
Available online at www.pelagiaresearchlibrary.com 
 

 
 

   
Pelagia Research Library 

 
Advances in Applied Science Research, 2016, 7(3):45-57    

 
 

  
   

ISSN: 0976-8610  
CODEN (USA): AASRFC 

 

45 
Pelagia Research Library 

Determining the potential field within a square transformer 
 

Ouigou M. Zongo1, Sié Kam2, Tassembedo Sosthène2, Kounhinir Some1, Kalifa Palm3  
and Alioune Ouedraogo2 

 
1Département de  Mathématiques, UFR-SEA, Université de  Ouagadougou,  B.P 7021, Ouagadougou 03, Burkina 

Faso 
2Département de  Physique, UFR-SEA, Université de Ouagadougou, B.P 7021, Ouagadougou 03,  Burkina Faso 

3Institut de Recherche en Sciences Appliquées et Technologies 03 BP 7047 Ouagadougou 03, Burkina Faso 
_____________________________________________________________________________________________ 
 
ABSTRACT 
 
This paper deals with determining a field of stationary potential in a transformer with square plane section, with a 
side measuring 4 and divided at the center by a square which side measures 2. The problem consists in solving a 
Laplace equation with conditions on Dirichlet’s boundaries that we solve using the method of large singular finite 
elements method (LSFEM). Then, we compare the values of the solutionu  and those of its first derivatives with 
those obtained using the finite element method (FEM). Both methods provide results that align everywhere except 
near singularities where there are very significant gaps. 
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INTRODUCTION 
 

The Laplace’s equation and more generally, the Poisson’s equation is used to solve several engineering problems 
and in other subjects. This equation is used in electromagnetism [1], heat transmission [2], fluid dynamics [3], 
elasticity [4-5] and in potential theory [6]. When the problem is singular to the polygon summits, the numerical 
solving of the Laplace’s equation is very difficult and usual finite element methods do not provide satisfactory 
results when they are used in their standard form. These methods as shown by various authors [7-16] may be slightly 
improved if they take the analytical form of the solution near the singularities into account. We use LSFEM to 
determine the potential field in a square transformer with Dirichlet’s non-homogenous boundary conditions. This 
gives good results in the entire domain studied while FEM gives good results only in areas that are far from 
singularities. This shows the power, efficiency, and accuracy of this method with a limited number of coefficients 
compared to finite element method.   
 

MATERIALS AND METHODS 
 

Let’s determine the potential stationary field within the square transformer which side is 4, cut in its center by a 
square which side is 2. We assume that the variables have been reduced by modifying the scale (adimensioning). 

The reduced potential ),( yxu  is 1 on the contour 2Ω∂  of the internal square and 0 on the external border 1Ω∂ of 

the domain Ω  while between two squares, it should confirm the Laplace’s equation (figure 1). 
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Figure 1: Domain of the Square Transformer 

 
Though the initial domain is pierced and that limit conditions are Dirichlet-like, we may, because of elements like 
the double geometrical symmetric of the domain, the conditions on limits and the Laplace’s operator, work on the 
one eighth of the transformer. The domain then considered is a rectangular trapezium ACDE (figure 2). The problem 
will then consist in solving the Laplace’s equation on the polygonal domain ACDE with mixed limit conditions: 
 

0),( =∆ yxu  within the trapezoid domain ACDE                                                                     (1) 

0),( =yxu   along AC                                                                                                               (2) 

1),( =yxu   along DE                                                                                                                (3) 

0=
∂
∂
n

u
  along AE                                                                                                                      (4) 

0=
∂
∂
n

u
 along  CD                                                                                                                      (5) 

 
Figure 2 : The eighth of the square transformer is dived into five subdomains 
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The problem as posed is particular because of the geometrical singularities that are the vertices of the polygon 
domain where there is a sudden change in the direction of the normal at the boundary. Neumann’s homogenous limit 
conditions have been imposed on sides AE and CD and Dirichlet’s ones are used on sides AC and DE. Let’s solve it 
using the method of large singular finite elements that includes three steps: 
 
Step1 : Dividing the domain  
The figure 2 shows the division of the domain ACDE into five sub-domains bearing five singularities as 
recommended by Tolley [9] and condition to Neumann-Dirichlet mixed limits. The border of the working domain 
has been drawn in blue, the continuous lines show the parts of the border on which conditions to limits are Dirichlet-

like while discontinuous lines are conditions to Neumann’s limits. Sub-borders ijΓ  that separate subdomains 

iΩ and jΩ are in red.    

 
Step 2: Solving auxiliary problems                               
To each subdomain iΩ , 5,..,1=i  is given a system of local coordinates and problem. For the subdomain 5Ω , 

which extension is *
5Ω , the system of polar coordinate ),( 55 θr  and the conditions to limits are summarized in 

figure 3 below. 

 
Figure 3 : The subdomain  5Ω ,  its opening 5β  and its local coordinates ).,( 55 θr  

 

We must solve the following five auxiliary problems on iΩ : 

 
First auxiliary problem 

*
111111 ),(0),( Ω∈= θθ rru                                                                                                       (6) 

0)0,( 11 =ru                                                                                                                          (7) 

0)
4

,( 11 =π
ru                                                                                                                               (8) 

 
Second auxiliary problem 

*
222222 ),(0),( Ω∈= θθ rru                                                                                                     (9) 

0)0,( 22 =ru                                                                                                                               (10) 

0),( 22 =πru                                                                                                                               (11) 

 
Third auxiliary problem 

*
333333 ),(0),( Ω∈=∆ θθ rru                                                                                               (12) 

0)0,( 33 =ru                                                                                                                               (13) 
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0)
2

,( 33 =π
ru                                                                                                                             (14) 

 
Fourth auxiliary problem 

*
444444 ),(0),( Ω∈=∆ θθ rru                                                                                               (15) 

1)0,( 44 =ru                                                                                                                               (16) 

0)
2

,( 44 =π
ru                                                                                                                            (17) 

 
Fifth auxiliary problem 

*
555555 ),(0),( Ω∈=∆ θθ rru                                                                                            (18) 

0
)0,(

5

55 =
∂

∂
n

ru
                                                                                                                           (19) 

0)
4

3
,( 55 =π

ru                                                                                                                            (20) 

 

All general solutions to auxiliary problems are not alike, they depend on the opening of the angle iβ  and conditions 

to limits [8,9] are written as follow: 

1
1

12
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55555 3

24
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− m
raru
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m

m
                                                                    (25) 

with coefficients  lkji aaaa 43,2,1 , and ma5  arbitrary constants. 

 
Practically, we must keep to approximate solutions. The approximation derives, on the one hand, from the fact that 
there is a need to limit developments (21) to (25) to a finite number of terms and, on the other hand, we must keep, 
except few cases, to an imperfect alignment. The number of coefficients kept in each of the sums has been chosen 
according to Descloux and Tolley’s [9, 13] principle, which aims at representing approximate solutions using 
uniforms function as possible. This ensures an overall homogeneity to the approximate solutions obtained while 
keeping more terms for subdomains where openings are larger. We decide to keep a number of coefficients 

proportional to the angle )5.,..,1(, =kkβ , with the opening extension*
kΩ  of  the subdomain kΩ .   
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The total number of coefficients kla  which value may be freely selected will be  

 
(1+4+2+2+3) N = 12N where N is the number of coefficients kept for an opening angle 4/π . 
 
Step 3: Aligning auxiliary solutions  
To get the solution of the initial problem (1) to (3) from solutions to auxiliary problems, we “just” need to make “a 

good choice” of arbitrary coefficientsina . According to M. D. Tolley [9], the relevant choice is made by setting the 

continuity of auxiliary functions and those of their normal derivatives. We are aligning the solutions of the auxiliary 

problems to the meaning of the continuous least squares, or we have been determining the coefficients kla  that 

allow minimizing the function:    
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These coefficients are a solution to a square matrix linear algebraic system defined positive, comprising 12N 

equations of 12N unknown coefficientskla for the distribution into five subdomains or 8N equations of 8N 

unknowns for the division into four subdomains, classically known as Gauss’s normal equations:  
 

O
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aI

kl
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∂
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                                                                                                                             (32)         

 
The accuracy of the approximate solutions is closely linked to the quality of the alignment of solutions to the 
auxiliary problems. It is therefore natural to characterize this accuracy by measuring the imperfections of continuity 
conditions. We will use the assessment of the global error defined in (33) :  
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where 
klds  is the element of the arc length ijΓ  , klS  its length and kυ  and 

lυ  normals to the sub-border 
klΓ  

separating both adjacent subdomains kΩ an lΩ . 

 

If the number of coefficientskla  selected increases, the algebraic system to solve gets more and more badly 

conditioned and the matrix of the system may become numerically singular. The numerical conditioning of an 
algebraic system is qualified using the number of the spectral conditions of its matrix, known as conditioning.  
 
The conditioning  χ(A) of the square matrix A is the product of the Euclidean Norms of A and of its inverse A-1   

1.)( −= AAAχ  [17] 

 
RESULTS AND DISCUSSION 

 
The initial domain (figure 1) comprises eight angular points, among which only four, those with reflex angles 

measuring 2
3π are singular for Laplace’s equation. At these points where the direction of the normal at the border 

suddenly changes, they are considered singular. This does not imply that they are automatically analytical 
singularities. The study of the auxiliary solutions to the auxiliary problems 1 and 5 (equations 21 and 25) shows that 
at point A, the solution is fully regular since it is defined as well as its partial derivatives of all kinds. At point E, 
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derivatives x
u
∂

∂ 5
and y

u
∂

∂ 5
are finite. A is therefore regular while E is singular. As for our working area, the trapezium 

ACDE (figure 2), only E is a real singularity. A, C, and D are singular because the normal derivative in these points 
change direction. B is a “pseudo singularity” introduced to divide up the trapezoid domain. Other divisions of the 
study area are possible (figure 4). The last two divisions (figure 4c and 4d) allow getting definitely better results as 
illustrated by the graphs in figures 5 and 6.    
  

 
Figure 4 : Various subdivisions of the trapezoid working domain 

 
It is observed that the worst divisions (4a) and (4b) allow getting global errors below 10-6 while the division into 
four subdomains with five subdomains (4c) leads to reduce errors to around 10-9 and the division into five 
subdomains (4d) produces a global error of less than  
 
10-12. Such precision is exceptional for a numerical method and to illustrate the convergence of the method of the 
large singular finite elements based on the number of coefficients used, we recorded some results in tables 1 and 2. 
It can be noticed when reading data listed in these tables that the results obtained by using 108 or 144 coefficients 
are the same to the fourteenth decimal.  
 
Lastly, solving a system of 36 equations to 36 unknowns allows us getting the exact solution near 10-8. We have not 
got such a precision using the finite elements method, even by solving a system of more than 170,000 equations 
(figure 13). These results are supported by curves in figure 6 that show the evolution of 10-base logarithm of the 
conditioning of the matrices of Gauss’s various normal equation systems depending on the total number of 
coefficient kept in the auxiliary solutions 26 to 30. The division (4d) is too flagrant.    
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Figure 5: Evolution of the global error according to the number of coefficients kla  kept. Notations (a), (b), (c) and (d) refer to the four 

subdivisions of the trapezium ACDE (see figure 4) 
  

 
Figure  6 – Conditioning of Gauss’s matrix normal equation system 

Notations (a), (b), (c) and (d) refer to the four subdivisions of the trapezium ACDE (cf. figure 4). 
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Table 1: Values of u function near A obtained using LSFEM 
 

yx =  36 coefficients 72 coefficients 108 coefficients 144 coefficients 
0 0 0 0 0 

0.01 0.00007848913159 0.00007848909094 0.00007848909094 0.00007848909094 
0.02 0.00031395653117 0.00031395636855 0.00031395636855 0.00031395636855 
0.03 0.00070640224195 0.00070640187614 0.00070640187613 0.00070640187613 
0.04 0.00125582643197 0.00125582578201 0.00125582578201 0.00125582578201 
0.05 0.00196222953814 0.00196222852383 0.00196222852382 0.00196222852382 
0.06 0.00282561246788 0.00282561101055 0.00282561101054 0.00282561101054 
0.07 0.00384597685845 0.00384597488221 0.00384597488218 0.00384597488218 
0.08 0.00502332539383 0.00502332282732 0.00502332282729 0.00502332282729 
0.09 0.00635766217944 0.00635765895818 0.00635765895814 0.00635765895814 
0.10 0.00784899317449 0.00784898924395 0.00784898924390 0.00784898924390 

 
Table 2: Values of u function near E obtained using LSFEM 

 
yx =  36 coefficients 72 coefficients 108 coefficients 144 coefficients 

0.90 0.69772520048597 0.69725201311982 0.69725201311831 0.69725201311831 
0.91 0.71736439444595 0.71736439826875 0.71736439826736 0.71736439826736 
0.92 0.73833264268730 0.73833264655130 0.73833264655002 0.73833264655002 
0.93 0.76029077766123 0.76029078144198 0.76029078144081 0.76029078144081 
0.94 0.78341911969167 0.78341912328333 0.78341912328228 0.78341912328228 
0.95 0.80797111394502 0.80797111725519 0.80797111725426 0.80797111725426 
0.96 0.83432477864015 0.83432478158377 0.83432478158297 0.83432478158297 
0.97 0.86309440060435 0.86309440309571 0.86309440309505 0.86309440309505 
0.98 0.89542367952698 0.89542368146652 0.89542368146601 0.89542368146601 
0.99 0.93406930727955 0.93406930852045 0.93406930852014 0.93406930852014 
1.00 1.00000000000000 1.00000000000000 1.00000000000000 1.0000000000000 

 
Figure 7 and 8 make think that the potential increases linearly from 0 to 1 along the CD. This is inaccurate as shown 
in figure 9 where the gap is represented between u and y along CD for 12N=144 and 12N= 96 coefficients kept.  

 

 
 

Figure 7- Equipotentials u = (0 : 0.04 :1)                       Figure 8- Representation of the function ),( yxu  in  perspective 

 
The comparison of results obtained using LSFEM and FEM allows us noting that both methods provide results that 
align quite well all over in the domainΩ , or the trapezium ACDE. Only areas near the singularities is a problem to 

FEM which encounters difficulties, under its standard form, to provide precise results for derivativesx
u

∂
∂

 and y
u

∂
∂

. 

Graphs 10 and 11 illustrate this good alignment. The first graph gives the values of u along the diagonal AE and the 

second shows the values of the first partial derivatives x
u

∂
∂

 (red) and y
u

∂
∂

 (black) on AE. The abscissa s of diagrams 

is the length of the arc which goes from 0  to 2 .  Continuous curves are solutions obtained using the large singular 
finite elements method with 144 parameters while blue circles are values obtained using COMSOL in the case of a 
grid at a scale of 178,849 degree of freedom.  
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Figure 9- Gap between the function u (x, y) and y along CD 

 

 
Figure 10 - Potential along AE 
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Figure 11- Derivatives of the potential u along AE 

 
Figure 12 - Derivatives of the potential u along AE, near A 
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Figure 13- Derivatives of the potential u along AE, near E 

 
The behavior of the approximate solutions near A and E is illustrated in figure 11 where are represented the 10-base 

logarithms of the modules of derivatives x
u

∂
∂

 (red) and y
u

∂
∂

 (black) along the diagonal AE. Continuous curves 

correspond to values obtained by MGEFS using144 parameters and the circles to those that provide the finite 
element method using a grid of 178,849 degrees of freedom. Figure 12 gives the same functions near E. we can 
notice that both methods provide very good results in the area near A, which actually is not a true singularity, while 
gaps are very significant near singularity E. It should also be noticed that near A, the modules of both partial 
derivatives merge, which is normal due to the symmetric of the problem. This equality should also be respected near 
E. Yet, if this is the case for results obtained by LSFEM (red and black curves are merged), it is not the case for 
those provided by FEM (figure 3).   
 
To complete the comparison between both solving methods, we consider their numerical convergence in some few 

particular points iP  and we define the relative error by evaluation (35).    

 

ref

appx

f

f
−= 1ε                                                                                                                              (35) 

 

Where appxf  is an approximate value and reff  the reference value. We use the solution obtained by LSFEM while 

keeping 108 coefficients kla . Figure 14 shows the evolution of 10-base logarithms of the modules of related errors 

made and its partial derivatives at each point of the approximate solutions become more and more precise. As 

abovementioned, blue curves represent the functionu , and red ones, the derivative x
u

∂
∂

while the black is y
u

∂
∂

. 

Circles are related to LSFEM and squares to FEM.   
 

The abscissa scale is the number of parameters kla  kept for LSFEM while for FEM, the five points are 

representative of approximations provided by the closer and closer grids, leading to an increasing number of degrees 
of freedom from 2,869 to 178,849. As we may see, results provided by both methods are excellent, especially for the 
function u . However, the accuracy obtained using LSFEM is considerably better and higher at many extends than 
that provided by the finite elements method. The gap is at least 8 decades for both u and its derivatives.      
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Figure 14- Evolution of related errors on u  ( blue), x
u

∂
∂

 (red)  and y
u

∂
∂

 (black) 

 
CONCLUSION 

 
If MGEFS provides good results in the whole study domain, FEM  is only satisfactory in areas far from singularities. 
LSFEM takes into account the existence of singularity to analytically find solution near it, which therefore allows 
obtaining derivated magnitudes without any additional formulation. The convergence system of the method is 
exponential. The comparison of results obtained using both methods shows superiority, efficiency, and the accuracy 
of LSFEM compared to FEM. This study also shows the importance of dividing into subdomains which take 
symmetries and the number of singularities into account in the method.    
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