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ABSTRACT

This paper deals with solving Poisson’s equatioti\iiirichlet's boundary conditions on cracked domsbbtained
by means of translations, symmetries and rotatafrisasic equilateral triangle. The method of lafggte elements
used gives satisfactory results. Numerical valoleined are highly accurate for both stress fiorctu and its
first derivatives except at the cracks end whegaifcant variations are observed.
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INTRODUCTION

Poisson’s equation is used in many areas in phyBios example, the study of the deformation of aizomtal
elastic membrane under distributed load, that eflthw torsion of the bar or the flow in a pipe [[L-2 is also used
in many other contexts dissemination of pollutahesat transfer [3-4] electromagnetism [5] univergavitation,
speed potential, vorticity [6] etc. Solving the §min’'s equation with Dirichlet’'s boundary condioon a domain
with cracks is particularly difficult. The main #dulty stems from singularities located at theinds. Indeed, at

these pointg;, series that correspond to the solution of the dgeneous equation associated with Poisson’s

o k 1
equation are:z a,rn? sin kEI and the first terms is proportional %2, with derivatives going toward the
k=1

infinite by the end of the cracks [7]. The usualtimoels of finite elements or finite differences givesatisfactory
results if used in their standard form. These nadshas demonstrated by various authors [8 -13] easignificantly
improved if they take the analytical form of thdusimn near singularities into account. We consither case of two
cracked polygons obtained from a basic equilateiahgle where the method of large singular firdtements is
used to solving Poisson’s equation. The ration&lde method and its convergence properties aneodstrated in
[14].

MATERIALS AND METHODS
Let's consider a basic uncracked equilateral tignghose side measuring 2, under mixed boundanglitons. By

simple symmetry of the basic equilateral triangle,get a cracked diamond in figure 1 and by trdieslg, rotations
and symmetries, a hexagon (figures 2 and 3) wabla from the center or from its vertices.
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In dimensionless form, the mathematical model eflttw torsion of a thin bar is reduced to solvinggaticular case
of the Poisson’s equation (1) associated with Biatlike (2) homogenous boundary conditions fochearacked
domain.

Au(x,y)=-1 (x,y)OQ 1)
u(x,y)=0 (xy)doQ )

We keep here to the case wh&eis a cracked domain whose bounda@l2 is made of a series of straight line
segments, implying that the problem is singulathat polygon vertices. Indeed, at each vertex ofpiblggon, the
laplacian of the functiord is zero while in the immediate neighboring of tlegtex, it must be -1. The functith
is a potential of constraints from which non-zeamponents (3) and (4) of the stress tensor at amt pf the bar

can be deduced by derivatiodQ is the domain boundary.

r = 2Ga% ®)
y
r,= —ZGO’% (4)

In expressions (1) to (4)X and Y are cartesian coordinates of a point(h field of study andz the axis which
together withX andy make a direct orthogonal reference méd. is the sliding module andr the unit torsion
angle.

Solving Poisson’s equation on these cracked domwitis Dirichlet’'s homogenous boundary conditioaghie same
as the Poisson’s equation on basic equilateraigtéafor which boundary conditions are mixed (figsid, 2 and 3).

Figure 1 — Cracked diamond and its basic triangle Wwose side measures 2.

Implementing the method of large singular firgtements includes three steps [15]

Step 1: Splitting domains into sub-domains.
The first step of the method splits the basic edeihl triangle into six sub-domaif : three sub-domains with 60°
opening angle, while the opening of the other tlisel80 ° (figures 1, 2).

Step 2: Solving auxiliary problems.
The second step consists in solving auxiliary prots. The number of auxiliary problems is equahgd bf the sub-

domainQ; . Each sub-domaiQ2, i = 1,...,6 is associated with an origd to the singularity, an angi#,

which is the opening angle i@, and in a local system of polar coordinafesé, ) .
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We now need to solve the six auxiliary problem®sesded with the basic triangle

Figure 2 — Uncracked equilateral triangular domainswith Neumann Dirichlet’s boundary conditions for generating cracked hexagons.
Solid lines correspond to Dirichlet's boundary condions while dots correspond to Neumann’s conditios. The length of the sides of the
triangles is 2.

Figure 3 — Cracked hexagons produced by uncrackedjeilateral triangles. The length of the hexagons des is 2 and cracks are of length

unit.
a) Case of diamond (Figure 1).
First Auxiliary Problem
Au,(r,6)=-1 (r,,6)0Q, (5-a)
ou
L0 =0 (5-b)
u,(r;, 1) =0
(5-¢)
Second Auxiliary Problem
Au,(r,,6,) =-1 (r,,6,)0Q, (6-a)
u,(r,.0) =0 (6-b)
ou, _
o (713 =0 6.0)
Third Auxiliary Problem
Auy(ry, 6;) = -1 (r;,6;) UQ, (7-a)
Uus (r;,0) =0 (7-b)
U,(r,,71) =0
(7-c)
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Fourth Auxiliary Problem

Au,(r,,6,) =-1 (r,,6,)0Q,
u,(ry,0) =0
u,(r,,m/3) =0

Fifth Auxiliary Problem
Aug(rs,6;) =0 (r5,6;,) Q5

u; (r;,0) =0
Us (rs,77) =0

Sixth Auxiliary Problem
Aug(rs,6,) = =1 (rs,6,) 0Q;

Ug(rs,0) =0
Ug(rs,77/3) =0
b) Case of hexagon (Figure 2).

For the triangle on the Left
- First Auxiliary Problem

Au, (r,6)=-1 (r,,6,)0Q,
u,(r,,0=0

u,(r,,m=0
- Second Auxiliary Problem
Au,(r,,6,) =-1 (r,,6,)0Q,
ou,
—=(r,,0)=0

o (20

u,(r,,m/3)=0
- Third Auxiliary Problem
Auy(ry, 6;) = -1 (r;,6;) 0Q,

us(r;,0) =0

%o (5,m) =0

- Fourth Auxiliary Problem
Au,(r,,6,)=-1 (r,,6,)0Q,
u,(r, 0 =0

u,(r,,m/13) =0

- Fifth Auxiliary Problem
Aug(rs,65) = -1 (r5,6;) U Qs

ou,
—(r:,00=0
an(s )

Us (rs,77) =0
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- Sixth Auxiliary Problem
Aug(rg,6;) = =1 (rs,6,) 1 Q;

(16-a)
Ug(rs,0)=0 (16-b)
Re (1, =0
(16-c)
For the Triangle on the Right
- First Auxiliary Problem
Auy(r;,6)=-1 (r,6)0Q, (17-a)
u,(rh,,0=0 (17-b)
u,(r,7m)=0
(17-c)
- Second Auxiliary Problem
Au,(r,,6,) =-1 (r,,6,)1Q, (18-a)
u,(r,0)=0 (18-b)
u,(r,,n1/3) = (18-c)
- Third Auxiliary Problem
Au,(ry,60;) =-1 (r,,6,)0Q, (19-a)
6u3
L (10 =0 (19-b)
3(r1, m =0
(19-c)
- Fourth Auxiliary Problem
Au,(r,,6,)=-1 (r,,6,)0Q, (20-a)
ou, _
—— (0 =0 (20-b)
N 713 =0
on (20-c)
- Fifth Auxiliary Problem
Aug (r5,65) = -1 (15,65) U Q5 (21-a)
u;(r;,0) =0 (21-b)
% (r5 , ]T) =0
on (21-c)
- Sixth Auxiliary Problem
Aug(rg,65) = -1 (rg,65) 0 Qg (22-a)
Ug(rs,0) =0 (22-b)
Ug(rg,77/3) =0 (22-c)
We check that auxiliary problems solutions for silagitieso, with i = 1, 2,...,6 can be written taking boundary

conditions into account for each sub-dom& from the splitting of basic equilateral triangles

- With conditions on Dirichlet’s homogenous limits

y (r.,e)——[M }zanrym sin(y,, 4 (23)

cosa
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with i = 3,4,5,6 for diamond;i = 1,4, for the triangle on the lefti; = 1,2,6 for the triangle on the right.
- With conditions on Dirichlet Neumann’s mixed horeogus limits

r?| cos2(8, - a, @
’ M—l} +> a,r/" sin(y,,6,) (24)
n=1

u(r,8)=—
N 4 l: cos2a,

with | =2 for diamond,j = 3, 6 for the triangle on the left andl =5 for the triangle on the right.
- With conditions on Dirichlet Neumann’s mixed horeogus limits

r;| cos26, > .
u(re.6,) =%|:w_1j|+zaknriym sin(Vin&) (25)
K n=1

with k =1 for diamond,k = 2,5 for the triangle on the left ankl = 3 for the triangle on the right ;
- With conditions on Neumann’s homogenous limits

> & .
u(r.g) = —'7"+za1nriyi” sin(4;,6) (26)
n=1

| = 4 for t he triangle on the right.

Provided that an appropriate value of the openimiglea @; is given to each singularity; and
thaty,, =n7/a;;i= 1,23...,6 andn= 1, 2,...,00. Opening angles are respectivetyfor rectangular sub-
domains andv3 for triangular domains.

Step 3: Connecting auxiliary solutions
The third step of the method consists in connectivese auxiliary solutions by imposing the continwf the

function and its normal derivative along the vasiaub-borderd”,, separating two adjacent sub-domatit, and

Q, . In practice, since it is not possible to solveirgimite system, we must limit the sums that apgraquations

(23) to (26) to a finite number of terms. The numbkterms used in the sums is chosen accordimgetoux and
Tolley's principle [14] which aims to represent thpproximate solutions using functions whose deggeas
uniform as possible. This is achieved by keepingenterms for the sub-domains with larger openifges total

number of parameters,, whose value can be freely chosen will §8x3+3Xx1)N =12N ( N being the

number of coefficientsa,, used for triangular sub-domains whose opening aigyl& /3). Al approximate
solutions will be of 3N degree for all sub-domaikeeping the number of terms proportional to thgl@mpening
Y., =nitla; where y,, =3n7r/ 71=3n for triangular sub-domains angt, =nN7r/ 771=n for rectangular
sub-domains.

We connect the solutions of auxiliary problemséms of continuous least squares; we must findficteitsa,,
that allows minimizing the function.

2
ou, (a) . 0u; (a;)
I(a,,)= u (a,)-u (a,)]* +| ———x2+ 1 ds (27)
(8 Zj[() ()] ( on T on
The least squares method consists to minimize teeiqus integral with respect to unknown coeffi¢gensed in
approximate solutions;

M:o 8j2

03

By minimizing the function (27) as compared to dimédntsa,,, this leads to a linear algebraic system in

i.e. to write that

constants, .

The accuracy of approximate solutions depends tiiren the quality of the connection of auxiliarglgtions. It is
therefore natural to characterize its precisiomiasuring the imperfections of continuity condiioihis will be
used to measure the overall error defined by (29).
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2
1 » . [0u, adu
=) — - +| —+—| |d 29
=¥ Ij(uk u) (ank an'] S (29)

Where ds, is the arc length element df, and S, its length.;n, and N, are the normals to the sub-border

separating both adjacent sub-areas. If the overadr is null, the approximate solution got aligmigh the exact
solution.

s 4

log, 5(n)

-7t 4

-1 1 1 1 I I I
1] 20 40 &0 &0 100 120 140 1&0 180 200

Number of parameters 12 N

Figure 4- Evolution of the 10-base logarithm of theverall error according the total number of 12N cefficients &, kept.

Figure 5: Cracked diamond: function u isolines irblue, its derivatives@ in red @ in black and |DU| in magenta.
ox ay
SOLUTIONS AND DISCUSSION

For Diamond
Figure 4 shows that the convergence of the methakponential. Numerical values obtained are higlolgurate,
both for function u and its derivatives. The valoési and of its derivatives calculated at P witloiinates (1, 0.5)

are recorded in table 1. The value of u is caledatith 13 exact numbers while its derivatifésand 90U are
ox oy

calculated with 11 exact numbers when the overedirés around 153107 . The overall error is calculated using
12N = 156, as shown in the graph in figure 4 whbee 10-base logarithm of the overall error is pnésg as a
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function of 12N. We also show the function u isebnits derivativedU and 9U and the length of the gradient on
0X oy
the figure 5. This shows a strong variation irsitges near the crack tip.

[ Jou
0x oy
12 | 0.125992725085% 0.018065811B6 0.009755004867
24 | 0.1302582668178 0.040328312h6 —0.00431018859
36 | 0.1301993440539 0.038790613B8 -0.00576708676
48 | 0.1301985893467 0.03855330956 —0.00586075354
60 | 0.1301988576386 0.038537427p6 -—0.00584953511
72 | 0.1301989118059% 0.038538607B9 —0.00584598366
84 | 0.130198901260% 0.03853875069 —0.00584571299
96 | 0.1301989018307 0.038538772f2 -0.00584573768
108 | 0.1301989017921 0.03853877584 —0.00584574451
120 | 0.1301989018178 0.03853877542 —0.00584574302
132 | 0.1301989018214 0.03853877526 —0.00584574305
144 | 0.1301989018202 0.038538775R7 —-0.00584574308
156 | 0.1301989018201 0.03853877528 —0.00584574308
168 | 0.1301989018201 0.03853877528 —0.00584574308

12N u

=TRSO T

Table 1 - Cracked Diamond - The value of the defl¢ion and its derivatives at P with coordinates (10.5) (see figure 1) based on the total
number of coefficients kept in the series of aux#iry solutions.

Hexagaon to six cracks emanating from its center
. . T

Hexagan to six cracks emanating from its summits
T T

log,,(n)
&

-8

-at

-1of

- -1 | | - |

50 BRL 150 200 250 0 50 1o 150 200
Number of parameters 12N Number of parameters12N

Figure 6- Cracked hexagons caused by uncracked edpteral triangles. Evolution of the overall error according to 12N.

Case of Hexagon
May cracks on hexagon start from the center osutamits, the convergence of the method of larggusam finite
elements is exponential as shows the graph indiguwhere is represented the 10-base logarithm obtiesall

connection error according to N approximation levgIN being the total number of coefficiengg, kept in the
series that characterize the solutions of the &uyiproblems. The lowest overall errors are gaghwiN =15 and
account to 34310 for the hexagon whose cracks start from the ceaner 239 10 for the other. This

allows assuming that, in both cases, the deflectidor the stress function) is known with at least sii&cific
numbers, while its first partial derivatives ardcotated with at least 10 exact numbers. Valuedlaind its first

partial derivatives calculated at a point with aipates (1, 0.5) with different values of N confithis hypothesis.
They are presented in tables 2 and 3.

The figure 7 presents the function u isovaluesilemigure 8 shows the perspective views andlémgth of the
gradient vector of cracked hexagons.
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Figure 7: Cracked hexagon: isovalues of u in bluand |DU| in magenta.

Figure 8: Cracked hexagons: perspective views of ¢ifunction u and the module of its gradient

The values of the derivative of the function u adatg to x are not strictly zero at the intersectaf the three sub-
borderd ™, Iz and I'. Their module varies fron2.4317 10" 'to 2.249010 **for the hexagons with six

cracks starting from summits; then from374310™ to 8.6083L0" for the other hexagon.
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N u ou ou N u ou ou

0X oy ox oy
1 | 0.17006342770 -0.000000000 0.2087051751 1 | 0.136676426734 0.0000000000 0.0335210658
2 | 0.17866526667 -0.000000000 0.2412513612 2 | 0.143258196906 0.0000000000 0.0492997390
3 | 0.17897004264 0.0000000000 0.2406952475 3 | 0.144656388859 0.0000000000 0.0597282F06
4 | 0.17889636334 0.0000000000 0.2397542821 4 | 0.144641970953 0.0000000000 0.0597207715
5 | 0.17889829991] -0.000000000 0.2397543%59 5 | 0.144616888839 0.0000000000 0.0594374B805
6 | 0.17890088257 0.0000000000 0.2397911583 6 | 0.144617200413 0.0000000000 0.0594425040
7 | 0.17890102103 -0.000000000 0.2397926476 7 | 0.144627734147 0.0000000000 0.0594517500
8 | 0.17890095361] 0.0000000000 0.2397911961 8 | 0.144617743641 -0.000000000 0.0594518¥17
9 | 0.17890095020 0.0000000000 0.2397910708 9 | 0.144617727506 0.0000000000 0.0594514971
10 | 0.1789009531] -0.000000000 0.2397911P67 10 | 0.144617727114 -0.000000000  0.0594514987
11 | 0.17890095361 0.0000000000 0.2397911B48 11 | 0.144617727447 -0.000000000 0.0594515113
12 | 0.17890095358 -0.000000000  0.2397911825 12 | 0.14461772744% 0.0000000000 0.0594515[118
13 | 0.17890095358 0.0000000000 0.2397911B21 13 | 0.14461772742¢ 0.0000000000 0.0594515[112
14 | 0.17890095358 -0.000000000  0.2397911822 14 | 0.14461772742¢ -0.000000000  0.0595415112
15 | 0.17890095358 0.0000000000 0.2397911B22 15 | 0.14461772742¢ 0.0000000000 0.0594515[112

Table 2: Hexagon with six cracks starting from itsvertices. Values of the
deflection and its derivatives at the intersectior® with its sub-

Table 3: Hexagon with six cracks starting from cergr. Values of the
deflection and its derivatives at the intersectior® with its

borders Fla, |_15 and F35. borders |_13 , F15 and F35.

CONCLUSION

The study of cracked polygons obtained throughstedions, symmetries and rotations from a basidlatgual
triangle using the method of large singular fitements gives satisfactory results throughousthdy area except
at the end of the cracks where there are largati@ns of u and its first derivatives. This methakles the existence
of the singularity into account by finding asymjtatolutions around them, which therefore allowtigg, without
additional formulation, derived values. The modeofivergence of the method is exponential. The $oweerall
error is around 1.53 T8 and obtained with N = 13 for the diamond. The Ista@verall errors are obtained with N =
15 and stand for 3.43 16 for the hexagon with cracks starting from the eergnd 2.39 1#' for the other.
Numerical values obtained are extremely accuratebédh the function u and its derivatives. For dieoh, the
constraint potential u is calculated with13 exaatbers while its derivatives are obtained with ¥&at numbers.
In the case of hexagon, the constraint potentiataisulated with at least 12 exact numbers, whepiartial
derivatives are calculated with at least 10 exaatlvers.
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