In Drosophila, 
Position-effect variegation (PEV) which is observed when a gene 
normally in euchromatin is juxtaposed with heterochromatin, 
is also a very useful phenotype for analyzing factors which 
can convert chromatin structures from euchromatin to 
heterochromatin or vice versa [6]. We can analyze the functions 
of chromatin modifiers in the degree of eye pigmentation, i.e., 
the proportions of white and red pigmentation in Drosophila 
eyes, by crossing mutant lines of interest with an original PEV 
line [6]. 

Drosophila is also a useful model for analyzing human diseases 
including neurodegenerative disorders, cardiovascular disease, 
lipid metabolism abnormalities, and various cancers [1,2]. 
Drosophila orthologs have been identified for approximately 
two-thirds of all human disease genes, and all major signal 
transduction pathways are conserved between flies and humans 
[1,7]. In addition, useful fly databases have been established, 
and numerous mutant lines are available upon request. Because 
of these advances, Drosophila has become a remarkable model 
for functional analyses of many human genes [2]. Taking breast 
cancer as an example, one protein named Taiman, a Drosophila 
protein related to AIB1 which is a steroid receptor co-activator 
amplified in breast cancer, was revealed to regulate invasive cell 
behavior using a Drosophila model [8]. That study raised the 
possibility that co-activators of the Drosophila ecdysone receptor 

and the human estrogen receptor shared essential functions 
across species. In this way, when it is difficult to conduct certain 
types of experiments with human or other mammalian systems, a 
model system using Drosophila is a potential alternative, though 
it requires careful adjustments, which can be among the most 
interesting processes in such experiments.

Recently, in the field of breast cancer research, a histone H2A 
variant, H2A.Z, has been attracting attention as a treatment target 
[9]. However, it is very difficult to analyze the molecular function 
of H2A.Z in vivo in human breast cancer cases, due to cancer 
heterogeneity as well as the complexity of tissue specificity in 
human subjects. A system using Drosophila can overcome these 
challenges. 

The Drosophila histone variant of H2AvD is especially interesting. 
Although it is a homologue of human H2A.Z, it has a ‘SQAY’ motif, 
which is highly homologous with a ‘SQEY’ motif of human H2A.X, in 
its C-terminal tail, such that H2AvD has two functions, that of H2A.Z 
and that of H2A.X [10]. H2A.Z is mainly associated with regulation 
of gene expressions [11]. Nucleosomes including H2AvD were found 
particularly enriched immediately downstream of transcription 
start sites [12]. On the other hand, H2A.X is a key player in double-
strand DNA (dsDNA) break repair. The serine 137 (S137) in the 
‘SQAY’ of H2AvD, corresponding to the S139 in the ‘SQEY’ of H2A.X, 
is phosphorylated when dsDNA break occurs. Phosphorylation of 
S137 (H2AvD) as well as S139 (H2A.X) are critical marks of dsDNA 
break recognition in the dsDNA repair process [13,14]. It was 
also demonstrated by using Drosophila S2 cells that acetylation 
by Drosophila Tip60 was required for selective phospho-H2AvD 
exchange at DNA lesions [11,15]. Thus, H2AvD appears to have the 
functions of H2A.Z in transcription control as well as the function of 
H2A.X in the dsDNA break repair [10].
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To date, key factors associated with incorporation and/or 
exchange of H2A.Z and H2A.X have been identified by using 
protein purification methods [15,16]. Recently, a nucleosome-
pull down assay was conducted to identify protein partners that 
interact with nucleosomes containing H2A, H2A.Z and H2A.X. This 
is particularly worthy of mention because that report described 
the first systematic analysis of H2A.Z and H2A.X, resulting in 
numerous factors, which had not been identified by conventional 
methods, being newly recognized [17]. Generally, in protein 
purification, while factors which interact strongly or exist in great 

abundance in the cell are easily identified, a few key factors which 
interact weakly and/or are rare in the cell are difficult to identify. 
On the other hand, genetic screening using Drosophila leads to 
the possibility of identifying such rare but potentially significant 
factors. Therefore, our group combined genetic screening using 
the Drosophila phenotype and a protein purification assay, 
resulting the identification of novel factors, such as DRG2 and 
Nup107, associated with H2AvD [18]. The author’s current focus 
encompasses making the most of the Drosophila system, despite 
working clinically as a surgical oncologist treating breast cancer.
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