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ABSTRACT

This paper deals with determining a field of statioy potential in a transformer with square plarexton, with a
side measuring 4 and divided at the center by asgwhich side measures 2. The problem consistsliring a
Laplace equation with conditions on Dirichlet's balaries that we solve using the method of larggudar finite
elements method (LSFEM). Then, we compare the svafiéhe solutiobl and those of its first derivatives with
those obtained using the finite element method (FBdth methods provide results that align everyehexcept
near singularities where there are very significgaps.
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INTRODUCTION

The Laplace’s equation and more generally, thedBais equation is used to solve several enginegrninglems
and in other subjects. This equation is used ictemagnetism [1], heat transmission [2], fluid dygmrics [3],
elasticity [4-5] and in potential theory [6]. Whéime problem is singular to the polygon summits, tlienerical
solving of the Laplace’s equation is very diffic@hd usual finite element methods do not providesfsatory
results when they are used in their standard fdimse methods as shown by various authors [7-1g]baaslightly
improved if they take the analytical form of thdwsmn near the singularities into account. We USFEM to
determine the potential field in a square transtarmith Dirichlet’s non-homogenous boundary comtisi. This
gives good results in the entire domain studiedlevREM gives good results only in areas that arefriam
singularities. This shows the power, efficiencyd a@atcuracy of this method with a limited numbercoéfficients
compared to finite element method.

MATERIALS AND METHODS

Let's determine the potential stationary field witlthe square transformer which side is 4, cutt$ncenter by a
square which side is 2. We assume that the vagaidee been reduced by modifying the scale (adiimeing).

The reduced potentid(X, y) is 1 on the contoudQ, of the internal square and 0 on the external bod?, of
the domair2 while between two squares, it should confirmlthplace’s equation (figure 1).
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Figure 1: Domain of the Square Transformer

Though the initial domain is pierced and that licdnditions are Dirichlet-like, we may, becauseslgments like
the double geometrical symmetric of the domain,abeditions on limits and the Laplace’s operatoorkvon the
one eighth of the transformer. The domain thenidened is a rectangular trapezium ACDE (figureT2j)e problem
will then consist in solving the Laplace’s equatamthe polygonal domain ACDE with mixed limit catiohs:

Au(X, y) =0 within the trapezoid domain ACDE
u(x,y) =0 along AC
u(x,y) =1 along DE
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Figure 2 : The eighth of the square transformer iglived into five subdomains
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The problem as posed is particular because of #wngtrical singularities that are the verticesha polygon
domain where there is a sudden change in the wirecf the normal at the boundary. Neumann’s homogse limit
conditions have been imposed on sides AE and CDanchlet’s ones are used on sides AC and DE.d.stlve it
using the method of large singular finite elemenéd includes three steps:

Stepl : Dividing the domain

The figure 2 shows the division of the domain ACIo five sub-domains bearing five singularities as
recommended by Tolley [9] and condition to Neum@irnehlet mixed limits. The border of the workingpihain
has been drawn in blue, the continuous lines shewarts of the border on which conditions to léngite Dirichlet-

like while discontinuous lines are conditions touNenn’s limits. Sub-borders’; that separate subdomains

Q;and Q; are in red.

Step 2: Solving auxiliary problems
To each subdomaif,, i = 1,..,5 is given a system of local coordinates and problEar the subdomai,,

which extension |st the system of polar coordinafd;,&;) and the conditions to limits are summarized in
figure 3 below.

E EIE = 3mn/4 u, = 1

]

VI 5 Pix.y)

. Q,

Figure 3 : The subdomain QS, its opening ,85 and its local coordinates(l’5 ) 05).

We must solve the following five auxiliary problems €, :

First auxiliary problem

u(r,&)=0 (r,6)0 QI (6)
u,(r,,0)=0 ©)

7
ul(rl,z) =0 (8)
Second auxiliary problem
u,(r,,6,) =0 (rzlez)DQ*z )(O
u,(r,,0) =0 (10)
u,(r,,77)=0 11)
Third auxiliary problem
AU, (r5,6,) =0 (r5,6,) 0Q; (12)
u,(r;,0) =0 (13)
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71
us(ry,—) =0 (14)
2
Fourth auxiliary problem
Au,(r,,6,)=0 (r,,6,)0Q, (15)
u,(r,,0)=1 (16)
7l
u,(r,,—)=0 17
4(ry 2) (17)
Fifth auxiliary problem
Aug(rs,6,) =0 (r,,6,)0Q; (18)
0us (. 0) _ 1)
on,
3n
Us (rs,j) =0 (20)

All general solutions to auxiliary problems are atike, they depend on the opening of the ar)@ileand conditions
to limits [8,9] are written as follow:

U,(r,,6) = a,r > sin@ - 1)6, 1)
i1

U,(1,,6) :2%@ sin(2j6,) 2
-

Uy(15,6,) = 3 2 12 cosek ~1)6, 23)
k=1

U,(r,.6,) =1+ > a,r 2 sin@ -1)6, (24)

1=1

0 (4m-2)
. dm-2
Us(rs, 85) =1+ ag.rs 3 sin

m=1

with coefficients a; a,; a,,,a, andas, arbitrary constants.

A (25)

Practically, we must keep to approximate solutidrie approximation derives, on the one hand, frieenfact that
there is a need to limit developments (21) to (25 finite number of terms and, on the other havemust keep,
except few cases, to an imperfect alignment. Thabmu of coefficients kept in each of the sums hesnbchosen
according to Descloux and Tolley's [9, 13] prinegiplwhich aims at representing approximate solutiosisag
uniforms function as possible. This ensures anal@omogeneity to the approximate solutions olsdinvhile
keeping more terms for subdomains where openingslamger. We decide to keep a number of coeffisient

proportional to the angl8, , (K = 1, ...,5), with the opening extensidd, of the subdomair, .

N
u,(r,,6,) = z ay; r12i—1 sin@2 -1)é, (26)
U,(r,,6,) =D a,r sin@jb,) 27)

i=1

n
U (15, 6;) = D a, 1,7 cos@k —1)6, (28)

k=1
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2N

U,(r,6,) =1+ > a,r2*sin@2 -1)6, (29)
=1
3N (4m-2) _

Us(1,0) =1+ Y ar, * sinCTe-2)6, (30)
m=1

The total number of coefficien@,; which value may be freely selected will be

(1+4+2+2+3) N = 12N where N is the number of caifits kept for an opening angte/ 4 .

Step 3: Aligning auxiliary solutions

To get the solution of the initial problem (1) ®8) from solutions to auxiliary problems, we “justted to make “a
good choice” of arbitrary coefficieng, . According to M. D. Tolley [9], the relevant cheits made by setting the
continuity of auxiliary functions and those of thebrmal derivatives. We are aligning the solutiohshe auxiliary
problems to the meaning of the continuous leastrss or we have been determining the coefficiexjs that
allow minimizing the function:

@) = Y J| W @) ~u, (@, )2 +[a”i (&) , 94, (3 )J ds, a1)

&l on, on,

These coefficients are a solution to a square mdittear algebraic system defined positive, conipgis12N
equations of 12N unknown coefficiedgfor the distribution into five subdomains or 8N atjans of 8N
unknowns for the division into four subdomainssslaally known as Gauss’s normal equations:

01 (@) _ .

0a,

The accuracy of the approximate solutions is closieked to the quality of the alignment of solut®to the
auxiliary problems. It is therefore natural to chaerize this accuracy by measuring the imperfastiof continuity
conditions. We will use the assessment of the dletvar defined in (33) :

1 au, au )
— TRY K I (33)
=3 ;H[(uk u) *(auf au‘”dskl

where ds, is the element of the arc lengffy, , S its length andu, and vy, normals to the sub-borddfr,
separating both adjacent subdomaidg an Q, .

If the number of coefficieni@, selected increases, the algebraic system to sgdv® more and more badly

conditioned and the matrix of the system may becommmerically singular. The numerical conditioniny an
algebraic system is qualified using the numbehefdpectral conditions of its matrix, known as é¢toding.

The conditioning x(A) of the square matriA is the product of the Euclidean NormsAfand of its inverse\™®

X(A) =[| A A7 17

RESULTS AND DISCUSSION

The initial domain (figure 1) comprises eight arayupoints, among which only four, those with reflamgles
measuring%” are singular for Laplace’s equation. At these oimhere the direction of the normal at the border

suddenly changes, they are considered singulars @ibes not imply that they are automatically afzdyt
singularities. The study of the auxiliary solutidnsthe auxiliary problems 1 and 5 (equations 2d 2&) shows that
at point A, the solution is fully regular sinceistdefined as well as its partial derivatives dfl@hds. At point E,
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. . ou au L. . . . . .
denvanvesa—x5 and a—;’ are finite. A is therefore regular while E is sitagu As for our working area, the trapezium

ACDE (figure 2), only E is a real singularity. A, @d D are singular because the normal derivatitkese points
change direction. B is a “pseudo singularity” imlnged to divide up the trapezoid domain. Othersitivis of the

study area are possible (figure 4). The last twisitins (figure 4c and 4d) allow getting definitddgtter results as
illustrated by the graphs in figures 5 and 6.

E E
v L@
i ’
r s
L rd
r
e Q Q . Q r Q
4 T, 3 ’ 4 3
o 34 L’ a4
rd L
, s
b Ed
- e 1
e r r, e r I,
. 14 23 , 14
s
'/ r12 '(’ a
e Q Q, - Q r, .
- -
, ,
’ #
’ rd
A Figure a A Figure b
E | E
r: ? .
4 I ’
1' | l'
# r ! r r
’ 34 G I .
Lt .!.!4 .(.!g | L’ QB 45 O
s I s
4 1 L
’ ! -’
ST r X f
ks
. 14 24 Les | e Tos Faq
s 1 -
- Q r Q, : ,', Iy Q o Q
e 1 12 2 I g 2 3
’ 1 + 1
1, 1 ,'
i F ’,
- = o &
A . €A B
Figure ¢ Figure d

Figure 4 : Various subdivisions of the trapezoid wiking domain

It is observed that the worst divisions (4a) ank) (@low getting global errors below f@vhile the division into
four subdomains with five subdomains (4c) leadsreduce errors to around 10and the division into five
subdomains (4d) produces a global error of less tha

102 Such precision is exceptional for a numericalhodtand to illustrate the convergence of the methfoithe

large singular finite elements based on the nurbenpefficients used, we recorded some resultaltes 1 and 2.
It can be noticed when reading data listed in thiabes that the results obtained by using 1084dr doefficients
are the same to the fourteenth decimal.

Lastly, solving a system of 36 equations to 36 unkms allows us getting the exact solution neaf. Mle have not
got such a precision using the finite elements otleven by solving a system of more than 170,@fatons
(figure 13). These results are supported by cunvdigyure 6 that show the evolution of 10-base lihan of the
conditioning of the matrices of Gauss’s various nmalr equation systems depending on the total nunolber
coefficient kept in the auxiliary solutions 26 t8. 3 he division (4d) is too flagrant.
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Figure 5: Evolution of the global error according b the number of coefficient&";lkI kept. Notations (a), (b), (c) and (d) refer to théour
subdivisions of the trapezium ACDE (see figure 4)
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Figure 6 — Conditioning of Gauss’s matrix normal guation system
Notations (a), (b), (c) and (d) refer to the four gbdivisions of the trapezium ACDE (cf. figure 4).
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Table 1: Values of u function near A obtained usind SFEM

X=y 36 coefficients 72 coefficients 108 coefficients Abefficients
0 0 0 0 0
0.01 0.0000784891315p  0.00007848909094 0.0000784%40 0.0000784890909#
0.02 0.0003139565311F 0.00031395636855 0.0003188563 0.0003139563685p
0.03 0.00070640224195 0.00070640187614 0.00070640B3 0.00070640187613
0.04 0.0012558264319F 0.00125582578201 0.0012582P37 0.0012558257820[L
0.05 0.0019622295381# 0.00196222852383 0.0019622825 0.0019622285238p
0.06 0.00282561246788 0.00282561101055 0.0028236540 0.0028256110105¢4
0.07 0.0038459768584p 0.00384597488221 0.0038482783 0.00384597488218
0.08 0.00502332539383 0.00502332282732 0.0050223288 0.0050233228272pP
0.09 0.00635766217944 0.00635765895818 0.00635%8389 0.0063576589581#
0.10 0.00784899317449 0.00784898924395 0.0078483%992 0.0078489892439D
Table 2: Values of u function near E obtained using SFEM
X=Yy 36 coefficients 72 coefficients 108 coefficients 41befficients
0.90 0.6977252004859F 0.69725201311982 0.6972528831] 0.6972520131183[L
0.91 0.71736439444595 0.71736439826875 0.71736463382 0.7173643982673p
0.92 0.73833264268730 0.73833264655130 0.73833264@5 0.7383326465500p
0.93 0.76029077766123 0.76029078144198 0.76029@0814] 0.7602907814408[L
0.94 0.7834191196916f 0.78341912328333 0.7834182282 0.78341912328228
0.95 0.8079711139450P 0.80797111725519 0.8079754PB2 0.8079711172542p
0.96 0.8343247786401p 0.83432478158377 0.8343287875 0.83432478158297
0.97 0.8630944006043p5 0.863094403095%71 0.863094%5030 0.86309440309506
0.98 0.89542367952698 0.89542368146652 0.8954286814] 0.8954236814660[L
0.99 0.9340693072795p  0.93406930852045 0.9340628085 0.9340693085201¢
1.00 1.0000000000000p 1.00000000000000  1.0000000000 1.000000000000¢

Figure 7 and 8 make think that the potential insesdinearly from 0 to 1 along the CD. This is m@ate as shown
in figure 9 where the gap is represented betwesmmduy along CD for 12N=144 and 12N= 96 coefficidmpt.

o

Figure 7- Equipotentials u = (0 : 0.04 :1) Figure 8- Representation of the funicin U(X, y) in perspective

The comparison of results obtained using LSFEM BBM allows us noting that both methods provide Iteshat
align quite well all over in the domafd , or the trapezium ACDE. Only areas near the samifigs is a problem to
du

oy -
Graphs 10 and 11 illustrate this good alignment fittst graph gives the values tfalong the diagonal AE and the

. T . . . . .0u
FEM which encounters difficulties, under its stamdform, to provide precise results for derivatigs and

i) a
second shows the values of the first partial de'xjeaa_?( (red) andWu (black) on AE. The abscissa s of diagrams

is the length of the arc which goes from 0+f2. Continuous curves are solutions obtained udinddrge singular
finite elements method with 144 parameters whileeldircles are values obtained using COMSOL inctee of a
grid at a scale of 178,849 degree of freedom.
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Figure 12 - Derivatives of the potential u along AEnear A
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Figure 13- Derivatives of the potential u along AEnear E

The behavior of the approximate solutions near é &ns illustrated in figure 11 where are represdrihe 10-base

ad d
logarithms of the modules of derivativqﬁu (red) and@u (black) along the diagonal AE. Continuous curves

correspond to values obtained by MGEFS usingl44meters and the circles to those that provide ithiee f
element method using a grid of 178,849 degreeseafdbm. Figure 12 gives the same functions neaveEcan
notice that both methods provide very good resnlthe area near A, which actually is not a trugyslarity, while
gaps are very significant near singularity E. lowld also be noticed that near A, the modules dh lpartial
derivatives merge, which is normal due to the symimef the problem. This equality should also bspected near
E. Yet, if this is the case for results obtainedUSFEM (red and black curves are merged), it isthetcase for
those provided by FEM (figure 3).

To complete the comparison between both solvinghats, we consider their numerical convergence imestew

particular pointd® and we define the relative error by evaluatior) (35

f
g=1-2% (35)

Where fappx is an approximate value anfi the reference value. We use the solution obtaryedSFEM while

keeping 108 coefficient®,, . Figure 14 shows the evolution of 10-base logar#of the modules of related errors
made and its partial derivatives at each pointhef approximate solutions become more and more geredis

. . _oou . du
abovementioned, blue curves represent the funtdtioand red ones, the derivativg, while the black is7y .

Circles are related to LSFEM and squares to FEM.

The abscissa scale is the number of paramesgs kept for LSFEM while for FEM, the five points are

representative of approximations provided by tleset and closer grids, leading to an increasingbeurof degrees

of freedom from 2,869 to 178,849. As we may sesjlte provided by both methods are excellent, aafhedor the
function U. However, the accuracy obtained using LSFEM issm@rably better and higher at many extends than
that provided by the finite elements method. The igaat least 8 decades for bdifand its derivatives.
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Figure 14- Evolution of related errors onU ( blue), 6_3( (red) and 6_; (black)

CONCLUSION

If MGEFS provides good results in the whole studyndin, FEM is only satisfactory in areas far freimgularities.
LSFEM takes into account the existence of singiyldad analytically find solution near it, which ttedore allows
obtaining derivated magnitudes without any addéloformulation. The convergence system of the nebtiso
exponential. The comparison of results obtainedgubbth methods shows superiority, efficiency, graccuracy
of LSFEM compared to FEM. This study also shows ithportance of dividing into subdomains which take
symmetries and the number of singularities intmaaot in the method.
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