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ABSTRACT

The effect of magnetic field and rotation on thesolotal convection in Walters’ Rilastico-
viscous fluid is considered. For the case of stetrg convection, the magnetic field, rotation
and solute parameter postpone the onset of comreciihe magnetic field, rotation and solute
parameter introduce oscillatory modes in the systetrich were non-existent in their absence.
The case of overstability is also considered wimerthie sufficient conditions for the non-
existence of overstability are obtained.
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INTRODUCTION

Chandrasekhar [4] has given a detailed accourtiefrtal convection in Newtonian fluid layer
in the presence of magnetic field and rotation.ovies [14] has investigated the problem of
thermohaline convection in a layer of fluid heatesim below and subjected to a stable salinity
gradient. The buoyancy forces can arise not ordynfdensity differences due to variations in
temperature but also from those due to variatiamssolute concentration. Thermosolutal
convection problems arise in oceanography, limnplaigd engineering. Examples of particular
interest are provided by ponds built to trap sbksat (Tabor and Matz [13]) and some Antarctic
lakes (Shirtcliffe [12]). Bhatia and Steiner [2Meestudied the problem of thermal instability of a
viscoelastic (Maxwell) fluid in the presence ofatdn and have found that the rotation has a
destabilizing influence in contrast to the stabilig effect on an ordinary (Newtonian) fluid.
Bhatia and Steiner [3] have also studied the themmsgability of a Maxwellian viscoelastic fluid
in the presence of magnetic field while the theromadvection in Oldroydian viscoelastic fluid in
hydromagnetics has been considered by Sharma [9].

There are many elastico-viscous fluids that carmetharacterized by Maxwell’s constitutive
relations or Oldroyd’s constitutive relations. Twoch classes of elastico-viscous fluids are
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Rivlin-Ericksen fluid [8] and Walters’ B' fluid [15 Walters has proposed the constitutive
equations of such elastico-viscous fluil¢alters [16] reported that the mixture of polyméthy
methacrylate and pyridine at 25°C containing 3@bgolymer per litre behaves very nearly as
the Waltres’ B' elatico-viscous fluid. Rivlin-Eriskn [8] has proposed a theoretical model for
such another elastico-viscous fluid. Such and othetymers are used in agriculture,
communication appliances and in bio-medical appbos. Sharma and Kumar [11] have studied
the stability of two superposed Walters’ B' elastiiscous liquids. A study on thermal
convection in Rivlin-Ericksen elastico-viscous #luin porous medium in hydromagnetics has
been made by Sharma and Kango [10]. Rana and Ké&hd¢ave studied the thermal instability
of compressible Walters’ (model B') elastico-vissdluid permeated with suspended in porous
medium.

Gupta et al [5] have studied the effectyaifradiation on thermal stability of CR-39 polymer

whereas the effect of thickness of the porous nads$eon the peristaltic pumping when the tube
wall is provided with non-erodible porous liningshbeen investigated by Reddy et al [7]. The
above studies were helpful in studying porous nelteand thermal stability.

Keeping in mind the growing importance of non-New&m fluids in modern technology,
industry, chemical technology and dynamics of ggspal fluids and considering the conflicted
tendencies of magnetic field and rotation whilaragtogether, our interest, in the present paper
is to study the Double-Diffusive convection in Wi’ B' elastico-viscous fluid in the presence
of rotation and magnetic field.

EFFECT OF MAGNETIC FIELD
2.1 Perturbation Equations
Consider an infinite layer of Waltres’ B' elastigiscous electrically conducting fluid confined

between the planez=0 and z= d, acted on by a uniform vertical magnetic fiefd=(0,0,H)
and gravity force :(0,0,—g). This layer is heated and soluted from below dheth a steady

adverse temperature gradiefit(= dT /dz)and a solute concentration gradigfit(= dC/dz)are
maintained.

The hydromagnetic equations (Chandrasekhar [4]oMsr[14], Walters’ [15]), relevant to the
problem, following Boussinesq approximation, are

aq = 1 A Jp H r L ' 0 27

—+(q0 q}=——Dp+ g[l+—}+—e Ox H)x H+(|/—|/ —jD q (2.1)
[6t (a5) Po Po 47100( ) ot

0.Gg=0, (2.2)
O.H =0, (2.3)
aa—': =(H.D)g+n0%H, (.4
%—I+(q.D)T:KD2T, 2.5)
%—f+(q.D)C=K'D2C, &R.
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where
p=p[1-a(T-T)+a'(C-G)]. (2.7)

Equations (2.1), (2.2), (2.5) and (2.6) expressdbeservation of momentum, mass, heat and
solute respectively. Equations (2.3) and (2.4)theeMaxwell’'s equations. The equation of state
(2.7) contains a thermal coefficient of expansmrand an analogous solute coefficight The
suffix ~zero refers to the values at the referenceevelz=0. Here

p.p.T.Cu,, o(u v, W, H0,0H andg=(0,0-g) stand for density, pressure, temperature,
solute mass concentration, magnetic permeabiligfpoity, magnetic field and gravitational

acceleration respectively. The kinematic viscasityhe kinematic viscoelasticity, the thermal
diffusivity « , the analogous solute diffusiviky and the electrical resistivity are each assumed

to be constant.

The steady state solution is
4=(0,0,0 T=T,-82,C= G-8 zp=p,(¥aB za'B ¥ (2.8)

where=(T,-T,)/d and B =(C,~C,)/d are the magnitudes of uniform temperature and

concentration gradients and are both positive aspéeature and concentration decrease
upwards.

Here we use linearized stability theory and normalde analysis method. Consider a small
perturbation on the steady state solution andﬁl(dlﬂ h,, n) o uvW,pd pd andy denote
respectively the perturbations in magnetic fieléloeity, density, pressure, temperature and
solute concentration. The change in derdity caused by the perturbatioh andy in
temperature and concentration, is given by

o =-p,(ab-a'y). (2.9)
Then the linearized hydromagnetic perturbation agna become
aq — 1 = ] H K Ll ( ' 0 j 2=
— =——0dp-glafd-a'y)+——(0xh])x H+|v-v'— |O 2.10
o = 9P (at-ay) 47100( ) o |7°s (2.10)
00.g =0, (2.11)
Oh=0, (2.12)
oh (- .
— =(H.O)g+n0%h, 2
o =(AO)a+n 1@)
% = Bw+k°6, (2.14)
g—f = fw+kT?y. (2.15)

The boundaries are taken to be free as well agedonductors of both heat and solute
concentration and the adjoining medium is eledtsicaon-conducting. The case of two free
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surfaces is a little artificial except in the cadestellar atmospheres. However, this assumption
allows us to obtain the analytical solution withaffecting the essential features of the problem.
The boundary conditions appropriate for the probéee

2
W:Z—ZV:O,H: O,y=0atz=0andz=d
Z
andh is continuous with an external vacuum field. (216

Writing equations (9)-(13) in scalar form, using &d eliminatingu, v, h, h,,d pbetween them,
we obtain

9 92 9 uH) o 9
—D*w-g| — +— |(a8-a'y)-| =— |—0°h -|v-v'— |0*w=0, 2.17
at g[ax2 ayzj( /) £4;;00Jaz " ( 6tj (2.17)
0 5 ow
——-pn0° |h = H—, 2.18
P n j , 37 (2.18)
d 2\
K j@—ﬂw, (2.19)
a 2 — ’
E—K'D jy—ﬂw, .2Q)
2 2 2
WhereDZ:a_+a_+a__
x> ay* 07

2.2 Dispersion Relation and Discussion
Analyzing the disturbances into normal modes, vgia® that the perturbation quantities are of
the form

(w6, h,1=[W(2,0(3, K Lr( Pexp( ik* Ky it (2.21)
wherek,, k, are wave numbers along thend y directions, respectivelyk = JkZ+ IQZ is the
resultant wave number amdis, in general, a complex constant.

Using expression (2.21), Equations (2.17) — (2.2Opon-dimensional form, become

(D?-a%)w+ ga;dz (ae—a'r)—”e—'“( D - &) DK-(1- Fo)( D'~ &) W=0,(2.22)

4rpv
(D?-a- po) K= —(Hde DW, (2.23)
2 2 __[Bd?
(p?-a*-po)o= (K jw, (2.24)
(Dz—az—qa)rz—(’g’qzjw. (2.25)
K
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Herep, =v/k is the Prandtl numberp, =v /7 is the magnetic Prandtl numbef,=v'/d? is
the dimensionless kinematic viscoelasticitg=v /' is the Schmidt number,a= kd,
o =nd?/ k' and we have put

x*=xIdy=y d%Z=£Fk (andD=d/dz.
Eliminating ©, and K between equations (2.22) to (2.25), we obtain

(Dz—az)(Dz—az— ga)( D*- a*- qj)[a( D’- a*- 90)+
+QD*~(1- Fo)(D?-a’)( D*- a’~ po)Iw

=(D*-a’- po)[R&( D'~ &~ @)- & B- & p)l W (2.26)
4 11 4
whereR:m is the Rayleigh numberS:m is the analogous solute Rayleigh
VK VK
1 H%d?
number andQ ==%—— is the Chandrasekhar number.
Arpvn

Now the boundary conditions (2.16) transform tod@irasekhar [1981]),
W=D’'W=0,0= DO=0, = DT = 0,DK= D’K= 0 = (atz*=0& z* =1, (2.27)
where& = (curl h ), is the z-component of current density.

Using the above boundary conditions, it can be shthat all the even order derivatives of W
must vanish forz=0 and z=1 and hence the proper solution of (2.26) charasteyithe lowest
mode is

W =Wsinrmz, (2.28)
whereW, is a constant. Substituting (2.28) in (2.26) atting a* = 77°x, R = R/ 7%,
S =95/ Q= Qi &,=0/m", we obtain the dispersion relation

_ (1+x)(1+ x+ipay)

R = . | (1+X)(1- iFoy?) +io, | +
(I+x+ipo,) = (1+x)(1+x+ipo,)
(1+x+iga,) ( X j(l+ x+ipo;)’ @)2

It is being remembered thatcan be complex. Here we consider the overstabliemand so;
is real in equation (2.29).

For the case of stationary convecti@n,= 0 and Equation (2.29) reduces to
1+x

R = (T)[(“ A +Q)+ s (2.30)
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We thus find that for stationary convection, theltéfs’ B' elastico-viscous fluid behaves like an
ordinary Newtonian fluid.
From (2.29), it follows that

dR :(1+ xj (1+x+ipo,) (2.31)
dQ (1+ x+ ipo,) '

Rationalizing and equating the real and imaginanygof (2.31), it follows that

4R _ 1+_X (2.32)
dQ X

which is always positive. The magnetic field thussha stabilizing effect on the system.
Similarly, it can be shown from equation (2.29)ttha

dR_
R n (2.33)

implying thereby the stabilizing effect of stabtdge gradientEquation (2.33) is identical with
that of Aggarwal [1] in which effect of rotation dhermosolutal instability of Walters’ (model
B") fluid permeated with suspended particles iropsrmedium has been investigated.

2.3. Stability of the system and oscillatory modes

Here we examine the possibility of oscillatory medié any, in the stability problem due to the
presence of magnetic field and stable solute gnadMultiplying Eq. (2.22) by W*, the complex
conjugate of W, integrating over the range of z amaking use of Equation (2.23)- (2.25)
together with the boundary conditions (2.27), weaob

aKkd
ol, - g

[I +po*l 3]+gaﬁa2[l +qo* | |+

(4@0 ][I +p,o* |;|+[1-F0o)l,=0, (2.34)

where

=[(IDW F +a® W f)dz | = j(|na +d& P i) dzJ= jqaﬂou

=[(Ior f +a® | f)dz, 1, —j|r fdz,| = j( ID’K 1+ 2° K 3+ a* K Jdz

0

o'—.»—\ O'—;I—‘ Ov._“_.

= [(IDK f +a® [K f)dz,1, —j(|D2vv f+22° DW i+ & W] d; (2.35)
0

The integralg,,.......... |, are all positive definite. Putting= o, +ig; and equating the real and
imaginary parts of equation (2.34), we obtain

gaka’ o'k & Un
I, - I+ I+ | .-Fl Jo
[ g Pt st P ileg
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akad’ 'K' &

=1, - 2058 L TEE L By, (2.36)
VB Vg ArpV

and
aka’ 'K' &

[l 80Pl o= 25l = Chpd Jo =0, 2.37)

It follows from equation (2.36) that, may be positive or negative which means that yisées
may be stable or unstable. It is clear from (2iB&}o, may be zero or non-zero, meaning that

the modes may be non-oscillatory or oscillatorye Biscillatory modes are introduced due to the
presence of magnetic field and stable solute gnadrehich were non-existent in their absence.

2.4. The Case of Overstability

Here we discuss the possibility of whether instgbrhay occur as overstability. Since we wish
to determine the Rayleigh number for the onsensefability via a state of pure oscillations, it
suffices to find conditions for which (2.29) wiltlenit of solutions witho, real.

If we equate real and imaginary parts of (2.29) elirdinateR _between them, we obtain
Ac+B¢g+ C=0, (2.38)
where we have put, =7, b=1+ x and
A= gb(1+ - FD,
B =(p+q)(1+ p- FY B+ Qi p- P+ SK b1)( p )9
C'=p(1+ p-Frh)+ $B( b1)( p- I+ QH p P
2

As g, is real for instability, both the values 0{(:01) must be positive. Equation (2.38) is
quadratic irc, and does not involve any of its roots to be positi

p>p, B>q and p>Fh, 39)
which imply that
k<n, k<K' and /;—'é(nz+k2d2)<v (2.40)

Thus Equations (2.40) are, therefore, the necessanditions for the non-existence of
overstability, the violation of which does not nesarily imply the occurrence of overstability.

EFFECT OF ROTATION

3.1 Perturbation Equations and Dispersion Relation

Here we consider an infinite horizontal layer of Wes' B' elastico-viscous fluid of depth d
heated from below and subjected to a stable sghadient. The fluid is acted on by a uniform

rotation Q =(0,0,Q) and gravity forcg =(0,0,-g).
Then the linearized perturbation equations of nmoéce
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0__ 150, o2 {V_V'ijmzmz(qxﬁ), @41
o p Po ot
together with equations (2.11), (2.14) and (2.15).
Assuming = (curlg), :?—%, thez -component of vorticity, of the form
X oy
¢ =z (2)exp(ik + ik, + i), (2.42)

And using expressions (2.21) and (2.42), equati(¢hdl), (2.14), (2.15) and (2.41), in
dimensionless form, yield

- 2 _ 52\ _ 2_ 2\ g2 d’ oy 2Qd
[(1-Fo)(D*-2°)-0](D*-a’)w ~—(a@-aT)-="= Dz=0, (2.43)
2 _ .2\ _ __ZQd
[(1‘F0)(D a’) U]Z- -, oW, (2.44)

together with (2.24) and (2.25).

Here also we consider the case of two free boueslanaintained at fixed temperatures and
solute concentrations. The dimensionless boundarglitons appropriate for the problem are

W=D’'W=0,0=0, =0,DZ= 0 atz=0 andz=1. @)4

Eliminating®," andZ between equations (2.24), (2.25), (2.43) and (2at#) substituting the
proper solution (2.28), we obtain the dispersidatien

R= (L322 x+ incy) [(1+ X) (1~ iFo,7 )+ ial} +

X
(1+x+ipa,) (1+ x+ipg,)

, +, , (2.46)
(1+x+igo;)  *° x[(1+ x)(l— iFalnz) + iUJ
where
_ 4Q%d* . :
Ty Ry andio, =z where g, is real for overstable modes.
For the case of stationary convectien,= 0 and Equation (2.46) reduces to
1+x)° T
Rizu+ S+-—2. (2.47)
X X

We thus find that for stationary convection, theltéfa’ B' elastico-viscous fluid behaves like an
ordinary Newtonian fluid.
From (2.46), it follows that

dR _ (1+x+ipa,)
dT, x[(1+ x)(l— iFalnz) + ial} '
Rationalizing and equating the real and imaginanysof (2.48), it follows that

(2.48)
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dR _ [(1+ x)* + plaf{l— Fr(1+ x)}}

. ST (2.49)
dT, x[(1+ X) +af{1— Frr?(1+ x)} }
p, =1-Fr (1+ ). (2.50)
Substituting (2.50) in (2.49), we obtain
<R _1 (®)5
dT, X
which is always positive.
aR _ +1. 52)
d§

The stable solute gradient and rotation, thus, hstedilizing effects on the thermosolutal
convection in Walters’ B' elastico-viscous fluid.

3.2 Stability of the system and oscillatory modes

Multiplying Equation (2.43) by W*, the complex caigjate of W, integrating over the range of z
and making use of equations (2.24), (2.25) and4f2tdgether with the boundary conditions
(2.45), we obtain

aka 'K'&
Ull_gvl/; [|2+p10-*|3]+ga|;;, [I 4+q0*I5]+
+d?[(1-Fo*) 1y +0* I, |+ [ ~-F )l ,=0, (2.53)
where
1 1
|9=j(|DZ|2+a2 |Z f)dz, g0=j |Z $dz (2.54)
0 0

and |, -1, are given in equation (2.35). The integtatsl ; andl; —1,, are all positive definite.

Puttingo = 0. +ig;, and equating the real and imaginary parts of égug2.53), we obtain
gaka’
[, -
vB
2 1
_gaka, gaK,aZI ECER] (2.55)

vB VB

pl,+ qls+d*(1,—Fl ) -Fl o,

'k &
Vg

=l

and

gaka’ o'k’ & _
[|1—F|10+7p1| 3—V—ﬁ,q| s—d? (1 o=Fl Jlo =0. (2.56)
It follows from equation (2.55) that, may be positive or negative which means that yiséem
may be stable or unstable. It is clear from (2t5@}o, may be zero or non-zero, meaning that

the modes may be non-oscillatory or oscillatorye Biscillatory modes are introduced due to the
presence of rotation and stable solute gradienthwiiere non-existent in their absence.
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3.3. The Case of Overstability

Here we discuss the possibility of whether instgbihay occur as overstability. Since we wish
to determine the Rayleigh number for the onsensefability via a state of pure oscillations, it
suffices to find conditions for which (2.46) wiltlmit of solutions witho, real. Separating the

real and imaginary parts of (2.46) and elimirigteetween them, we obtain

A+ Ag+ A=0, (2.57)
where we have put =07, b=1+x and

A, =bet (1- Fr?t) (1+ - F°H,
A =1 (1- Fnzb)[(l— Fet) + p(1- P2y + Cf}’

+(b-1)S(p- 9(1- FPY + d[ pb+ T( p1+ R ),
A =01+ p-F7b+ SB(b1)( p- 4+ BI( p1+ B )

As o, is real for instability, both the values 0f(=01) must be positive. Equation (2.57) is
quadratic irc, and does not involve any of its roots to be positi

p>q p>Fb and p >1, (2.58)
which imply that
K<K, ’;—Z(nz+k2d2)<v and k<v. (2.59)

Thus Equations (2.59) are, therefore, the necessanditions for the non-existence of
overstability, the violation of which does not nesarily imply the occurrence of overstability.

CONCLUSION

The study of viscoelastic fluids may find applicais in geophysics and chemical technology.
There are many elastico-viscous fluids that carm@tharacterized by Maxwell's constitutive
relations or Oldroyd’s constitutive relations. \af' B' is one such class of elastico-viscous
fluids.

A layer of electrically conducting Walters’ B' el@®-viscous fluid heated and soluted from
below has been considered in the presence of aronifiorizontal magnetic field and uniform

rotation. For stationary convection, the Walters’ éastico-viscous fluid behaves like an
ordinary (Newtonian) fluid. For stationary convectj the magnetic field and rotation have
stabilizing effect on the thermoslolutal instalyilaf Walters’ B' elastico-viscous fluid. It is also

found that the magnetic field and rotation introglescillatory modes in the system which were
non-existent in their absence. The sufficient cbods for the non-existence of overstability for
thermoslolutal instability in Walters’ B' elastiadscous fluid in the presence of magnetic field
and rotation are, respectively, K</7,K<K',g(n2 +k2d2)<v. and

d

K<K',%(ﬂ2 +k2d2) <V,K<V.
d
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