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ABSTRACT

The present paper investigates the effect of atmifvertical rotation on the physical problem ofutbte-diffusive
convection coupled with cross-diffusions in visasgt fluid. Some general qualitative results conog the
stability of oscillatory motions and limitations dhe oscillatory motions of growing amplitude areriged. The
results for the double- diffusive convection prolewith or without the individual consideration @@ifour and
Soret effects follow as a consequence.

Keywords. Double-diffusive convection, Dufour-Soret effectRivlin-Ericksen viscoelastic fluid, Rayleigh
numbers, Prandtl number, Taylor number
M SC 2000 No: 76E99, 76E06

INTRODUCTION

Thermosolutal convection or more generally doubfiuisive convection, like its classical counterpamamely,
single —diffusive convection, has carved a nicheitielf in the domain of hydrodynamic stability ancount of its
interesting complexities as a double- diffusive mdraenon as well as its direct relevance in theddiebf
Oceanography, Astrophysics, Geophysics, Limnology @hemical engineering etc. can be seen frometiew
articles by Turner [1] and Brandt and Fernando f2].interesting early experimental study is thaCaldwell [3].
The problem is more complex than that of a singléfusive fluid because the gradient in the refattoncentration
of two components can contribute to a density gnatdust as effectively as can a temperature gnadiaurther, the
presence of two diffusive modes allows either stetiy or overstable flow states at the onset ofvection
depending on the magnitude of the fluid parametbeesboundary conditions and the competition bebhw@ermal
expansion and the thermal diffusion. More compéidatiouble- diffusive phenomenon appears if theatbditing
thermal/concentration gradient is opposed by tHecefof a magnetic field or rotation. In the domaihlinear
stability theory the double- diffusive convectioroblems can be described by a set of linear orgidéferential
equations with constant coefficient and homogenebogndary conditions. The task of finding the esipli
analytical solutions of these equations ( espscialien boundaries are rigid) and thereby charagigyithe critical
conditions at the threshold of instability are muttirely trivial since prohibitive amount of numeal work is
required to affirm oscillatory or non- oscillatonyotions as the eigen value equation involves allghrameters of
the problem implicitly.

The stability properties of binary fluids are quitéferent from pure fluids because of Soret andddu effects [4],
[5]. An externally imposed temperature gradientjoices a chemical potential gradient and the phenomknown
as the Soret effect, arises when the mass fluxagmta term that depends upon the temperatureegrtadihe
analogous effect that arises from a concentratiadignt dependent term in the heat flux is calledDufour effect.
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Although it is clear that the thermosolutal andegddufour problems are quite closely related, theliationship has
never been carefully elucidated. They are in firtnally identical and identification is done by ams of a linear
transformation that takes the equations and boyndamnditions for the latter problem into those fbe former.

Mohan [6,7] mollified the nastily behaving govergiequations of Dufour- driven thermosolutal coni@ttand

Soret — driven thermosolutal convection problemstred Veronis [8] type by the construction of aehn

transformation and derived the desired results eéonicg the linear growth rate and the behavior sfilatory

motions on the lines suggested by Banerjee e{9all0]. The analysis of double diffusive conventibecomes
complicated in case when the diffusivity of onegedy is much greater than the other. Further, whentransport
processes take place simultaneously, they interfétte each other and produce cross diffusion efféthe Soret
and Dufour coefficients describe the flux of maasised by temperature gradient and the flux of baased by
concentration gradient respectively. The couplifighe fluxes of the stratifying agents is a prenaléature in

multicomponent fluid systems. In general, the ditgbdf such systems is also affected by the cdiffsision terms.

Generally, it is assumed that the effect of craffsgions on the stability criteria is negligiblelowever, there are
liquid mixtures for which cross diffusions are bétsame order of magnitude as the diffusivitie®r&lare only few
studies available on the effect of cross diffusitondouble diffusion convection largely becausehefdomplexity in

determining these coefficients. Hurle and Jakenddn have studied the effect of Soret coefficienttiom double—
diffusive convection. They have reported that thegnitude and sign of the Soret coefficient werenged by

varying the composition of the mixture. McDougdlR] has made an in depth study of double diffusieavection

where in both Soret and Dufour effects are impdrtan

In all the above studies, the fluid has been cameil to be Newtonian. However, with the growing amance of
non-Newtonian fluids in modern technology and iridas, the investigations on such fluids are désraThe
Rivlin-Ericksen [13] fluid is such fluid. Many reach workers have paid their attention towards shely of
Rivlin-Ericksen fluid. Johri [14] has discussed thiecoelastic Rivlin-Ericksen incompressible fluishder time
dependent pressure gradient. Sisodia and GuptaafibSrivastava and Singh [16] have studied théeady flow
of a dusty elastico-viscous Rivlin-Ericksen flulsdraugh channel of different cross-sections in thesence of the
time dependent pressure gradient. Sharma and Kliiviphave studied the thermal instability of a lagé Rivlin-
Ericksen elastico-viscous fluid acted on by a umifootation and found that rotation has a stahifizeffect and
introduces oscillatory modes in the system. Shaanth Kumar [18] have studied the thermal instabilityRivlin-
Ericksen elastico-viscous fluid in hydromagnetics.

Rotation introduces a number of new elements iritgdaodynamic problem and the key to our understendf the
consequences of rotation, some of which might appather intriguing and unexpected at first sight,best
provided by an analysis of its effects on certaémegal theorems of Helmholtz and Kelvin relatingtioity. The
destabilizing part played by viscosity through iitsroduction into nonviscous slow and steady protden the
presence of rotation which otherwise would remdable in the absence of viscosity, and the stabgizole of
rotation through its introduction into nonviscousve and steady problems which otherwise might remaistable
in the absence of rotation are consequences wihiech & common origin that lies in the Taylor-Proudrisgorem.
There is another important factor to remember waerexternally imposed rotation is present in a agginamic
problem: namely, that it imparts to the fluid certproperties of elasticity which enable the flum transmit
disturbances by new modes of wave propagationttisreason, overstabilty as a means of develoipisigbility
may be anticipated and this may, under certainupistances, play a crucial role in the problem.

Motivated by these considerations the present papestigates the effect of rotation on the indtgbof double-
diffusive convection problem coupled with crossfakfons in viscoelastic fluid and derives some gehgualitative
results concerning the stability of oscillatory mos and limitations on the oscillatory motions gfowing
amplitude. The results for the double- diffusiveeection problems with or without the individualnsideration of
Dufour and Soret effects follow as a consequence.

2. MATHEMATICAL FORMULATION OF THE PROBLEM
The relevant governing equations and boundary tiongi of double — diffusive rotatory convection pted with
cross — diffusions in Rivlin —Ericksen voscoelagigd are:

(02 —az)((D2 ~a?) —g(l— F)jwz R, a20-R.a2p-TD( | 2.1)
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(Dz—az—p)6?+ D, (D?-a%) ¢g=-w , (2.2)

(Dz—a2—£]¢+ST(D2—a2)9:—iv , (2.3)
T T

(DZ -a’ —BJZ =-Dw. (2.4)
g

with

w=0=0=¢=Dw=¢ atz=0and z=1 (on rigid boundaries) (2.5)

w=0=D?’w=8=¢=D{ atz=0and z=1 (on a dynamical free boundpries (2.6).

d
In (2.1)—(2.6), z is real independent variable stiedt 0< z< 1, D = d_ is differentiation w.r.t z ,%a>0 is a
Z

constantg > 0 is a constantT >0 isaconstantD< F <lisa constanth and R are positive constants for the

Veronis' configuration and negative constant far8s configuration] > Qis a constant, p = p- ip; is complex
constant in general such thatgnd p are real constants and as a consequence the @epeadables w(z) = \z) +
iwi(z), 8(z) = 0,(2) +1i0,(2) .¢@@ = @.(2) + IQ(2) and {(2) =, (2) +i{;(z) are complex valued
functions(and their real and imaginary parts agd valued). The meanings of symbols from the platgioint of
view are as follows; z is the vertical coordinatélz is differentiation along the vertical directj & is square of

. v . _ . Uy .
horizontal wave number;, =— is the thermal Prandtl numbet, = i is the Lewis numberf = d—g is the
K K
ap,d* ap,d*
viscoelastic parametel; =% is the thermal Rayleigh numbelRg =&is the concentration
KU KU
244

S
i is the

D
, 2Vt
is the Taylor numberD; = is the Dufour numberS; =
v Bk B,

Soret numbex§ is the concentratiorf is the temperature, p is the complex growth natés the vertical velocity

Rayleigh number,T =

and { is the vertical vorticity.

3. THELINEAR TRANSFORMATION AND MATHEMATICAL ANALYSIS

The nature of the system (2.1)-(2.4) is clearlylitptévely different from those of double-diffusiveonvection
problems O; =0=S;) as now we have coupling between all the threereifunctionsw, 6,and ¢ in all the
three equations. Consequently, they behave nastidlyobstruct any attempt for the elegant extensfahe earlier
results for the double-diffusive convection probteto the present generalized set up. The nastyimehaof these
equations is mollified by the linear transforma#iaiven by:

w=(S; +B)w
6 =E6+Fg
9 =5,0+Bg
¢=(S+B)¢ 13.
where
S +B S +B

B=—= E= F=—/——D

o DT+AA’ D, +A |
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and A is a positive root of the equation
A? +(r-)A-17S.D; =0.

The system of equations (2.1)-(2.4) together withiridary conditions (2.5)-(2.6), upon using the ¢farmations
(3.1) assumes the following form:

(b2 —az)((Dz —a?)-P - F)jwz R’ a?0-Rs a’p+TD( | (3.2)
o
(k.(D? -a%)- p)o=-w, (3.3)
(kz(DZ—aZ)—ngo:—iV , (3.4)
r r
(Dz -a’ —Ej ¢ =-Dw, (3.5)
o
with
w=0=Dw=60=¢=¢ atz=0andz=1 (3.6)
or w=0=Dw=60=¢={ atz=0andz=1 (3.7)
or
w=0=Dw=80=¢=¢ atz=0
(3.8)
w=0=D’w=0=¢=DJatz=1
or
w=0=D*w=8=¢=D¢ atz=0 o)
w=0=Dw=68=¢=¢ atz=1 '

where

kl :1+%’ k2 :1—&
A A

are positiveconstants
and R = Cr P ARBRS) o _ (S *+BIRA+R Dy

BA-S.D; BA-S,D;
are respectivly the modified thermal Rayleighnumberand the modified

concentraibn Rayleighnumber

The sign tilde has been omitted for simplicity.

The system (3.2)-(3.5) together with either of ble@indary conditions (3.6)-(3.9) constitutes a ctimristics value
problem for p for given values of the other para&manamely,R} , R'S, a’ ,0,7, T and a given state of the system

is stable, neutral or unstable according ps the real part of p, is negative, zero or positiFarther, if

p, = 0= p, = 0 for all wave numbera?®, then the principal of exchange of stabilities §Pks valid otherwise

we have overstability at least when instabilityssatas certain modes.
We now prove the following theorems:

Theorem1: If (p, w,0,¢,{ ), p=p+ip, p; #0, F <1is a non-trivial solution of (3.2) — (3.5) togettwith
either of the boundary conditions (3.6)-(3.9) witlR. >0 R, >0 and M <1 then
p, <0,
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where
_ 4Ry
271" L+ A(1-F )k,

A= min{r—kz,l }
o

Proof: Multiplying (3.2) by w*(the complex conjugate of) and integrating the resulting equation oveniésical
range of z, we get

1 1 1 1
[wx(D?-a%) (D?-a% - P( 1-F ))wdz= R;a?[6 w* dz- Ria?[pw* dz+T [w* D¢
0 g 0 0 0

(3.10)

Taking the complex conjugate of (3.3) and (3.4) asidg the resulting equations in (3.10), we get

1W*(D2—a2)(D2— Io1 F ))wdz=-R, a2 Hk(Dz—a) p*|6* dz
J )

+R'a2rj¢{k (D? - }gp dz- Tj{ ( az—gji*}dz (3.12)

Integrating (3.11) by parts a suitable number ks, using either of the boundary conditions (8369 and one of
the following inequalities

2
Jl'w* D*y dz= (—1)"1HD2”¢/ dz, (3.12)
0 0

where,
Y=60=¢, forn=0,1angy =w,forn=0, 1, 2,

we have
1 1
I(‘DZMZ + 232D’ +a4|v\42jdz+—p(1; F)NDMZ + a2|V\,12)dz
! 0
1 t )
= Rea? [l (ot +aig) + A" Joz- Rt [l 0" +ai"y + 2 Jo
: 0

1 *
+Tj(|Dz|2 +a? +p—|Z|2de (313
0 g

Equating the real and imaginary parts of (3.13)aétpizero and using, # O, we get

110
Pelagia Research Library



Hari Mohan and Sada Ram Adv. Appl. Sci. Res., 2014, 5(5):106-118

iUDZMZ +2a7|owf? +ajuf” Jaz+ PO F)EQDWV + 22w iz

h 1
-Rra I[k1QDH|2 +a2|612)+ pr|612 ]dz— Rsa T“kz( |Dq42 "'aZMZ)"'%MZ ]dZ
° 0

1
+TIUDZ ‘2 +a’ +ﬂ|z|2jdz (3.14)
< o
and
1- F)1 2 2 a2 T2 T &2
TI(|DV\,1 +a’%w)dz+ R+a2j|6?| dz- R’Sasz dz—Ej|(| =0 (3.15)
0 0 0 0

If permissible, lefd, = 0.

Now, multiplying (3.15) byp, and adding the resulting equation to (3.14), weehav

J([ouf” + 220w oz

0

2] Q 2, 2192 o2 2, 242 2P (L= F) T1yui2 4 22
-Rra’®[[l,|DE” +a%|g°) Jdz+ Rsa® 7 [[k,( [Dg” +a%|0)") ]dz+?ﬂDV\4 +a%w*)dz
0 0 0

(ot +aef oz

0

(3.16)

Equation (3.13) implies that

(1—F)1 2 212 T 1,02 , 21 2

~—[(Dw* +a%w")dz~— [|¢|*dz< Rsa® [|¢"dz (3.17)
g 9% 9% 0

or

1 1 1

A=F) [ ow? +a?w?)dz - Rea?[lgfPdz= - [|¢dz. (3.18)
g 9% 0 9%

Since W,8,¢ and ¢ vanish at z = 0 and z = 1, therefore Rayliegh-Riequality [19] yields

1 1

.|'|va12dzz n2j|vx42dz (3.19)

; ;

[ID6| dz= 7 [|6" dz @2

X X

(Ipd?dz= 72 lgfdz

0 0 (321
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1 1
[ID¢]* dz= 7 [|¢|" dz
0 0 23)

We note that when both the bounding surfaces arardically free, then the resulting eigen value f@ob

described by (3.2) - (3.5) together with the boumdanditions (3.6) - (3.9) can be exactly solvathw
= Qncosn z

(nl +a? +p] (3.23)

g

where Q is an arbitrary constant and therefore

j'|DZ|2dz:nzj'|Z|2dz

(3.24)
Thus, from inequality (3.23) and (3.24), we have
1 2 1
(2 +2)[I¢] dos [ (D4 + ¢ )z
0 0 (3.25)
Using inequality (3.19), inequalities (3.17) andl@ yield
2 _ 1 1 1
07+ @A~ F) 24~ T [i¢f2az< Rea? [Pz
or o 0 0% 0 .28)
(P +a®)A-F) {2 oofia2g T (12
- £|v»1 dz-Ria lM dzs5£|z| dz
13)

Further, utilizing Schwartz inequality, we have

J o lf flow =] jwr o =low =
which on simplification yields

iszszz ﬂ4i|v»12

(using (3.19))

(3.28)
Inequality (3.19) together with inequality (3.28gMgs
1 1
J(|Dof* +2a(ow* + ol iz (7 + a° ' [ "z
0 0 Zg)

Multiplying (3.3) by its complex conjugate and igtating the resulting equation over the verticalgaof z, we get
1 1

[[(.(0? - a2)- plolk,(0? - a2)- p*)o] dz= [ ww= dz

0 0

Integrating the above equation by parts an appagpriumber of times and using either of the boundanditions,

we get
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\kz a7 +2prkIQD6? V2 +a?lgf bz + o | Jlf 02 j|w1 oz

Sincep, = 0, therefore from (3.30), we have

kzlh( D2 -a’ )H‘zdzs hw|2dz (3.31)
0 0

Also emulating the derivation of inequalities (3.281d (3.29) we derive the following inequality

j“( D?-a? )9‘2d2=.1HD26?‘ +2a2|D6|” +a%|gdz= (2 +a2)2i|6?|2dz

(3.30)

(3.32)
Combining inequalities (3.31) and (3.32), we get
1 1
W’ dz= (72 +a2f k[ |6 dz (3.33)
0 0

Also, we know

o el i

which upon using inequalities (3.31) and (3.32)dse
1
1 2 1 =4 2
[l szl (2o el o Yo a0
0 0 0

1
> k12 (772 +a? * '[ a* (D2 -a’ )6’ dZ{ (Using Schwartz inequality)

0
1
> (7 +a"‘)k12jﬂD6|2 +a2|6’|2}jz (3.35)
0
Since,p, 2 0, equation (3.16) together with inequalities (3,8285) and (3.25)-(3.27) yields

1k, - F) ¢ k 1 Ra? ¢
(772 + a2)2(1+ 2TJ£|V\42dz+T(1—%J(n2 +a2)£|Z|2dz <E(n;i—a2)£|\,\42dz (3.36)

or

(2- F)(n2 +a2)2£|v\42dz+ R.a2(r k, —a)(n2 +a2)£|q42dz T(WM dz (3.37)

. |Tk
Now, if A = mln{—2 ,1} then it follows from either of the inequalities$8) and (3.37) that

o

3 1 2 1 2
o +a?f ajaz) [+ A(L-F )| dz<R; [jw] dz %)
0 0

e,

27
Since, minimum value of—2 with respect a’ is T, it follows from inequality (3.38) that
a
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{ ki ZTA (1+/]<1—F ))- R }i|w| dz<0

which can be written as
4R}

21 {1+ A(1-F Yy (339

1
(1—M)J'|V\,12dz< 0,  whereM =
0

Inequality (3.39) is clearly incompatible with thgpothesis of the theorem. Hence, we must have
p, <0

This completes the proof of the theorem.

Theorem 1 in the terminology of hydrodynamic sispiimplies that for the problem under considematarbitrary
oscillatory perturbations of growing amplitude aw# allowed if M < 1.

Corollaryl. For the rotatory double-diffusive convecti(iBT =0=S§; ) , if
Rr >0,Rs>0,p, Z0,F <landM'<1, thenp, <0
n 4Ry , A= min{i ;L}.
27 {1+ A (1-F ) o
Corollary 2. For the rotatory  Soret-driven  double-diffusive  eection (DT =0) if
Rr >0,Rs>0,p, Z20,F <landM" <1, thenp, <0
TR
4R -1
no_ (1_ T) . T
whereM " = 2 , A, =mins— 1.
21 {1+ 4, (1-F ) o

Corollary 3. For the rotatory Dufour-driven double-diffusive ms@ction (Sr =0) if
R >0,R;>0,p Z0andM" <1, thenp, <0

4RT{1+i }

1-1 T
2 ( ) , A= mln{— ;L}.
27 {1+ A (1-F ) o
Remark: We note that iM >1, then oscillatory modes of growing amplitudes eaist. Further, keeping in view

Theorem 1 and the fact that the growth rate p heesnbntentionally avoided in the proof of this thero, one
strongly feels that a bound for the growth rateostillatory motions of growing amplitude in term$ the

parameters of the problem specifically involvifd! —1) as factor must be derivable. The subsequent theorem
justifies our intuition.

whereM ' =

i

whereM "' =

Theorem 2. If (p, w,0,¢,{ ), p=p +ip, P; #0,F >1is a non-trivial solution of (3.2) — (3.5) togethwith
either of the boundary conditions (3.6)-(3.9) witR; >0 Rg >0 then
19 < R AVM?Z-1

A1+ A)

where M :%anw} = min{T;Z 1 }

114
Pelagia Research Library



Hari Mohan and Sada Ram Adv. Appl. Sci. Res., 2014, 5(5):106-118

Proof. Proceeding exactly as in theoreml, utilizing thet thatp, = O, we have from (3.16)

J(|D2wf" + 20w +afjuf* oz Rea [l D +alf®) Joz

1 1
+1NDZ|2+a2|Z|2)<R’raz.[[k10DH|2+az|H|2) Joz (3.40)
0 0
From (3.30) it follows that
1 2 1 1
[[kz(D?-a%)d +|p”[|6° dzs [|w dz
0 0 0
Using inequality (3.30) in inequality (3 31) wetge

J|W1 dzz (7 +a2fk, {1+ e }“51 4z 242)

:[ﬂqu +a2|5|2}jz: —i'ﬁ* (D2 —aZHdz

(3.41)

i >~ a%)d dz
sﬁ\( D*- a2 )H‘zdz};{ i|a|2 5

(Using Schwartz inequality)

< 1 + Ll 2 z 3.43
k(v a?f {1 kZ(? +a2) } {'H\M d} o

(using inequalities (3.41) and (3.42))

Making use of inequalities (3.17) or (3.18), (3,24B)43) in inequality (3.40), we have
K, (1-F )t 12 ' 32 L
(n2+a2)2(1+ZH}J.MZdz+T(n2+a2{1—Tk2]J.Z dzs Rra [ dz
g 0 g 0 ( ‘p‘Z E 0
k(\r?+a?]1+— "
l { k* (772 +a’ )2 }

(3.44)

or
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(2-F >(n2 + az)i|w|2dz+ R’Saz(nz +a2)(r K, —a)iM dz

< Ra’
2 2 (3.45)
m +a’ 1+7| P
L et
Now, let
A= min{r ks }
g

then it follows from either of the inequalities48) and (3.45) that

2 2
1+/11 F MHM <R 1+L J1.|V\:12d2. (3.46)
0

Ky (772 +a? )2
: - (77'2"'32)3 , 2 . . .
Since, minimum value OfT with respecta” is , it follows from inequality (3.46) that
27 L+ A(1-F Yk ; 1
7T ( + 4<- >) 1 RT2 y J.|V\112d2<0 . (3.47)
1+ 1P °
2
klz(nz +az) ]

I;lequality (3.47) clearly implies that

|p|<k1(”2+az)\’|\/|2‘1- (3.48)

where
" 4R,
27 L+ A(L-F iy

Now, from inequality (3.46), we can have

(”Lj‘zikl(lwm— F))<r (3.49)

a
2
: - ! +a ) . 2. . : .
Since, minimum value > with respect toa” is 477, therefore inequality (3.49) yields
a
(722 + az) (3.50)
Arr? (L+ /1<1 F)

Pelagia Research Library
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Using inequality (3.50), inequality (3.48) yields

!

RT IMZ_l

i< 4L+ A(1-F )

This completes the proof of the theorem.
Theorem 2 from the point of view of hydrodynamialslity theory may be stated as:

The complex growth ratgd = p, + ipi of an arbitrary oscillatory p; # 0) perturbation of growing amplitude

(p, 2 0) for the problem under consideration lies insidgemi- circle in the right-half of thgd, P, - plane whose
centre is at the origin and whose radius is

R.WVM?%-1
4L+ A(1-F )

Corollary 4. For the rotatory double-diffusive convect@hT =0=S5; ) the complex growth rate
p=p + ipi of an arbitrary oscillatory p, # 0) perturbation of growing amplitudefy, 2 0) lies inside a semi-

circle in the right-half of thep, p, - plane whose centre is at the origin and whoskisad

RVM'2-1
4L+ A(1-F )’

4R T
hereM' = T . Ay =ming— 10,
B (T R M mm{a’l}

Corollary 5. For the rotatory Soret -driven double-diffusivengection (D; =0), the complex growth rate

p=p + ipi of an arbitrary oscillatory p, # 0) perturbation of growing amplitudey, 2 0) lies inside a semi-

circle in the right-half of thep, p, - plane whose centre is at the origin and whoskisad

{R =TTy

(i-7) ° sz
ar?(t+ 4,(1-F ) ML
where

_IRS
q R =TS

TR A1 ) e min{g ’1}'

Corollary 6. For the rotatory Dufour-driven double-diffusive e@ation (ST =0) the complex growth rate

n

p=p + ipi of an arbitrary oscillatory p, # O) perturbation of growing amplitudeff, = O) lies inside a semi-
circle in the right-half of thep, p, - plane whose centre is at the origin and whoskisad
D
1+ —+ WM"?2 -1
Ry i-7) )
a2+ 4,(1-F )
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WRefLe T}
(1-7) o [r
21 {1+ A, (1-F ) A= mm{g ’1}'

CONCLUSION

nr

whereM'"' =

The effect of a uniform vertical rotation on theypital problem of double-diffusive convection coegblwith cross-
diffusions in viscoelastic fluid is considered. Tprencipal conclusions from the analysis of thisdst are:

i) In the terminology of hydrodynamic stabilityrfthe problenDouble-Diffusive Rotatory convection coupled with
cross-diffusions in viscoelastic fluid, an arbiyrarscillatory perturbations of growing amplitudes arot allowed if

M <1

ii) The complex growth ratgp = p, + ipi of an arbitrary oscillatory p; # 0) perturbation of growing amplitude

(p, 2 0) for the problem under consideration lies insidgemi- circle in the right-half of thgd, P, - plane whose
centre is at the origin and whose radius is

R.AVM?%-1
am?{L+ A1-F )
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