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ABSTRACT 
 
The present paper investigates the effect of a uniform vertical rotation on the physical problem of double-diffusive 
convection coupled with cross-diffusions in viscoelastic fluid. Some general qualitative results concerning the 
stability of oscillatory motions and limitations on the oscillatory motions of growing amplitude are derived. The 
results for the double- diffusive convection problems with or without the individual consideration of Dufour   and 
Soret effects follow as a consequence. 
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INTRODUCTION 
 

Thermosolutal convection or more generally double-diffusive convection, like its classical counterpart, namely, 
single –diffusive convection, has carved a niche for itself in the domain of hydrodynamic stability on account of its 
interesting complexities as a double- diffusive phenomenon as well as its direct relevance in the fields of 
Oceanography, Astrophysics, Geophysics, Limnology and Chemical engineering etc. can be seen from the review 
articles by Turner [1] and Brandt and Fernando [2]. An interesting early experimental study is that of Caldwell [3]. 
The problem is more complex than that of a single - diffusive fluid because the gradient in the relative concentration 
of two components can contribute to a density gradient just as effectively as can a temperature gradient. Further, the 
presence of two diffusive modes allows either stationary or overstable flow states at the onset of convection 
depending on the magnitude of the fluid parameters, the boundary conditions and the competition between thermal 
expansion and the thermal diffusion. More complicated double- diffusive phenomenon appears if the destabilizing 
thermal/concentration gradient is opposed by the effect of a magnetic field or rotation. In the domain of linear 
stability theory the double- diffusive convection problems can be described by a set of linear ordinary differential 
equations with constant coefficient and homogeneous boundary conditions. The task of finding the explicit 
analytical solutions of these equations ( especially when boundaries are rigid) and thereby characterizing the critical 
conditions at the threshold of instability are not entirely trivial since prohibitive amount of numerical work is 
required to affirm oscillatory or non- oscillatory motions as the eigen value equation involves all the parameters of 
the problem implicitly. 
 
The stability properties of binary fluids are quite different from pure fluids because of Soret and Dufour effects [4], 
[5]. An externally imposed temperature gradient produces a chemical potential gradient and the phenomenon known 
as the Soret effect, arises when the mass flux contains a term that depends upon the temperature gradient. The 
analogous effect that arises from a concentration gradient dependent term in the heat flux is called the Dufour effect. 
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Although it is clear that the thermosolutal and Soret-Dufour problems are quite closely related, their relationship has 
never been carefully elucidated. They are in fact, formally identical and identification is done by means of a linear 
transformation that takes the equations and boundary conditions for the latter problem into those for the former. 
Mohan [6,7] mollified the nastily behaving governing equations of Dufour- driven thermosolutal convection and 
Soret – driven thermosolutal convection problems of the Veronis  [8] type by the construction of a linear  
transformation and derived the desired results concerning the linear growth rate and the behavior of oscillatory 
motions on the lines suggested by Banerjee et. al. [9, 10]. The analysis of double diffusive convection becomes 
complicated in case when the diffusivity of one property is much greater than the other. Further, when two transport 
processes take place simultaneously, they interfere with each other and produce cross diffusion effect.  The Soret 
and Dufour coefficients describe the flux of mass caused by temperature gradient and the flux of heat caused by 
concentration gradient respectively. The coupling of the fluxes of the stratifying agents is a prevalent feature in 
multicomponent fluid systems. In general, the stability of such systems is also affected by the cross-diffusion terms. 
Generally, it is assumed that the effect of cross diffusions on the stability criteria is negligible. However, there are 
liquid mixtures for which cross diffusions are of the same order of magnitude as the diffusivities. There are only few 
studies available on the effect of cross diffusion on double diffusion convection largely because of the complexity in 
determining these coefficients. Hurle and Jakeman [11] have studied the effect of Soret coefficient on the double–
diffusive convection. They have reported that the magnitude and sign of the Soret coefficient were changed by 
varying the composition of the mixture. McDougall [12] has made an in depth study of double diffusive convection 
where in both Soret and Dufour effects are important. 
 
In all the above studies, the fluid has been considered to be Newtonian. However, with the growing importance of 
non-Newtonian fluids in modern technology and industries, the investigations on such fluids are desirable. The 
Rivlin-Ericksen [13] fluid is such fluid. Many research workers have paid their attention towards the study of 
Rivlin-Ericksen fluid. Johri [14] has discussed the viscoelastic Rivlin-Ericksen incompressible fluid under time 
dependent pressure gradient. Sisodia and Gupta [15] and Srivastava and Singh [16] have studied the unsteady flow 
of a dusty elastico-viscous Rivlin-Ericksen fluid through channel of different cross-sections in the presence of the 
time dependent pressure gradient. Sharma and Kumar [17] have studied the thermal instability of a layer of Rivlin-
Ericksen elastico-viscous fluid acted on by a uniform rotation and found that rotation has a stabilizing effect and 
introduces oscillatory modes in the system. Sharma and Kumar [18] have studied the thermal instability in Rivlin-
Ericksen elastico-viscous fluid in hydromagnetics. 
 
Rotation introduces a number of new elements into a hydrodynamic problem and the key to our understanding of the 
consequences of rotation, some of which might appear rather intriguing and unexpected at first sight, is best 
provided by an analysis of its effects on certain general theorems of Helmholtz and Kelvin relating vorticity. The 
destabilizing part played by viscosity through its introduction into nonviscous slow and steady problems in the 
presence of rotation which otherwise would remain stable in the absence of viscosity, and the stabilizing role of 
rotation through its introduction into nonviscous slow and steady problems which otherwise might remain unstable 
in the absence of rotation are consequences which have a common origin that lies in the Taylor-Proudman theorem. 
There is another important factor to remember when an externally imposed rotation is present in a hydrodynamic 
problem: namely, that it imparts to the fluid certain properties of elasticity which enable the fluid to transmit 
disturbances by new modes of wave propagation. For this reason, overstabilty as a means of developing instability 
may be anticipated and this may, under certain circumstances, play a crucial role in the problem. 
 
Motivated by these considerations the present paper investigates the effect of rotation on the instability of double-
diffusive convection problem coupled with cross-diffusions in viscoelastic fluid and derives some general qualitative 
results concerning the stability of oscillatory motions and limitations on the oscillatory motions of growing 
amplitude. The results for the double- diffusive convection problems with or without the individual consideration of 
Dufour and Soret effects follow as a consequence. 
 
2.   MATHEMATICAL FORMULATION OF THE PROBLEM 
 The relevant governing equations and boundary conditions of double – diffusive rotatory convection coupled with 
cross – diffusions in Rivlin –Ericksen voscoelastic fluid are: 

( ) ζφθ
σ

TDaRaRwF
p

aDaD sT −−=






 −−−− 222222 )1()(   ,                                   (2.1) 
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( ) waDDpaD T −=−+−− φθ )( 2222   ,                                                           (2.2)  

τ
θφ

τ
w

aDS
p

aD T −=−+






 −− )( 2222   ,                                                           (2.3)  

Dw
p

aD −=






 −− ζ
σ

22 .                                                                                     (2.4) 

with 
ζφθ ===== Dww 0         at z=0 and z=1     (on rigid boundaries)                      (2.5) 

 

ζφθ DwDw ===== 20  at z=0 and z=1     (on a dynamical free boundaries)                  (2.6). 

  

In (2.1)–(2.6), z is real independent variable such that 0 ≤ z ≤ 1, 
dz

d
D =  is differentiation w.r.t z , a2 >0 is a 

constant, σ > 0 is a constant, τ  > 0 is a constant, 10 << F  is a constant, TR and RS are positive constants for the 

Veronis' configuration and negative constant for Stern's configuration, 0>T is a constant, p = pr + ipi is complex 
constant in general such that pr and pi are real constants and as a consequence the dependent variables w(z) = wr(z) + 

iwi(z), θ (z) = rθ (z) + iiθ (z) ,φ (z) = rφ (z) + iiφ (z) and )()()( zizz ir ζζζ += are complex valued 

functions(and their real and imaginary parts are real valued). The meanings of symbols from the physical point of 
view are as follows; z is the vertical  coordinate, d/dz is differentiation along the vertical direction, a2 is square of 

horizontal  wave number, σ 
κ
υ=  is the thermal Prandtl number, τ

κ
η1=  is the Lewis number, 

2
0

d
F

υ
=  is the 

viscoelastic parameter,
κυ

αβ 4
1dg

RT =  is the thermal Rayleigh number, 
κυ

αβ 4
2dg

RS = is the concentration 

Rayleigh number, 
2

424

ν
d

T
Ω= is the Taylor number ,

κβ
β

1

2 f
T

D
D =  is the Dufour number, 

12

1

ηβ
β f

T

S
S =  is the 

Soret number,φ  is the concentration, θ  is the temperature, p is the complex growth rate, w is the vertical velocity 

and ζ  is the vertical vorticity. 

 
3.  THE LINEAR TRANSFORMATION AND MATHEMATICAL ANALYSIS 
The nature of the system (2.1)-(2.4) is clearly qualitatively different from those of double-diffusive convection 

problems ( TT SD == 0 ) as now we have coupling between all the three eigen- functions φθ andw ,,  in all the 

three equations. Consequently, they behave nastily and obstruct any attempt for the elegant extension of the earlier 
results for the double-diffusive convection problems to the present generalized set up. The nasty behaviour of these 
equations is mollified by the linear transformations given by: 
 

wBSw T )(~ +=  

φθθ FE +=~
 

φθφ BST +=~
 

ζζ )(
~

BST +=                                                                                                    (3.1) 

 
 
where 

B = ,
1

A
τ

−      E = ,A
AD

BS

T

T

+
+

     F =  T
T

T D
AD

BS

+
+
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and A is a positive root of the equation 
 

0)1(2 =−−+ TT DSAA ττ . 

 
The system of equations (2.1)-(2.4) together with boundary conditions (2.5)-(2.6), upon using the transformations 
(3.1) assumes the following form: 

( ) ζφθ
σ

TDaRaRwF
p

aDaD ST +−=






 −−−− 2/2/2222 )1()(   ,                         (3.2)                      

 ( )( ) wpaDk −=−− θ22
1 ,                   (3.3)                                                                            

 
τ

φ
τ

wp
aDk −=







 −− )( 22
2   ,                                                                             (3.4) 

Dw
p

aD −=






 −− ζ
σ

22 ,                                                                               (3.5) 

with 
ζφθ ===== Dww 0              at z =0 and z = 1                                          (3.6) 

or    ζφθ ===== Dww 0       at z =0 and z = 1                                        (3.7) 

 
or 





======

======

10

00
2 zatDwDw

zatDww

ζφθ
ζφθ

                                                                      (3.8) 

or 





======
======
10

00 2

zatDww

zatDwDw

ζφθ
ζφθ

,                                                                  (3.9) 

where 

.

modmod

)((
,

))((

tan1,1

)//

21

numberRayleighionconcentrat

ifiedtheandnumberRayleighthermalifiedthelyrespectiveare

DSBA

DRARBS
R

DSBA

SRBRAD
Rand

tsconspositiveare
A

DS
k

A

SD
k

TT

TTST
S

TT

TSTT
T

TTTT

−
++

=
−

++
=

−=+=
τ

 

 
The sign tilde has been omitted for simplicity. 
 
The system (3.2)-(3.5) together with either of the boundary conditions (3.6)-(3.9) constitutes a characteristics value 

problem for p for given values of the other parameters namely, TaRR ST ,,,,, 2 τσ′′  and a given state of the system 

is stable, neutral or unstable according as rp  the real part of  p, is negative, zero or positive. Further, if 

00 =⇒= ir pp  for all wave numbers 2a , then the principal of exchange of stabilities (PES) is valid otherwise 

we have overstability at least when instability sets in as certain modes. 
 We now prove the following theorems:  

Theorem 1:  If (p, w,θ ,φ ,ζ ), p = pr + ipi, 0≠ip , 1<F  is a non-trivial solution of  (3.2) – (3.5) together with 

either of the boundary conditions (3.6)-(3.9) with,   0>′TR 0>′SR  and  1≤M   then 

0<rp , 
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where 

1
4 )11(27

4

kF

R
M T

−+
′

=
λπ

, 







= 1,min 2

σ
τλ k

. 

 
Proof:  Multiplying (3.2) by w*(the complex conjugate of w) and integrating the resulting equation over the vertical 
range of z, we get 
 

∫∫∫∫ +′−′=−−−−
1

0

1

0

2
1

0

22222
1

0

***)1()(* ζφθ
σ

DwTdzwaRdzwaRdzwF
p

aDaDw ST                         

                                                                                                                                               (3.10) 
 
Taking the complex conjugate of (3.3) and (3.4) and using the resulting equations in (3.10), we get 
 

[ ]∫∫ −−′−=−−−−
1

0

22
1

22222
1

0

**)()1()(* dzpaDkaRdzwF
p

aDaDw T θθ
σ

 

∫ −




 −−′+
1

0

22
2

2 *
*

)( dz
p

aDkaRS φ
τ

φτ T .*
1

0

22 dz
p

aD∫















 −− ζ
σ

ζ                   (3.11) 

 
Integrating (3.11) by parts a suitable number of times, using either of the boundary conditions (3.6)-(3.9) and one of 
the following inequalities 

   dzDdzD nnn

21

0 0

22 1)1(*∫ ∫−= ψψψ ,                                                                              (3.12) 

 
where, 
 

,φθψ ==  for n = 0, 1 and ,w=ψ for n = 0, 1, 2, 

 
we have 
 

( )

[ ]( ([ ]

)13.3(.
*

))

)1(
2

1

0

222

1

0

2
*

222
2

2
1

0

2*222
1

2

1

0

222
1

0

242222

dz
p

aDT

dz
p

aDkaRdzpaDkaR

dzwaDw
Fp

dzwaDwawD

ST

∫

∫∫

∫∫








 +++

++′−++′=

+−+





 ++

ζ
σ

ζ

φ
τ

φφτθθθ

σ

                                                                            

Equating the real and imaginary parts of (3.13) equal to zero and using 0≠ip , we get 

 



Hari Mohan and Sada Ram                                          Adv. Appl. Sci. Res., 2014, 5(5):106-118         
 _____________________________________________________________________________ 

111 
Pelagia Research Library 

( )

[ ]( ([ ]∫∫

∫∫

++′−++′−

+−+





 ++

1

0

2222
2

2
1

0

2222
1

2

1

0

222
1

0

242222

))

)1(
2

dz
p

aDkaRdzpaDkaR

dzwaDw
Fp

dzwaDwawD

r
SrT

r

φ
τ

φφτθθθ

σ

 

+ T ∫ 






 ++
1

0

222
ζ

σ
ζ rp

aD dz                                                                                     (3.14) 

 
and   

0)(
)1( 1

0

2
1

0

1

0

2
1

0

222222 =−′−′++−
∫∫ ∫∫ ζ

σ
φθ

σ
T

dzaRdzaRdzwaDw
F

ST      (3.15)                                            

 

If permissible, let rp 0≥ .  

 

Now, multiplying (3.15) by rp and adding the resulting equation to (3.14), we have 

 

[ ]( ([ ] dzwaDw
Fp

dzaDkaRdzaDkaR

dzwaDwawD

r
ST )

)1(2
))

2

22
1

0

2
1

0

222
2

2
1

0

222
1

2

1

0

242222

+
−

++′++′−







 ++

∫∫∫

∫

σ
φφτθθ

  

+T ( )∫ +
1

0

222 ζζ aD dz=0                                                                                                                                          

                                                                                                                                                   (3.16) 
Equation (3.13) implies that 

∫ ∫∫ ′<−+− 1

0

1

0

22
1

0

2222
)(

)1(
dzaRdz

T
dzwaDw

F
S φζ

σσ
                            (3.17) 

or 

∫∫ ∫ ≤′−+− 1

0

2
1

0

1

0

22222
)(

)1(
dz

T
dzaRdzwaDw

F
S ζ

σ
φ

σ
.                    (3.18)  

 
Since  ζφθ andw ,,  vanish at z = 0 and z = 1, therefore Rayliegh-Ritz inequality [19] yields 

∫∫ ≥
1

0

22
1

0

2
dzwdzDw π                                                                                        (3.19) 

∫∫ ≥
1

0

22
1

0

2
dzdzD θπθ                                                                                                   (3.20) 

∫∫ ≥
1

0

22
1

0

2
dzdzD φπφ

                                                                                                 (3.21) 
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∫ ∫≥
1

0

1

0

222
dzdzD ζπζ

                                                                                                   (3.22) 

We note that when both the bounding surfaces are dynamically free, then the resulting eigen value problem 

described by (3.2) - (3.5) together with the boundary conditions (3.6) - (3.9) can be exactly solved with 








 ++
=

σ
π

ππζ
p

a

zQ

22

cos

                                                                                      (3.23) 

where Q is an arbitrary constant and therefore 

.
1

0

1

0

222

∫ ∫= dzdzD ζπζ
                                                                                 (3.24) 

Thus, from inequality (3.23) and (3.24), we have 

( ) ( ) .
1

0

222
21

0

22 dzaDdza ∫∫ +≤+ ζζζπ
                                                          (3.25) 

Using inequality (3.19), inequalities (3.17) and (3.18) yield 

or 
∫ ∫∫ ′≤−−+ 1

0

1

0

22
1

0

22
22 )1)((

dzaRdz
T

dzw
Fa

S φζ
σσ

π

                                                 (3.26)                                                                  

      
∫∫ ∫ ≤′−−+ 1

0

2
1

0

1

0

222
22 )1)((

dz
T

dzaRdzw
Fa

S ζ
σ

φ
σ

π

                                                (3.27) 

Further, utilizing Schwartz inequality, we have 

( ) ( ) ∫∫∫∫∫ ≥=−≥
1

0

22

21

0

2
1

0

1

0

2

1
22

1
1

0

2 * wDwwDwDww π
                                   (using (3.19)) 

which on simplification yields 

∫∫ ≥






1

0

24
1

0

22 wwD π
                                                                                                          (3.28)

 

Inequality (3.19) together with inequality (3.28) yields 

( ) .2
1

0

2222
1

0

242222
∫∫ +≥





 ++ dzwadzwaDwawD π

                                                 (3.29) 

Multiplying (3.3) by its complex conjugate and integrating the resulting equation over the vertical range of z, we get 

( )( ) ( )( )[ ] .***
1

0

1

0

22
1

22
1 ∫∫ =−−−− dzwwdzpaDkpaDk θθ

 

Integrating the above equation by parts an appropriate number of times and using either of the boundary conditions, 

we get 
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( ) ( )( ) .2
1

0

2
1

0

22
1

0

222
21

0

22
1

2
∫∫∫∫ =+++− dzwdzpdzaDkpaDk r θθθθ

                  (3.30) 

Since 0≥rp , therefore from (3.30), we have 

( ) ∫∫ ≤−
1

0

2
21

0

22
1

2 dzwdzaDk θ                                                                                     (3.31) 

Also emulating the derivation of inequalities (3.28) and (3.29) we derive the following inequality 

( ) ( ) ∫∫ ∫ +≥++=−
1

0

2222
1

0

2422

21

0

2222 2 dzadzaDaDdzaD θπθθθθ
           (3.32) 

Combining inequalities (3.31) and (3.32), we get 

∫ ≥
1

0

2
dzw  ( )222 a+π ∫

1

0

22
1 dzk θ                                                                                      (3.33) 

Also, we know 

( ) ( )∫∫∫ =
1

0

2

1
22

1
1

0

2
1

0

2
www

 
which upon using inequalities (3.31) and (3.32) yields

 

( ) ( ) { } dzdzaDakdzw 2

1
21

0

2

1
1

0

222222
1

21

0
∫∫∫









−+≥ θθπ                               (3.34) 

≥  ( ) ( )∫ −−+
1

0

22222
1 * dzaDak θθπ                 (Using Schwartz inequality) 

( ) { }dzaDka ∫ ++≥
1

0

2222
1

22 θθπ                                                                           (3.35) 

Since, 0≥rp , equation (3.16) together with inequalities (3.29),(3.35) and (3.25)-(3.27) yields 

( ) ( ) ( )∫∫ ∫ +
′

<+






 −+






 −++
1

0

2
1

0
22

1

21

0

222222222 1
)1(

1 dzw
ak

aR
dza

k
Tdzw

Fk
a T

π
ζπ

σ
τ

σ
τπ (3.36) 

or 

( ) ( )( ) ( )∫∫ ∫ +
′

<+−′++−
1

0

2
1

0
22

1

21

0

222
2

22222)2( dzw
ak

aR
dzakaRdzwaF T

S π
φπστπ      (3.37) 

Now, if 






= 1,min 2

σ
τλ k

then it follows from either of the inequalities (3.36) and (3.37) that 

( ) ( ) dzwRdzwF
a

ak
T

21

0

21

0
2

322
1 11 ∫∫ ′<−++ λπ

                                                 (3.38) 

Since, minimum value of  
( )

2

322

a

a+π
 with respect  2a   is ,

4

27 4π
 it follows from inequality (3.38) that 
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{ ( ) } 011
4

27
21

0

4

1 <′−−+ ∫ dzwRFk Tλπ
 

which can be written as 

( ) ( ) 1
4

1

0

2

1127

4
,01

kF

R
MwheredzwM T

−+
′

=<− ∫ λπ
 .                                          (3.39) 

 
Inequality (3.39) is clearly incompatible with the hypothesis of the theorem. Hence, we must have 

0<rp  

This completes the proof of the theorem. 
 
Theorem 1 in the terminology of hydrodynamic stability implies that for the problem under consideration arbitrary 
oscillatory perturbations of growing amplitude are not allowed if  .1≤M  
 

Corollary1. For the rotatory double-diffusive convection( )TT SD == 0 , if  

0,11,0,0,0 <≤′<≠>> riST pthenMandFpRR  

( )F

R
Mwhere T

−+
=′

1127

4

1
4 λπ

,   






= 1,min1 σ

τλ . 

Corollary 2. For the rotatory Soret-driven double-diffusive convection ( 0=TD ) if  

0,11,0,0,0 <≤′′<≠>> riST pthenMandFpRR  

{ ( ) }

( )F

SR
R

Mwhere

TT
T

−+
−

−
=′′

1127

1
4

1
4 λπ

τ
τ

  ,    






= 1,min1 σ

τλ . 

Corollary 3. For the rotatory Dufour-driven double-diffusive convection ( 0=TS ) if  

0,10,0,0 <≤′′′≠>> riST pthenMandpRR  

{ ( ) }

( )F

D
R

Mwhere

T
T

−+
−

+
=′′′

1127

1
14

1
4 λπ

τ
  ,    







= 1,min1 σ

τλ . 

Remark: We note that if 1>M , then oscillatory modes of growing amplitudes can exist. Further, keeping in view 
Theorem 1 and the fact that the growth rate p has been intentionally avoided in the proof of this theorem, one 
strongly feels that a bound for the growth rate of oscillatory motions of growing amplitude in terms of the 
parameters of the problem specifically involving )1( −M as factor must be derivable. The subsequent theorem 

justifies our intuition. 
 

Theorem 2. If (p, w,θ ,φ ,ζ ), p = pr + ipi, 0≠ip , 1>F  is a non-trivial solution of  (3.2) – (3.5) together with 

either of the boundary conditions (3.6)-(3.9) with   0>′TR 0>′SR   then 

( )λπ +
−′

<
14

1
2

2MR
p T , 

where   
1

4 )1(27

4

k

R
M T

λπ +
′

= and






= 1,min 2

σ
τλ k

. 

 



Hari Mohan and Sada Ram                                          Adv. Appl. Sci. Res., 2014, 5(5):106-118         
 _____________________________________________________________________________ 

115 
Pelagia Research Library 

Proof.  Proceeding exactly as in theorem1, utilizing the fact that 0≥rp , we have from (3.16) 

([ ]∫∫ +′+




 ++

1

0

222

2
2

1

0

242222 )2 dzaDkaRdzwaDwawD S φφτ

 

              + T ( )∫ +
1

0

222 ζζ aD [ ](∫ +′<
1

0

222

1
2 ) dzaDkaRT θθ                                            (3.40) 

 
From (3.30) it follows that 

( ) ∫∫∫ ≤+−
1

0

2
1

0

22
21

0

22
1

2 dzwdzpaDk θθ
                                                                        (3.41) 

Using inequality (3.30) in inequality (3.31), we get 

∫ ≥
1

0

2
dzw  ( )222 a+π ( ) ∫













+
+

1

0

2

2222
1

2

2
1 1 dz

ak

p
k θ

π
                                                  (3.42) 

Now, 

{ } ( ) dzaDdzaD ∫∫ −−=+
1

0

22
1

0

222
* θθθθ

 

( ) dzaD θθ 22
1

0

−≤ ∫  

≤ ( ) { }2

1
21

0

2
1

1

0

222
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
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

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− θθ dzaD  

(Using Schwartz inequality) 

( ) ( ) 




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1
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2
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1

2222
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2

2222
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1

dzw
ak

p

ak ππ
                       (3.43) 

 
(using inequalities (3.41) and (3.42)) 
 
Making use of inequalities (3.17) or (3.18), (3.21), (3.43) in inequality (3.40), we have 
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(3.44) 

or 
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( ) ( )( ) dzkaaRdzwaF S

21

0
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1

0

2222222 ∫∫ −+′++− φστππ
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2222
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Now, let 







= 1,min 2

σ
τλ k

 

then it follows from either of the inequalities (3.44) and (3.45) that 

( )( )
( ) ∫∫
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

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Since, minimum value of  
( )

2

322

a

a+π
 with respect  2a   is ,

4

27 4π
 it follows from inequality (3.46) that 

( )

( )
∫ <





































+
+

′
−

−+ 1

0

2

2222
1

2

1
4

0

1
4

1127

2
1

dzw

ak

p

RkF
T

π

λπ
 .                             (3.47) 

Inequality (3.47) clearly implies that 
 

( ) 1222
1 −+< Makp π  ,                                                                                           (3.48) 

 
where 

M= ( ) 1
4 1127

4

kF

RT

−+
′

λπ
. 

 
Now, from inequality (3.46), we can have 
 

( ) ( ) TRFk
a

a ′<−++
1112

222

λπ
       (3.49)                                                          

Since, minimum value of 
( )

2

222

a

a+π
 with respect to 2a is 24π , therefore inequality (3.49) yields 
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)11(4 kF
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π .                                                                                 (3.50) 
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Using inequality (3.50), inequality (3.48) yields 

( ) 1
114

2
2

−
−+

′
< M

F

R
p T

λπ
 

 
This completes the proof of the theorem. 
 
Theorem 2 from the point of view of hydrodynamic stability theory may be stated as: 
 

 The complex growth rate ir ippp += of an arbitrary oscillatory ( 0≠ip ) perturbation of growing amplitude 

( 0≥rp ) for the problem under consideration lies inside a semi- circle in the right-half of the ir pp - plane whose 

centre is at the origin and whose radius is 
 

( )F

MRT

−+
−′

114

1
2

2

λπ
. 

 
Corollary 4.  For the rotatory double-diffusive convection( )TT SD == 0 , the complex growth rate 

ir ippp += of an arbitrary oscillatory ( 0≠ip ) perturbation of growing amplitude ( 0≥rp ) lies inside a semi- 

circle in the right-half of the ir pp - plane whose centre is at the origin and whose radius is 
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
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



= 1,min1 σ

τλ . 

Corollary 5. For the rotatory Soret -driven double-diffusive convection ( 0=TD ), the complex growth rate 

ir ippp += of an arbitrary oscillatory ( 0≠ip ) perturbation of growing amplitude ( 0≥rp ) lies inside a semi- 

circle in the right-half of the ir pp - plane whose centre is at the origin and whose radius is 

{ ( ) }
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114

1 2

1
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−′′
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M
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SR
R TT
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where 
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4 λπ

τ
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





= 1,min1 σ

τλ . 

Corollary 6. For the rotatory Dufour-driven double-diffusive convection ( 0=TS ) the complex growth rate 

ir ippp += of an arbitrary oscillatory ( 0≠ip ) perturbation of growing amplitude ( 0≥rp ) lies inside a semi- 

circle in the right-half of the ir pp - plane whose centre is at the origin and whose radius is 

( ( ) )
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R T
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{ ( ) }
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τ
,


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



= 1,min1 σ

τλ . 

 
CONCLUSION 

 
The effect of a uniform vertical rotation on the physical problem of double-diffusive convection coupled with cross-
diffusions in viscoelastic fluid is considered. The principal conclusions from the analysis of this study are: 
 
i) In the terminology of hydrodynamic stability, for the problem Double-Diffusive Rotatory convection coupled with 
cross-diffusions in viscoelastic fluid, an arbitrary oscillatory perturbations of growing amplitude are not allowed if  

.1≤M  
 

ii) The complex growth rate ir ippp += of an arbitrary oscillatory ( 0≠ip ) perturbation of growing amplitude 

( 0≥rp ) for the problem under consideration lies inside a semi- circle in the right-half of the ir pp - plane whose 

centre is at the origin and whose radius is 
 

( )F

MRT

−+
−′

114

1
2

2

λπ
. 
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