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Introduction
Environmental risk assessments (ERA) include the study of physical 
and chemical parameters with respect to the quality standards 
established by national and international regulatory bodies. Past 
research has indicated that biota demonstrate correlation with 
these parameters in the surrounding environment, meaning 
that the biota themselves can act as indicator of the "health" of 
the environment [1]. Therefore, the new ERA studies consist of 
integration of different compartments (water-sediment-biota), 
i.e., the new models include biological response analyses. As a 
result, integrative models incorporate three lines of evidence 
to evaluate the environmental risk: (a) chemistry, it provides 
information about the presence and levels of different chemicals 
of potential ecological concern, (b) toxic responses caused by the 
chemicals, (c) in-situ alterations deriving from this contamination. 
As such several aquatic organisms are able to provide integrated 
information about the environment; they constitute a new line of 
evidence to the environmental risk assessments. Information of 
chemical bioaccumulation introduces the concept of bioavailable 
substance and passage of harmful substances in other levels of 
the food chain [1]. 

The freshwater bivalve Corbicula fluminea is an invasive species 
from the Southern and Eastern of Asia, due to that it is as well-
known as Asian/Asiatic clam. This species has wide capacity of 
adaptation to another extreme environment. This clam meets 
all the requirements to be a good bioindicator: Sedentary, 
widespread, long lifespan, and filter feeder that accumulates 
chemicals, with genetic variability and phenotypic plasticity, 
physiological tolerance to abiotic changes, opportunistic 
behaviour (r-strategist) and self-fertilizing hermaphrodites [2-6]. 
The clam can feed both from water and from sediments, and its 
tissue reflects ambient metal concentration over the time [7]. 
Comprehensive investigations have shown that the freshwater 
clam C. fluminea is capable of surviving exposure to polymetallic 
polluted environments and extreme polluted environments such 
as acid mine drainage effluents [7-14]. Acid mine lixiviates have 
an average pH of 2.64, electrical conductivity between 2.03-3.13 
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mS cm-1 and about 10% dissolved oxygen, its net acidity is about 
1910 mg L-1 as CaCO3 equivalent and contains average values of 
596 mg L-1 of Fe, 112 mg L-1 of Al, 16 mg L-1 Cu, 12 mg L-1 Zn and 
0.1-3 mg L-1 of As, Cr, Cd, Co, Ni [15].

The main aims of this study were: i) to investigate the toxic 
response (lethal and sublethal) of the Asian clam to different 
metal(loid) contaminated aquatic environments, ii) to determine 
the metal(loid) bioconcentration in the soft tissue of the clam 
and iii) determine the adequacy of the Asian clam as biomonitor 
of highly polymetallic environments. For this, screening acute 
toxicity bioassays were carried out for 72 h with individuals of C. 
fluminea exposed to several dissolved metalloids and metals (As, 
Cd, Cr, Co, Cu, Fe, Ni, Pb, Sb and Zn).

Materials and Methods
Clams collection and experimental design
Sized samples of specimens of C. fluminea were collected from 
an artificial reservoir in the South of Spain. Organisms were 
acclimatized in the laboratory for three days with the following 
conditions: Continuous aeration, 24 ± 1°C and photoperiod (9 h 
light: 15 h of dark) and commercial mineral water Natura™ (in mg 
L-1): 197 HCO3

-, 50.6 SO4
2-, 13.9 Cl-, 65.1 Ca2+, 13.7 Mg2+, 8.2 Na+, 

4.1 SiO2. Physico-chemical properties in water were monitored 
with a multi-parametric probe.

Sterilized polyethylene glasses were filled with 100 mL of mineral 
water, and they were individually spiked with metal solutions (ICP 
Panreac) as reported in Table 1. Two types of experiments were 
carried out. Type I experiments were carried out with simulated 
single metal(loid) spiked in water. Type II experiments as result of 
combined mixtures of elements: Half of the concentrations of the 
metal(loid)s used in type I experiments (All Metals Together, AMT) 
and an Artificial Acid Mine Drainage (AAMD) was produced in the 
laboratory by dissolving Fe2(SO4)3 (800 mg Fe L-1 plus addition of 
the elements reported in Table 1).

Toxicity tests
Bioassays were conducted in triplicate by exposing three clams 

(n=9) to solutions plus a diet supply, temperature (24 ± 1°C) and 
photoperiod. The behaviour of the clams was observed (valve 
closure movement and mortality were monitored as endpoints) 
during experimentation. Temperature, electrical conductivity 
(EC), pH and dissolved oxygen saturation (DO) were daily checked. 
After 72 h, clams were sampled, rinsed with Milli-Q water and 
deep frozen (-80°C) (Table 1).

The valve closure (VC) monitoring test is a toxicity bioassay 
advocated to be a cost-effective and useful method for use in 
screening the toxicity of pollutants in water. The valvometry 
system monitored to achieve a real-time observation of the valve 
closing/opening activities of the Asian clam [16-20]. In the current 
study, this experimental procedure test consisted of a cursory 
observation based on the aperture of the valve by assigning a 
numerical code of five aperture stages: Shells completely closed 
(0-state) means a protective strategy when stressor agents in 
the environment (metals in this case) overcome the protective 
mechanisms. Meanwhile, the 5-state leads to the highest contact 
of the clam with the environment; clam is admitting the metal 
concentration and does not recognize it as a hazard. Numerical 
data derived from VC monitoring were used to calculate the 
average of closure over the time and estimation based on the 
global behaviour of the population in the experimental time 
(Figure 1a).

The lethality test consisted of recounting individual survival over 
the time. Results were statistically analyzed using the program 
Graph Pad Prism version 5.00 Software for Windows: Median 
lethal time (LT50 Median time required to reach 50% survival) 
was obtained from Kaplan-Meier graphs and compared survival 
curves using both the logrank (Mantel-Cox) test and the Gehan-
Wilcoxon test.

Sample processing and analysis
Soft tissues samples were proceed as detailed in Sarmiento 
et al. [21]. Briefly, freeze-dried tissue was acid digested with 
HNO3 and H2O2 by using a thermoregulatory plate. Trace 
element concentrations in digested samples (As, Ba, Bi, Cd, Co, 
Cr, Cu, Fe, Ga, Ni, Pb, Sb, Se, and Zn) were quantified using an 
Agilent Technologies 7700 inductively coupled plasma-mass 
spectrometer (ICP-MS Agilent 7700). The accuracy of metal 
analysis was checked by the certified reference material TORT-
2 (National Research Council, Canada). The agreement of the 
analysis results and certified values was higher than 90%.

Exp. Code Element Spiked conc. (mg L-1)
Type I DAs As 1

DCd Cd 1
DCo Co 1
DCr Cr 1
DCu Cu 1
DFe Fe 10
DNi Ni 1
DPb Pb 10
DSb Sb 1
DZn Zn 1

Type II AMT All Metals 
Together

Cu, Co, Zn, As, Cr, Ni, Cd (0.5), Fe, Pb 
(5)

AAMD Artificial Acid
Mine Drainage

Fe (800), Pb (5), Cu, Co, Zn, As, Cr, Ni, 
Cd (0.5)

D-indicates spiked/doped element

Table 1 Experiment descriptions with the code name of each chamber 
and the principal metal spiked and its corresponding concentration.

Figure 1a Valvometry conversion criteria: 0-Strongly closed. 
Non-filtering, 1- Closed, but might be opened, 2- Little 
aperture: Tissue visible, 3- Aperture with tissue alight, 
4- Opened, 5- Feet and/or siphons completely shown 
filtering. 
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Statistical data analysis
For bioconcentration experiments, data were tested for 
normality (Shapiro-Wilk´s test) and homoscedasticity (Bartlett´s 
test). Significant differences between individuals exposed to 
control and individuals exposed to spiked dissolved metal(loid)
s were determined for each element (As, Cd, Co, Cr, Cu, Fe, 
Ni, Pb, Sb, Zn) using a one-way analysis of variance (ANOVA). 
Post-hoc examination of significant differences was carried out 
using multiple comparisons Dunnett’s test by GraphPad Prism 
5.0 Software. The relationship amongst variable was assessed 
by using a multivariate analysis approach by means of a factor 
analysis. Principal component analysis (PCA, Varimax normalized 
rotation) was used as an extraction procedure applied to the 
original set of variables: Element concentration in soft tissue of 
the clam (As, Ba, Bi, Cd, Co, Cr, Cu, Fe, Ga, Ni, Pb, Sb, Se, Zn), 
the biological parameters (shell length-SL and wet weight-WW), 
results of toxicity bioassays (VC and LT50) and acid conditions (pH) 
using the statistical package XLSTAT-pro (v. 5.1).

Results and Discussion
The metal(loid) concentrations (As, Cd, Co, Cr, Cu, Fe, Ni, Sb, Pb 
and Zn) in soft tissue of C. fluminea obtained after 72 h of exposure 
to spiked water as described in table are summarized in Figure 2. 
The metal concentration in soft tissue after experimentation was 
statistically compared to basal levels (concentrations in control 
clams) (Table 1). 

Regarding type I experiments, Cr, Cd, Cu, Ni, Pb, Zn (p<0.001) 
and Sb (p<0.01) were significantly bioconcentrated by Corbicula 
fluminea. Previous studies found association between exposure 
and bioaccumulation in soft tissue of C. fluminea, e.g. Cd, Zn 
[10,22]. However, As, Co and Fe did not display significant 
(p<0.05) bioconcentration in the tissue of the clams from the 
type I experiments (DAs, DCo and DFe) respect to the controls. In 
contrast, clams from AMT experiments showed a significant 
(p<0.05) bioconcentration for all the studied elements except 
Fe. Thus, despite the concentration of the elements was lower, 
the combination of elements in the environment promoted the 
influx of them (except Fe). Nevertheless, in an environment 
highly contaminated by Fe (AAMD: 800 mg Fe L-1), uptake of iron 
by clams was mine-water concentration dependent as previous 
research observed [12]. C. fluminea displayed a direct dose-
response registering 8.5 mg Fe g-1 dw without lethal effects, some 
elements (Co, Cd, Cr, Ni, Pb) were significantly bioconcentrated 
by the clam. Meanwhile, some others (As, Cu, Sb, and Zn) were 
exposed to an antagonistic release. Soucek et al. also carried some 
in situ studies with the Asian clam to detect AMD and nutrient 
inputs in low-order streams, their results were positive for AMD 
inputs and positive for nitrate concentrations [13]. In addition, 
clam survival was significantly determined by pH, conductivity, Al 
and Fe.

A decay in the as concentration in the clam tissue when 
exposed to as contaminated environments (DAs and AAMD) is in 
agreement with previous findings [23]. Arsenic is rapidly taken up 
and eliminated from the soft tissue of the Asian clam in the first 
exposure period [20]. The clam is able to regulate this metalloid 
by accumulating and eliminating the excess of as in tissues, 

thanks to metallothionein induction as part of a primary defense 
mechanism [24]. Nevertheless, the clam bioconcentrated as 
(p<0.001) in presence of some other elements with the same 
concentration (AMT).

Samples from DCo registered Co concentrations below the 
background concentrations. Fraysse et al. explained that Zn 
presence shows an inhibitory effect on the uptake of Co [25]. 
Nevertheless, this phenomenon was not observed in the 
metal-mixture experiments (Type II). What is more, the Co 
bioconcentration displayed a synergistic effect in presence of 
other metal(loid)s: Co was significant (p<0.001) bioconcentrated 
in samples from the AMT and the AAMD (Figure 2).

Biological effects (Valvometry and mortality)
The results obtained from the averaged valve movement 
recording along the experimental time are shown in Figure 
1b. Ortmann and Grieshaber´s research employed a complex 
monitoring instrument called Mosselmonitor™ and made 
chemical analysis to measure metabolism [26]. They admitted 
that shell closure reduced the metabolism rate in the C. fluminea. 
However, the metabolism remained aerobic for many hours, 
but when time overpasses 5-10 h the metabolism became 
anaerobic and a succinate accumulation can be observed in the 
tissues. This accumulation promoted clam aperture and finally 
death. Hartmann et al. established three states (open, closed 
and avoidance behavior), where the closed shell corresponds 
to both resting behaviour and active evasive behavior [27]. In 
contrast, this study determined five phases: Linking the state 
0 with the complete rejection of a toxic environment and 5 
with the greatest acceptance to the environment as previously 
explained. In this study, the VC was understood as an immediate 
protection response. The non-filtration activity was observed 
in clams from the AAMD and AMT experiments, this might 
be the last state before death [26]. Clams prevailed closed for 
many days in the case of DCu and 6 h for DAs. This corroborates 
the inductance-based valvometry measurement technique for 
dynamic biomonitoring system for potential in-situ detection 
of waterborne as concentrations by a valve daily activity in C. 
fluminea [17,20]. Liao et al. reported that Corbicula fluminea 
requires 5 h to detect and show valve closure response under 
environments polluted with 300-400 µg L-1 for As, 2.3-8.8 µg L-1 
for Cu, 16 µg L-1 for Cd [20]. Tran et al. also demonstrated that 
valve closure was induced by Cd concentrations between 16 and 
50 µg L-1 after 5 h of exposure [28]. In contrast, in this study clams 
from DCd did not experimented important closure movements, 

Figure 1b Averaged valve aperture evolution of the Asian clam in 
time (h) for the different experiments (Type I and II) as 
described in Table 1.
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probably due to the fact the clam did not recognize the metal as 
toxic (Figure 1b). 

Based on lethality, the AAMD experiment displayed the lowest 

LT50 value (720 min), apart from the high metal concentrations 
simulating the most polluted scenario (AMD), water conditions 
registered a pH of 2.18 and an electrical conductivity of 1345 
µS cm-1. Also, the averaged VCAAMD response (0.22) informed 

 
Figure 2 Box plots showing the metal concentration in soft tissue (µg g-1 dw) of C. fluminea after the experimentation for 

the spiked experiments (Type I DAs, DCd, DCo, DCr, DCu, DFe, DNi, DPb, DSb, DZn) and Type II (the AMT and the AAMD) 
experiments. Maximum and minimum threshold concentrations found in control clams are marked by dots. 
Statistical analyses showed some significant differences in the Dunnett´s test (*p>0.05, **p>0.01, ***p>0.001) using 
control clams for comparison
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about a rejection of the environment by the clam. Nevertheless, 
the second most polluted environment (the AMT experiment) 
showed an average valve closure slightly high (VCAMD=1.63) 
as sign of a greater acceptance, although the median lethal 
time did not overcome 50 h. The pH reached was 6.32 and the 
electrical conductivity was 525 µS cm-1 in the AMT experiment. 
In contraposition, the median lethal time in Type I-experiments 
was greater (LT50>3240 min). Attending to valve opening/closing 
rhythm, one of the strongest of avoidance responses was 
observed in the DCu (VC=0.06), despite that, clams registered a 
significant (p<0.001) Cu bioconcentration in soft tissue. Cu uptake 
in C. fluminea was detectable after 24 h with a low rate constant 
of loss [29] (Figure 2). 

Statistical approach
It is understood that elements found in soft tissue (e.g. Ba, Bi, Ga) 
were residual concentrations from the collection site. The factor 
analysis reorganized the data of the original data set into three 
principal factors, which together explained 77% of variance in the 
original data set. The loadings of the variables following varimax 
rotation for these three factors are represented in Table 2.

The predominant factor (F1) accounted for 41.6% of the variance 
and related the two toxic responses LT50, VC, the acidity and some 
element concentrations (Ba, Bi, Co, Cr, Cu, Fe, Ga, Ni and Pb). The 
second factor (F2) represented 23.8% of the total variance and 
correlated concentrations of a second group of metal(loid)s (As, 
Cd, Co, Cu, Sb and Zn). Lastly, the third factor (F3) represented 
11.7% of the total variance and grouped the biological 
characteristics (WW and SL) with Zn and Se concentration in 
tissues. 

The PCA indicates cause-effect correlations amongst the variables 
that are associated to the same axis (factor) [30]. By representing 
the PCA in a two-dimension graph it is possible to observe 
relationships. All the elements (except Zn and Se) present an 
inverse relationship with pH and LT50. Indeed, acidification in 
the environment causes mortality and these two rise with the 
concentration of metal(loid) in the environment. These both 
variables also maintain an inverse relationship with a first group 
of elements, such as Ba, Bi, Cr, Fe, Ga and Ni (Figure 3a).

These elements were classified as non-toxic due to the inversely 
relationship (F1<0) with the toxic responses (VC and LT50). 
A second group of elements (As, Cd, Co, Cu, Pb, Sb and Zn) 
were also inversely (F2>0) allied with pH and mortality. These 
elements tend to for a new group that they may show different 
bioconcentration behaviour from that already mentioned for the 
first group. It is well known that elements such as As, Cd, Co, Cu, 
Pb and Zn are associated to AMD processes, the origin of these 
elements is attributed to the oxidation of sulphurs [31] (Table 2).

In a biplot graph representation of the observations, three groups 
were randomly divided according to the new variables. Results 
revealed an enhancement of the elements common from AMD 
polluted environments (As, Cd, Co, Cu, Pb and Zn) with low pH 
and high mortality. In contrast, the vector of AAMD is displaced 
towards the Fe concentration, as pointed by the ANOVA. On the 
other hand, the F3 distinguishes the valve closure and the weight 
of the clams as inversely linked to Se and Zn concentrations. This 

Figure 3a Principal analysis score plot of the samples subjected 
to the different experiments. The variables are 
represented in a bi-plot by a vector (the direction 
from the origin and length of vector indicate how 
each variable contributes to the principal components 
in the plot).

 

  F1 F2 F3
% Variance 41.62 23.81 11.73

As — 0.85 —
Ba -0.72 — —
Bi -0.70 -0.56 —
Cd -0.51 0.73 —
Co -0.74 0.64 —
Cr -0.92 — —
Cu — 0.59 —
Fe -0.78 -0.51 —
Ga -0.82 — —
Ni -0.86 — —
Pb -0.70 0.65 —
Sb — 0.66 —
Se — — -0.53
Zn — 0.61 -0.58
pH 0.96 — —
LT50 0.90 — —
SL — — 0.81
WW — — 0.82
VC 0.63 — —

LT50: Median Lethal Time; SL: Shell Length; WW: Wet Weight; VC: Valve 
Closure

Table 2 Sorted rotated factor loadings (pattern) for the three principal 
factors resulting from the multivariate analysis of results obtained from 
Corbicula fluminea. Factors are numbered consecutively from left to 
right in order of decreasing variance. Only loading above 0.5 are shown 
in table.
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situ) studies. The prediction of metal(loid) bioaccumulation by 
the bivalves in field and laboratory was improved by considering 
the metal partitioning within the surface sediments as pointed 
by Belzunce-Segarra et al. [37]. Therefore, this study might be 
understood as a first appraisal approach of the Asian clam in 
dissolved metal contaminated environments. 

Conclusion
In the present study, clams were introduced for 72 h to different 
environments contaminated with individual metal(loid)s and 
two different degrees of metal contamination [38]. The results 
of laboratory studies suggest that individuals of the species C. 
fluminea registered different toxicological responses based on 
valve closure, mortality and assimilation of elements within soft 
tissue.

The freshwater clam Corbicula fluminea has demonstrated to 
be able to survive in environments polluted with 1 mg L-1 As, 
Cd, Cr, Co, Cu, Ni, Sb and Zn and environments polluted with 10 
mg L-1 of Fe and Pb up to 72 h. In contrast, under polymetallic 
environments, lethality works as crucial endpoint for monitoring 
[38-40]. The valvometry toxicity test is been demonstrated to be 
a complementary quick observable response.

The Asian clam successfully assimilates Cd, Co, Cr, Cu, Ni, Pb, 
Zn from environments individually contaminated with 1 mg 
L-1 after 72 h of exposure. Nevertheless, under polymetallic 
polluted environments it suffers a synergistic uptake effect 
of some metal(loid)s (As, Cd, Co, Cr, Cu, Sb, Ni, Sb, Pb and Zn) 
that promotes other toxicological responses (valve closure and 
mortality) [41].

In summary, C. fluminea is a recommendable organism 
to biomonitor the water quality in high acidic and metal 
contaminated environments due to its resistance to adverse 
environmental conditions and its bioaccumulative response to 
elements in solution. The toxicity of metals and metalloids seems 
to cause synergistic effects even with low concentrations.
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fact is reflected in the biplot with the Type I experiments due to 
the similar metal concentration of Cu and Zn (~110 mg L-1 dw) 
bioconcentrated by the clam in environments spiked with 1 mg 
L-1 (DCu and DZn). The Asian clam strongly accumulates Cu due 
to a low rate constant of loss consistently the clam size [29,32]. 
Previous studies have determined the rapid depuration of Zn 
and the diet dependence of its accumulation in tissues, but the 
elevated presence of Fe in AMD polluted environments might 
be blocking the Zn uptake [11,33]. The Asian clam revealed a 
high sensitivity of metallothionein response along polymetallic 
gradient pollution, that it might be blocking the uptake of metals 
as defense barrier [10,34]. Metallothioneins play an important 
role in the homeostasis regulation of the essential metals such 
as Cu, and Zn and non-essential metals, such as Cd [35] (Figures 
2 and 3b). 

The Cd and Zn bioaccumulation and the metallothionein 
response in the Asian clam along a polymetallic gradient have 
been previously studied [10]. Bivalves accumulated lower 
concentrations of Cd on mixture of Zn and Cd than exposure to 
Cd. Recent investigations have also determined the importance 
of hydrodynamic conditions in the extracellular accumulation of 
Cd of C. fluminea [36].

It is important to highlight that these experiments were carried 
in laboratory and there are discrepancies in results that might be 
found between controlled laboratory experiments and field (in-
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