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ABSTRACT 
 
This paper deals with solving Poisson’s equation with Dirichlet’s boundary conditions on cracked domains obtained 
by means of translations, symmetries and  rotations of basic equilateral triangle. The method of large finite elements 
used  gives satisfactory  results. Numerical values obtained are highly accurate for both stress function u and its 
first derivatives except at the cracks end where significant variations are observed. 
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INTRODUCTION 
 

Poisson’s equation is used in many areas in physics. For example, the study of the deformation of a horizontal 
elastic membrane under distributed load, that of the low torsion of the bar or the flow in a pipe [1-2]. It is also used 
in many other contexts dissemination of pollutants, heat transfer [3-4] electromagnetism [5] universal gravitation, 
speed potential, vorticity [6] etc. Solving the Poisson’s equation with Dirichlet’s boundary conditions on a domain 
with cracks is particularly difficult. The main difficulty stems from singularities located at their ends. Indeed, at 

these points iσ , series that correspond to the solution of the homogeneous equation associated with Poisson’s 

equation are: 
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ir , with derivatives going toward the 

infinite by the end of the cracks [7]. The usual methods of finite elements or finite differences give unsatisfactory 
results if used in their standard form. These methods as demonstrated by various authors [8 -13] can be significantly 
improved if they take the analytical form of the solution near singularities into account. We consider the case of two 
cracked polygons obtained from a basic equilateral triangle where the method of large singular finite elements is 
used to solving  Poisson’s  equation. The rationale of the method and its convergence properties are demonstrated in 
[14]. 

 
MATERIALS AND METHODS 

 
Let’s consider a basic uncracked equilateral triangle, whose side measuring 2, under mixed boundary conditions. By 
simple symmetry of the basic equilateral triangle, we get a cracked diamond in figure 1 and by translations, rotations 
and symmetries, a hexagon (figures 2 and 3) with cracks from the center or from its vertices. 
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In dimensionless form, the mathematical model of the low torsion of a thin bar is reduced to solving a particular case 
of the Poisson’s equation (1) associated with Dirichlet-like (2) homogenous boundary conditions for each cracked 
domain. 
 

1),( −=∆ yxu  Ω∈),( yx                                                                                                 (1) 

0),( =yxu    Ω∂∈),( yx                                                                                                    (2) 

 
We keep here to the case whereΩ  is a cracked domain whose boundary Ω∂  is made of a series of straight line 
segments, implying that the problem is singular at the polygon vertices. Indeed, at each vertex of the polygon, the 
laplacian of the function u  is zero while in the immediate neighboring of the vertex, it must be  -1. The functionu  
is a potential of constraints from which non-zero components (3) and (4) of the stress tensor at any point of the bar 
can be deduced by derivation. Ω∂  is the domain boundary. 
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In expressions (1) to (4), x  and y are cartesian coordinates of a point in Ω  field of study and z the axis which 

together withx andy  make a direct orthogonal reference mark. G  is the sliding module and α  the unit torsion 

angle. 
 
Solving Poisson’s equation on these cracked domains, with Dirichlet’s homogenous boundary conditions is the same 
as the Poisson’s equation on basic equilateral triangle for which boundary conditions are mixed (figures 1, 2 and 3). 
 

 

 

 
 

Figure 1 – Cracked diamond and its basic triangle whose side measures 2. 
 
 

Implementing the method of   large singular finite elements includes three steps [15] 
 
Step 1: Splitting domains into sub-domains. 

The first step of the method splits the basic equilateral triangle into six sub-domainsiΩ : three sub-domains with 60° 

opening angle, while the opening of the other three is 180 ° (figures 1, 2). 
 
Step 2: Solving auxiliary problems. 
The second step consists in solving auxiliary problems. The number of auxiliary problems is equal to that of the sub-

domains iΩ . Each sub-domain iΩ 6.,..,1=i  is associated with an originiσ  to the singularity, an angleiα  

which is the opening angle in iσ   and in a local system of polar coordinates ),( iir θ . 
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We now need to solve the six auxiliary problems associated with the basic triangle 
 
 

 
 

 
Figure 2 – Uncracked equilateral triangular domains with Neumann Dirichlet’s boundary conditions for generating cracked hexagons. 
Solid lines correspond to Dirichlet’s boundary conditions while dots correspond to Neumann’s conditions. The length of the sides of the 

triangles is 2. 
 

  
 

Figure 3 – Cracked hexagons produced by uncracked equilateral triangles. The length of the hexagons sides is 2 and cracks are of length 
unit. 

 
a) Case of diamond (Figure 1). 
 
 First Auxiliary Problem  
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Second Auxiliary Problem 
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Third Auxiliary Problem 
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Fourth Auxiliary Problem 
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Fifth Auxiliary Problem 
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Sixth Auxiliary Problem 
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b)  Case of hexagon (Figure 2). 
 
For the triangle on the Left 
- First Auxiliary Problem 
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- Second Auxiliary Problem 
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- Fourth Auxiliary Problem 
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- Fifth Auxiliary Problem 
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- Sixth Auxiliary Problem 
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For the Triangle on the Right 
- First Auxiliary Problem 
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- Fourth Auxiliary Problem 
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- Fifth Auxiliary Problem 

555555 ),(1),( Ω∈−=∆ θθ rru
                                                                                           (21-a) 

0)0,( 55 =ru
                                                                                                                              (21-b)

 

0),( 5
5 =

∂
∂ πr

n

u

                                                                                                                         (21-c)
 

- Sixth Auxiliary Problem 

666666 ),(1),( Ω∈−=∆ θθ rru
                                                                                           (22-a) 
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We check that auxiliary problems solutions for singularities iσ  with 6...,,2,1=i  can be written taking boundary 

conditions into account for each sub-domain iΩ  from the splitting of basic equilateral triangles: 

 
- With conditions on Dirichlet’s homogenous limits 
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with 6,5,4,3=i  for diamond; ,4,1=i  for the triangle on the left ; 6,2,1=i  for the triangle on the right. 

- With conditions  on Dirichlet Neumann’s mixed homogenous limits 
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with 2=j  for diamond, 6,3=j  for the triangle on the left and 5=j  for the triangle on the right. 

- With conditions  on Dirichlet Neumann’s mixed homogenous limits 
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with 1=k  for diamond, 5,2=k  for the triangle on the left and 3=k  for the triangle on the right ; 

- With conditions on Neumann’s homogenous limits 
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4=l  for t he triangle on the right. 

 

Provided that an appropriate value of the opening angle iα  is given to each singularityiσ  and 

that iin n απγ /= ; 6,....,3,2,1=i  and .,....,2,1 ∞=n  Opening angles are respectively π for rectangular sub-

domains and π/3 for triangular domains. 
 
Step 3: Connecting auxiliary solutions 
The third step of the method consists in connecting these auxiliary solutions by imposing the continuity of the 

function and its normal derivative along the various sub-borders klΓ separating two adjacent sub-domains kΩ and 

lΩ . In practice, since it is not possible to solve an infinite system, we must limit the sums that appear in equations 

(23) to (26) to a finite number of terms. The number of terms used in the sums is chosen according to Decloux and 
Tolley’s principle [14] which aims to represent the approximate solutions using functions whose degree is as 
uniform as possible. This is achieved by keeping more terms for the sub-domains with larger openings. The total 

number of parameters kla whose value can be freely chosen will be NN 12)1333( =×+× , ( N being the 

number of  coefficients kla used for triangular sub-domains whose opening angle is 3/π ). All approximate 

solutions will be of 3N degree for all sub-domains, keeping the number of terms proportional to the angle opening 

iin n απγ /=
 
where nnin 3/3 == ππγ  for triangular sub-domains and nnin == ππγ /

 
for rectangular 

sub-domains. 
 

We connect the solutions of auxiliary problems in terms of continuous least squares; we must find coefficients ina
 

that allows minimizing the function. 
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The least squares method consists to minimize the previous integral with respect to unknown coefficients used in 
approximate solutions;  

i.e. to write that   )(
0pq
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By minimizing the function (27) as compared to coefficients ina , this leads to a linear algebraic system in 

constants ina . 

 
The accuracy of approximate solutions depends directly on the quality of the connection of auxiliary solutions. It is 
therefore natural to characterize its precision by measuring the imperfections of continuity conditions. This will be 
used to measure the overall error defined by (29). 
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Where klds  is the arc length element of klΓ  and klS  its length.; kn  and  ln  are the normals  to the sub-border 

separating both adjacent sub-areas. If the overall error is null, the approximate solution got aligns with the exact 
solution. 
 

 
Figure 4- Evolution of the 10-base logarithm of the overall error according the total number of 12N coefficients kla  kept. 

 

Figure 5:  Cracked diamond: function u isolines in blue, its derivatives 
x

u

∂
∂

 

in red  
y

u

∂
∂   in black  and  u∇  in  magenta. 

SOLUTIONS AND DISCUSSION 
 

For Diamond 
Figure 4 shows that the convergence of the method is exponential. Numerical values obtained are highly accurate, 
both for function u and its derivatives. The values of u and of its derivatives calculated at P with coordinates (1, 0.5) 
are recorded in table 1. The value of u is calculated with 13 exact numbers while its derivatives

x

u

∂
∂  and 

y

u

∂
∂

 

are 

calculated with 11 exact numbers when the overall error is around  111053.1 − . The overall error is calculated using 

12N = 156, as shown in the graph in figure 4 where the 10-base logarithm of the overall error is presented as a 
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function of 12N. We also show the function u isolines, its derivatives 
x

u

∂
∂ and 

y

u

∂
∂  and the length of the gradient on 

the figure 5. This shows a strong variation in its sizes near the crack tip.  
 

 

12N u  
x

u

∂
∂  

y

u

∂
∂  

12 0.1259927250855 0.01806581186 0.009755004867 
24 0.1302582668178 0.04032831256 −0.00431018859 
36 0.1301993440539 0.03879061388 −0.00576708676 
48 0.1301985893467 0.03855330956 −0.00586075354 
60 0.1301988576386 0.03853742756 −0.00584953511 
72 0.1301989118059 0.03853860789 −0.00584598366 
84 0.1301989012605 0.03853875069 −0.00584571299 
96 0.1301989018307 0.03853877272 −0.00584573768 
108 0.1301989017921 0.03853877534 −0.00584574451 
120 0.1301989018178 0.03853877542 −0.00584574302 
132 0.1301989018214 0.03853877526 −0.00584574305 
144 0.1301989018202 0.03853877527 −0.00584574308 
156 0.1301989018201 0.03853877528 −0.00584574308 
168 0.1301989018201 0.03853877528 −0.00584574308 

 
Table 1 - Cracked Diamond - The value of the deflection and its derivatives at P with coordinates (1, 0.5) (see figure 1)  based on the total 

number of coefficients kept in the series of auxiliary solutions. 
 

 
 

Figure 6- Cracked hexagons caused by uncracked equilateral triangles.  Evolution of the overall error according to 12N. 
 
Case of Hexagon 
May cracks on hexagon start from the center or its summits, the convergence of the method of large singular finite 
elements is exponential as shows the graph in figure 6 where is represented the 10-base logarithm of the overall 

connection error according to N approximation level; 12N being the total number of coefficients kla kept in the 

series that characterize the solutions of the auxiliary problems. The lowest overall errors are got with  15=N  and 

account to 
111043.3 −

 for the hexagon whose cracks start from the center and 
111039.2 −

 for the other. This 

allows assuming that, in both cases, the deflection u (or the stress function) is known with at least 12 specific 
numbers, while its first partial derivatives are calculated with at least 10 exact numbers. Values of uand its first 
partial derivatives calculated at a point with coordinates (1, 0.5) with different values of N confirm this hypothesis. 
They are presented in tables 2 and 3. 
 
The figure 7  presents the function u isovalues  while figure 8 shows the  perspective  views and the length of the 
gradient vector of  cracked hexagons. 
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Figure 7: Cracked hexagon: isovalues of  u in blue  and u∇  in magenta. 

 

 

 

 
 

 
Figure 8: Cracked hexagons: perspective views of the function u and the module of  its gradient 

 
The values of the derivative of the function u according to x are not strictly zero at the intersection of the three sub-

borders 13Γ , 15Γ  and 35Γ . Their module varies from 
17104317.2 −

to 
12102490.2 −

for the hexagons with six 

cracks starting from summits; then from 
17103743.7 −

 to 
13106083.8 −

 for the other hexagon. 
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N u  

x

u

∂
∂  

y

u

∂
∂  

1 0.17006342770 -0.000000000 0.2087051751 
2 0.17866526667 -0.000000000 0.2412513612 
3 0.17897004264 0.0000000000 0.2406952475 
4 0.17889636334 0.0000000000 0.2397542821 
5 0.17889829991 -0.000000000 0.2397543559 
6 0.17890088257 0.0000000000 0.2397911583 
7 0.17890102103 -0.000000000 0.2397926476 
8 0.17890095361 0.0000000000 0.2397911961 
9 0.17890095020 0.0000000000 0.2397910708 
10 0.17890095311 -0.000000000 0.2397911267 
11 0.17890095361 0.0000000000 0.2397911348 
12 0.17890095358 -0.000000000 0.2397911325 
13 0.17890095358 0.0000000000 0.2397911321 
14 0.17890095358 -0.000000000 0.2397911322 
15 0.17890095358 0.0000000000 0.2397911322 

 

N u  

x

u

∂
∂  

y

u

∂
∂  

1 0.136676426734 0.0000000000 0.0335210658 
2 0.143258196906 0.0000000000 0.0492997390 
3 0.144656388859 0.0000000000 0.0597282606 
4 0.144641970953 0.0000000000 0.0597207715 
5 0.144616888839 0.0000000000 0.0594374305 
6 0.144617200413 0.0000000000 0.0594425040 
7 0.144627734147 0.0000000000 0.0594517500 
8 0.144617743641 -0.000000000 0.0594518717 
9 0.144617727506 0.0000000000 0.0594514971 
10 0.144617727114 -0.000000000 0.0594514987 
11 0.144617727447 -0.000000000 0.0594515113 
12 0.144617727445 0.0000000000 0.0594515118 
13 0.144617727426 0.0000000000 0.0594515112 
14 0.144617727426 -0.000000000 0.0595415112 
15 0.144617727426 0.0000000000 0.0594515112 

 

Table 2: Hexagon with six cracks starting from its vertices. Values of the 
deflection and its derivatives at the intersection P with its sub-

borders 13Γ , 15Γ and 35Γ . 

Table 3: Hexagon with six cracks starting from center. Values of the 
deflection and its derivatives at the intersection P with its 

borders 13Γ , 15Γ  and 35Γ . 

 
CONCLUSION 

 
The study of cracked polygons obtained through translations, symmetries and rotations from a basic equilateral 
triangle using the method of large singular finite elements gives satisfactory results throughout the study area except 
at the end of the cracks where there are large variations of u and its first derivatives. This method takes the existence 
of the singularity into account by finding asymptotic solutions around them, which therefore allows getting, without 
additional formulation, derived values. The mode of convergence of the method is exponential. The lowest overall 
error is around 1.53 10-11 and obtained with N = 13 for the diamond. The lowest overall errors are obtained with N = 
15 and stand for 3.43 10-11 for the hexagon with cracks starting from the center and 2.39 10-11 for the other. 
Numerical values obtained are extremely accurate for both the function u and its derivatives. For diamond, the 
constraint potential u is calculated with13 exact numbers while its derivatives are obtained with 11 exact numbers. 
In the case of hexagon, the constraint potential is calculated with at least 12 exact numbers, while its partial 
derivatives are calculated with at least 10 exact numbers.  
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