

Pelagia Research Library

Advances in Applied Science Research, 2013, 4(1):200-211

Design of 3,000,000tons/yr A-20 dry cell plant

N. B. Ekwe and D. F. Aloko

Chemical Engineering Department, University of Abuja, Nigeria

ABSTRACT

A design for the production 3,000,000ton/yr A-20 dry cell plant to help in alleviating the problem of power supply to portable electronic devices and offer employment opportunity to teeming unemployed youth in Nigeria was carried out. This is done to bringing the much needed revenue to local economies, providing jobs and improving the lives of people. Since job creation especially for youth, reducing poverty are criteria for macroeconomics success. A medium scale plant for the production of A-20 dry cell using paper lined system of 4wt% zinc and 8wt% NH₄Cl was designed. The material and energy balance of the production were given. Results obtained revealed that the net profit (19.471×10^6) when compared with the total production cost (16.386×10^7) shows that the project is economically viable.

INTRODUCTION

Dry cell, also known as Leclanche cell or a zinc-carbon battery is a form of primary electrochemical cell that supplies electrical energy at small currents by converting chemical energy into electricity. This battery is not rechargeable; therefore, it is discarded once it has produced all its electrical energy because the chemicals cannot be reconstituted into their original form once the energy has been converted. It is compact and reliable; hence it is commonly used to power portable electronic devices such as radios and flashlights, toys, hearing aids, smoke detectors etc.

Like all electrochemical cells, the dry cell gets its electrical energy from an internal chemical reaction which takes the form of two half-cell reactions. The electrolyte in the cell consists of ammonium chloride, manganese (IV) oxide, finely granulated carbon and inert filler which is usually starch. The ammonia from the ammonium ions forms the complex ion $Zn(NH_3)_4^{2+}$ with the Zn^{2+} preventing build up of Zn ions which would result in reduction of the potential of the cell.

In standard electrochemical cell notation the dry cell looks like: (-) $Zn(s)|ZnCl_2(aq), NH_4Cl(aq)|MnO(OH)(s)|MnO_2(s)|$ graphite (+) With a cell potential of approximately 1.5V and the following half-cell reactions

Oxidation (At the anode (-)): $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-1}$

Followed by $\operatorname{Zn}^{2+}(aq) + 2\operatorname{NH}_3(g) \rightarrow [\operatorname{Zn}(\operatorname{NH}_3)_2]^{2+}(aq)$

Reduction (At the cathode (+)): $MnO_2(s) + H_2O(l) + e^- \rightarrow MnO(OH)(s) + OH^-(aq)$ (Anderson, 2004; Linford, 1990; Urells, 1995; Mantel, 1950).

Material balance

The compositions of dry cell electrolyte are 15% $ZnCl_2$ and 27% NH_4Cl in water . At these concentrations most of the zinc in solution exists as complex ion $ZnCl^{-4}$. Therefore, the reaction below is the simple representation of the actual natural process that occurs in a dry cell.

 $\begin{array}{l} Zn_{(s)} + 2MnO_{(s)} + 2NH_4Cl_{(aq)} \rightarrow Zn(NH)_3Cl_2(aq) + 2MnOOH_{(aq)} \\ mass \ accumulated = mass \ input - mass \ output + \ mass \ generated - mass \ consumed \end{array}$

Using the steady state equation without reaction, where the values of the variables within the system do not change with time hence accumulation is zero by definition.

mass input = mass output

But in the furnace, there is 3% accumulation of zinc therefore the material balance around the furnace is given as

mass accumulated = mass input - mass output

The material balances around the furnace, extruder, electrolyte mixer, electrolytic cell, cathode mixer, starch mixer, kneader wax unit are given in tables 1.1 - 1.8

Table 1.1 FURNACE Assumption: 3% accumulation of zinc

		Input		Acci	umulation		Outpi	ut	
Compone	ent	Kg kg/year	wt%	Kg	kg/year	wt%	Kg	kg/year wt%	
Zn	100	125715241.2	100	3	3771457.23	100	97	121943783.9	100
NH ₄ Cl	0	0	0	0	0	0	0	0	0
MnO_2	0	0	0	0	0	0	0	0	0
ZnCl ₂	0	0	0	0	0	0	0	0	0
H ₂ O	0	0	0	0	0	0	0	0	0
Carbon	0	0	0	0	0	0	0	0	0
Starch	0	0	0	0	0	0	0	0	0
Wax	0	0	0	0	0	0	0	0	0
MnSO ₄	0	0	0	0	0	0	0	0	0
Total	100	125715241.2	100	3	3771457.23	100	97	121943783.9	100

Table 1.2 EXTRUDER

		Input		Output	
Component		Kg kg/year	wt%	kg kg/year	wt%
Zn	97	121943783.9	100	97 121943783.9	100
NH ₄ Cl	0	0	0	0 0	0
MnO ₂	0	0	0	0 0	0
ZnCl ₂	0	0	0	0 0	0
H ₂ O	0	0	0	0 0	0
Carbon	0	0	0	0 0	0
Starch	0	0	0	0 0	0
Wax	0	0	0	0 0	0
MnSO ₄	0	0	0	0 0	0
Total	97	121943783.9	100	97 121943783.9	100

		Input	t		Addi	ition			Output	
Component		Kg	kg/year	wt%	kg	kg/year	wt%	kg	kg/year	wt%
Zn	97	12	21943783.9	100	0	0	0	97	121943783.9	17.3913
NH4Cl	0		0	0	194	243887568	42.10526	194	243887567.8	
MnO ₂	0		0	0	0	0	0	0	0	0
ZnCl ₂	0		0	0	24.25	30485946	5.263158	24.25	30485945.98	347826
H ₂ O	0		0	0	242.5	304859460	52.63158	242.5	304859459.8	3.47826
Carbon	0		0	0	0	0	0	0	0	0
Starch	0		0	0	0	0	0	0	0	0
Wax	0		0	0	0	0	0	0	0	0
MnSO ₄	0		0	0	0	0	0	0	0	0
Total	97	12	21943783.9	100	460.75	579232974	100	557.75	701176757.5	100

Table.1.3 ELECTROLYTE MIXER

Table1.4 ELECTROLYTE CELL

	Input	t			Addition	I I			Output		
Component	Kg	kg/year	wt%		kg	kg/year	wt%	Kg	kg/year		wt%
Zn	97	1219437	83.9	17.3913	0		0	0	97	121943783.9	10.81081
NH ₄ Cl	194	2438875	67.8	34.78261	0		0	0	194	243887567.8	21.62162
MnO ₂	0		0	0	0		0	0	0	0	0
ZnCl ₂	24.25	3048594	5.98	4.347826	0		0	0	24.25	30485945.98	2.702703
H_2O	242.5	3048594	59.8	43.47826	0		0	0	242.5	304859459.8	27.02703
Carbon	0		0	0	0		0	0	0	0	0
Starch	0		0	0	0		0	0	0	0	0
Wax	0		0	0	0		0	0	0	0	0
MnSO ₄	0		0	0	339.5	4268032	243.7	100	339.5	426803243.7	37.83784
Total	557.75	7011767	57.5	100	339.5	4268032	243.7	100	897.25	1127980001	100

Table.1.5 CATHODE MIXER

	Input			Additio	n			Output	
Compone	ent Kg	kg/year wt%	6	Kg	kg/year	wt%	Kg	kg/year	wt%
Zn	97	121943783.9	10.81081	0	0	0	97	121943783.9	6.4516129
NH ₄ Cl	194	243887567.8	21.62162	0	0	0	194	243887567.8	12.903226
MnO ₂	0	0	0	339.5	426803243.7	56	339.5	426803243.7	22.580645
ZnCl ₂	24.25	30485945.98	2.702703	0	0	0	24.25	30485945.98	1.6129032
H ₂ O	242.5	304859459.8	27.02703	0	0	0	242.5	304859459.8	16.129032
Carbon	0	0	0	266.75	335345405.8	44	266.75	335345405.8	17.741935
Starch	0	0	0	0	0	0	0	0	0
Wax	0	0	0	0	0	0	0	0	0
MnSO ₄	339.5	426803243.7	37.83784	0	0	0	339.5	426803243.7	22.580652
Total	897.25	1127980001	100	606.25	762148649	100	1503.5	1890128651	100

Table 1.6 ELECTROLYTE STARCH MIXER

		Input			Addition			Output	
Component	kg	kg/year	wt%	kg	kg/year	wt%	kg	kg/year	wt%
Zn	97	121943783.9	6.451612903	0	0	0	97	121943783.9	4.081633
NH ₄ Cl	194	243887567.8	12.90322581	0	0	0	194	243887567.8	8.163265
MnO ₂	339.5	426803243.7	22.58064516	0	0	0	339.5	426803243.7	14.28571
ZnCl ₂	24.25	30485945.98	1.612903226	0	0	0	24.25	30485945.98	1.020408
H ₂ O	242.5	304859459.8	16.12903226	0	0	0	242.5	304859459.8	10.20408
Carbon	266.75	335345405.8	17.74193548	0	0	0	266.75	335345405.8	11.22449
Starch	0	0	0	873	1097494055	100	873	1097494055	36.73469
Wax	0	0	0	0	0	0	0	0	0
MnSO ₄	339.5	426803243.7	22.5806516	0	0	0	339.5	426803243.7	14.28571
Total	1503.5	1890128651	100	873	1097494055	100	2376.5	2987622706	100

Table1.7
KNEADER

		Input			Accumulatio	n		Outpu	t
Component	kg	kg/year	wt%	Kg	kg/year	wt%	Kg	kg/year	wt%
Zn	97	121943783.9	4.081633	0.97	1219437.84	4.081633	96.03	120724346.1	4.081633
NH ₄ Cl	194	243887567.8	8.163265	1.94	2438875.68	8.163265	192.06	241448692.2	8.163265
MnO ₂	339.5	426803243.7	14.28571	3.395	4268032.44	14.28571	336.105	422535211.3	14.28571
ZnCl ₂	24.25	30485945.98	1.020408	0.2425	304859.46	1.020408	24.0075	30181086.52	1.020408
H ₂ O	242.5	304859459.8	10.20408	2.425	3048594.6	10.20408	240.075	301810865.2	10.20408
Carbon	266.75	335345405.8	11.22449	2.6675	3353454.06	11.22449	264.0825	331991951.7	11.22449
Starch	873	1097494055	36.73469	8.73	10974940.6	36.73469	864.27	1086519115	36.73469
Wax	0	0	0	0	0	0	0	0	0
MnSO ₄	339.5	426803243.7	14.28571	3.395	4268032.44	14.28571	336.105	422535211.3	14.28571
Total	2376.5	2987622706	100	23.765	29876227.12	100	2352.735	2957746479	100

Table 1.8 WAX UNIT

		Input			Addi	tion			Output
Component	kg	kg/year	wt%	Kg	kg/year v	wt%	Kg k	g/year	wt%
Zn	96.03	120724346.1	4.081633	0	0	0	96.03	120724346.1	4.024145
NH4Cl	192.06	241448692.2	8.163265	0	0	0	192.06	241448692.2	8.04829
MnO ₂	336.105	422535211.3	14.28571	0	0	0	336.105	422535211.3	14.08451
ZnCl ₂	24.0075	30181086.52	1.020408	0	0	0	24.0075	30181086.52	1.006036
H ₂ O	240.075	301810865.2	10.20408	0	0	0	240.075	301810865.2	10.06036
Carbon	264.0825	331991951.7	11.22449	0	0	0	264.0825	331991951.7	11.0664
Starch	864.27	1086519115	36.73469	0	0	0	864.27	1086519115	36.2173
Wax	0	0	0	33.6105	42253521.1	100	33.6105	42253521.1	1.408451
MnSO ₄	336.105	422535211.3	14.28571	0	0	0	336.105	422535211.3	14.08451
Total	2352.735	2957746479	100	33.6105	42253521.1	100	2386.3455	3000000000	100

Conversion: 1 ton/year 1000 kg/year

Production rate : 3000000 ton/year = 300000000 kg/year

A-20 dry cell obtained from the basis : 2386.3455

Energy balance

energy accumulated = energy input – energy output + energy generated – energy consumed $\Delta T = T - Tr$; Where T and Tr are operating temperature and room temperature respectively T = 302K, Tr = 298K $\Delta T = 4$ K $\Delta H = nCp\Delta T$

Using the general energy equation without reaction, where the values of the variables within the system do not change with time hence accumulation is zero by definition. energy input = energy output

The energy balances around the furnace, extruder, electrolyte mixer, electrolytic cell, cathode mixer, starch mixer, kneader, and wax unit are given in tables 2.2 - .2.9.

Component	Molecular weight	Heat of formation	Specific heat capacities
	kg/kmol	kJ/kmol	kJ/kmol.K
Zn	65	0	20.786
NH ₄ Cl	53	0	215.9
MnO ₂	88	0	549.5
ZnCl ₂	135	-9.786 x 10 ⁵	60.48
H ₂ O	18	$-1.039 \ge 10^5$	97.207
Carbon	12	0	$-4.461 \ge 10^{11}$
Starch	810	-9.456 x 10 ⁵	44.384
Wax	850	-2.963 x 10 ⁵	-39.722
MnSO ₄	15	-6.018 x 10 ⁵	41.899

Table 2.2 FURNACE

	No of moles : k	mol/yr	Enth	alpy kJ/year
Component	Input	Output	Input	Output
Zn	125715241.2	121943783.9	1.045 x 10 ¹⁰	1.014 x 10 ¹⁰
NH ₄ Cl	0	0	0	0
MnO ₂	0	0	0	0
ZnCl ₂	0	0	0	0
H ₂ O	0	0	0	0
Carbon	0	0	0	0
Starch	0	0	0	0
Wax	0	0	0	0
MnSO ₄	0	0	0	0

Table 2.3 EXTRUDER

	No of moles : k	mol/yr	Enth	alpy kJ/year
Component	Input	Output	Input	Output
Zn	125715241.2	121943783.9	1.045 x 10 ¹⁰	1.014 x 10 ¹⁰
NH₄Cl	0	0	0	0
MnO ₂	0	0	0	0
ZnCl ₂	0	0	0	0
H ₂ O	0	0	0	0
Carbon	0	0	0	0
Starch	0	0	0	0
Wax	0	0	0	0
MnSO ₄	0	0	0	0
Total				

Table 2.4 ELECTROLYTE MIXER

	No of moles : kmol/yr		Enthalpy kJ/year		
Component	Input	Output	Input	Output	
Zn	125715241.2	121943783.9	1.045 x 10 ¹⁰	1.014 x 10 ¹⁰	
NH ₄ Cl	0	243887567.8	0	2.106 x 10 ¹¹	
MnO ₂	0	0	0	0	
ZnCl ₂	0	30485945.98	0	7.375 x 10 ⁹	
H ₂ O	0	304859459.8	0	1.185 x 10 ¹¹	
Carbon	0	0	0	0	
Starch	0	0	0	0	
Wax	0	0	0	0	
MnSO ₄	0	0	0	0	
Total				3.467 x 10 ¹¹	

Table 2.5 ELECTROLYTE CELL

	No of moles : k	No of moles : kmol/yr		Enthalpy kJ/year		
Component	Input	Output	Input	Output		
Zn	121943783.9	121943783.9	1.014 x 10 ¹⁰	$1.014 \ge 10^{10}$		
NH4Cl	243887567.8	243887567.8	2.106 x 10 ¹¹	2.106 x 10 ¹¹		
MnO ₂	0	0	0	0		
ZnCl ₂	30485945.98	30485945.98	7.375x10 ⁹	7.375 x 10 ⁹		
H ₂ O	304859459.8	304859459.8	$1.185 \ge 10^{11}$	$1.185 \ge 10^{11}$		
Carbon	0	0	0	0		
Starch	0	0	0	0		
Wax	0	0	0	0		
MnSO ₄	0	426803243.7	0	7.153 x10 ¹⁰		
Total			3.467 x 10 ¹¹	4.182 x 10 ¹¹		

Table 2.6 CATHODE MIXER

	No of moles : k	No of moles : kmol/yr		Enthalpy kJ/year		
Component	Input	Output	Input	Output		
Zn	121943783.9	121943783.9	1.014×10^{10}	1.014 x 10 ¹⁰		
NH4Cl	243887567.8	243887567.8	2.106×10^{11}	2.106 x 10 ¹¹		
MnO ₂	0	426803243.7	0	9.382 X 10 ¹¹		
ZnCl ₂	30485945.98	30485945.98	7.375x10 ⁹	7.375 x 10 ⁹		
H ₂ O	304859459.8	304859459.8	1.185 x 10 ¹¹	1.185 x 10 ¹¹		
Carbon	0	335345405.8	0	-5.984 X 10 ²⁰		
Starch	0	0	0	0		
Wax	0	0	0	0		
MnSO ₄	426803243.7	426803243.7	7.153 x10 ¹⁰	7.153 x10 ¹⁰		
Total			4.182 x 10 ¹¹	-5.984 X 10 ²⁰		

Table 2.7 ELECTROLYTE STARCH MIXER					
	No of moles : k	No of moles : kmol/yr		alpy kJ/year	
Component	Input	Output	Input	Output	
Zn	121943783.9	121943783.9	$1.014 \ge 10^{10}$	$1.014 \text{ x } 10^{10}$	
NH₄Cl	243887567.8	243887567.8	2.106 x 10 ¹¹	2.106 x 10 ¹¹	
MnO ₂	426803243.7	426803243.7	9.382 X 10 ¹¹	9.382 X 10 ¹¹	
ZnCl ₂	30485945.98	30485945.98	7.375x10 ⁹	7.375 x 10 ⁹	
H ₂ O	304859459.8	304859459.8	$1.185 \ge 10^{11}$	1.185 x 10 ¹¹	
Carbon	335345405.8	335345405.8	-5.984 X 10 ²⁰	-5.984 X 10 ²⁰	
Starch	0	1097494056	0	1.948 x 10 ¹¹	
Wax	0	0	0	0	
MnSO ₄	426803243.7	426803243.7	7.153 x10 ¹⁰	7.153 x10 ¹⁰	
Total			-5.984 X 10 ²⁰	-5.984 X 10 ²⁰	

Table 2.8 KNEADER

	No of moles : k	No of moles : kmol/yr		Enthalpy kJ/year		
Component	Input	Output	Input	Output		
Zn	121943783.9	120724346.1	1.014 x 10 ¹⁰	1.004 x 10 ¹⁰		
NH ₄ Cl	243887567.8	241448692.2	2.106 x 10 ¹¹	2.085 x 10 ¹¹		
MnO ₂	426803243.7	422535211.3	9.382 X 10 ¹¹	9.288 x 10 ¹¹		
ZnCl ₂	30485945.98	30181086.52	7.375 x10 ⁹	7.301 x 10 ⁹		
H ₂ O	304859459.8	301810865.2	$1.185 \ge 10^{11}$	$1.174 \ge 10^{11}$		
Carbon	335345405.8	331991951.7	-5.984 X 10 ²⁰	-5.924 x 10 ²⁰		
Starch	1097494056	1086519115	1.948 x 10 ¹¹	1.929 x 10 ¹¹		
Wax	0	0	0	0		
MnSO ₄	426803243.7	422535211.3	7.153x10 ¹⁰	7.081 x 10 ¹⁰		
Total			-5.984 X 10 ²⁰	-5.924 x 10 ²⁰		

Table 2.9 WAX UNIT

	No of moles : kmol/yr		Enthalpy kJ	
Component	Input	Output	Input	Output
Zn	120724346.1	120724346.1	$1.004 \text{ x } 10^{10}$	$1.004 \text{ x } 10^{10}$
NH ₄ Cl	241448692.2	241448692.2	$2.085 \ge 10^{11}$	2.085 x 10 ¹¹
MnO ₂	422535211.3	422535211.3	9.288 x 10 ¹¹	9.288 x 10 ¹¹
ZnCl ₂	30181086.52	30181086.52	7.301x10 ⁹	7.301 x 10 ⁹
H ₂ O	301810865.2	301810865.2	$1.174 \ge 10^{11}$	1.174 x 10 ¹¹
Carbon	331991951.7	331991951.7	-5.924 x 10 ²⁰	-5.924 x 10 ²⁰
Starch	1086519115	1086519115	$1.929 \ge 10^{11}$	1.929 x 10 ¹¹
Wax	0	42253521.3	0	-6.714 x 10 ⁹
MnSO ₄	422535211.3	422535211.3	$7.081 \ge 10^{10}$	7.081×10^{10}
Total			-5.924 x 10 ²⁰	-5.924 x 10 ²⁰

ECONOMIC EVALUATION

Table 3.1: EQUIPMENT COST ANALYSIS

Equipment unit	Marshall and Smith equation	Area m ²	Diameter M	Height m	Material for construction	Unit cost ₩
Furnace	$Pc_{\text{furnace}} = \frac{ms}{280} (101.3 \text{A}^{0.65}. \text{Fc})$	9.9			Stainless steel	2.596×10^{5}
Extruder	$Pc = \frac{ms}{280} (101.9 \text{D}^{1.066} \text{ H}^{0.802} \text{. Fc})$		3.913	4.304	Stainless steel	8.123×10^{5}
Electrolyte mixer	Same as above		3.206	6.412	Carbon steel	9.042×10^5
Electrolyte cell	Same as above		5.537	5.814	Carbon steel	1.497×10^{6}
Cathode mixer	Same as above		4.699	5.873	Carbon steel	1.267×10^{6}
Starch mixer	Same as above		4.809	4.857	Carbon steel	1.115×10^{6}
Kneader	Same as above		4.892	4.647	Carbon steel	1.096×10^{6}
Total	6.95×10^{6}					

Assuming the initial fixed investment for the plant is the total purchased cost equipment; the **initial fixed capital investment** (FCI) is equal to $\Re 6.95 \times 10^6$.

Ms = numerical value for marshall and smith index (1100)

DESCRIPTION	YEARS				
	2012.00	2013.00	2014.00	2015.00	
Tones/yr	30000000.00	3428571.43	3857142.86	4285714.29	
Capacity (%)	70.00	80.00	90.00	100.00	
REVENUE		Amount in N			
Net sales	36843.64	42107.02	47470.39	52633.77	
EXPENDITURE					
Raw material	137388.17	157015.05	176641.93	196268.81	
Factory labour	44861.44	51270.22	5769.00	64087.77	
Depreciation	20624.04	23570.33	26516.62	29462.91	
Overhead	75797.85	86626.11	97454.38	108282.64	
TOTAL	278671.50	318481.71	358291.93	398102.14	
PROFIT					
Before tax	75797.85	86626.11	97454.38	108282.64	
Tax	11369.68	12993.92	14618.16	16242.40	
Net profit	64428.17	73632.20	82826.22	92040.25	

Table 3.2: Projected income and expenses statement for the year 2012 to 2015

CONCLUSION

The total production cost \aleph 6.386 x 10⁷ and a net profit of \aleph 9.471 x 10⁶ have revealed that the project is economically viable with a payback period of 3 years approximately

Appendix

Assumptions

1. Composition of dry cell electrolyte are 15% ZnCl₂ and 27% NH₄Cl in Water.

2. Thickness of the cylinder to be 0.60mm.

3.45% cathode is electrolyte

4.5% of Weight of Cathode is acetylene carbon

5.15% by Weight of electrolyte is $ZnCl_2 = 0.15Y$

6.85% of the electrolyte Y is poured into the cathode.

7.27% by weight of electrolyte is ammonium chloride

8.58% by weight of electrolyte is distilled water

9.15% by weight of electrolyte is mixed with starch

10. Steel sheet of 0.05cm thickness

11. Density of stainless steel = 7.86g/cm³

12. Sleet size is 6.15cm by 3.48cm

13.15% by Weight of the metal jacket is the metal top

14. Production Rate per Day = Production Rate.

Zinc Anode

The cylindrical shape size of A-20 dry cell has the following data: Density of zinc(pzinc) = 7.14 g/cm³ Height of the cylinder, $H_{cylinder}$:= 6.15cm Inner diameter of the cylinder, D_i = 3.42cm Assuming the thickness of the cylinder to be =0.6mm The outer diameter of the cylinder, $D_0 = D_i$ + thickness $D_0 = 0.035m$

Vcylinder =
$$\pi \left(\frac{D0^2}{4} \frac{Di^2}{4} \right)$$
 Hcylinder

Vcylinder = 2cm³

Mass of the zinc anode, $Mzinc = V_{cylinder} \cdot \rho zinc$ Mzinc = 14.278 g/cell

Manganese (IV) Oxide 1 mole of zinc reacts with 2 moles of MnO₂ 65g/gmole of zinc reacts with 174g/gmole of MnO₂ Therefore, 14.25g of zinc will react with

$$\frac{14.28 \text{.g.} 174 \text{.} \frac{\text{g}}{\text{gmol}}}{65 \text{.} \frac{\text{g}}{\text{gmol}}} = 38.226 \frac{\text{g}}{\text{cell}}$$

Cathode Components The cathode mixture of the dry cell is presented in the table below.

Components	Weight%
MnO2	50
Electrolyte	45
Carbon	5
Total	100

50 w% of cathode $MnO_2 = 38.23g$ X = the total weight of the cathode (g) Then, 0.5X = 38.23g

$$X = \frac{38.23}{0.5}$$
 = 76.46g

Electrolyte 45% of cathode is electrolyte, therefore, Mass of electrolyte in the cathode = 0.45 x 76.46.g = 34.407 g/cell

Acetylene Carbon 5% weight of cathode is acetylene carbon (carbon) Therefore, mass of carbon in the cathode = 0.05 x 76.46g = 3.823 g/cell

Electrolyte Components The electrolyte of the dry cell consists of the components presented in the table below:

Components	Weight%
ZnCl ₂	15
NH ₄ Cl	27
H ₂ O	58
Total	100

Assuming that 85% of the electrolyte Y is poured into the cathode, then 0.85Y= 34.41g

Electrolyte =
$$\frac{34.41 \frac{g}{gmol}}{0.85}$$
Y = 40.482 g/cell
Zinc Chloride (ZnCl₂)
15% by weight of electrolyte is ZnCl₂ = 0.15Y

$$0.15 \ge 40.48 = 6.072 \frac{3}{\text{cell}}$$

$$\operatorname{ZnCl}_2 = 6.072 \frac{s}{\text{cell}}$$

Ammonium Chloride (NH_4Cl) 27% by weight of electrolyte is ammonium chloride Therefore, mass of NH_4Cl in the electrolyte is $NH_4Cl:= 0.27$ Electrolyte

$$NH_4Cl = 10.93 \frac{g}{cell}$$

Distilled Water 58% by weight of electrolyte is distilled water Mass of distilled water per cell is $H_20 = 0.5.8$ Electrolyte

$$H_2O = 23.48 \frac{g}{cell}$$

Electrolyte Starch – mix Assuming 15% by weight of electrolyte is mixed with starch 0.15Y is mixed with starch Starch = 0.15. Y

Starch = $6.072 \frac{\mathbf{g}}{\mathbf{cell}}$

Steel Metal Jacket Using steel sheet of 0.05cm thickness

Density of steel, ρ steel = 7.86 $\frac{\mathbf{g}}{\mathbf{cm}^3}$

Using sheet size of 6.15cm by 3.48cm

The volume of the sheet, $V_{sheet} = 6.15$ cm. 3.48. cm 0.05 cm Vsheet = 1.07 cm³

Assuming that the metal top is 05% by weight of the metal jacket, then mass of the metal top,

 $M_{top} = 0.05.8.41 \frac{\mathbf{g}}{\mathbf{cell}}$ $M_{top} = 0.421 \frac{\mathbf{g}}{\mathbf{cell}}$ Production Rate yr Production Rate = $3 \times 10^9 \frac{\text{kg}}{\text{m}}$ vr Assuming 330 working days per year, that is, yr= 330. Day Production rate / day = 8.214×10^6 kg dav Using a basis of 8 hours / day of production time Production/hour = Production rate/day $= 3.422 \text{ x } 10^5 \frac{\text{kg}}{\text{m}^2}$ hr Estimation of total capital investment I. Direct Cost 1. Purchased equipment cost (PEC) 15 -40% of FCI, (39% FCI) 2. Installation, including insulation and painting 25 – 55% of PEC, (53% PEC) 3. Instrumentation and controls installed 6 – 30% of PEC, (35% PEC) 4. Piping installed 10-80% of PEC, (75% PEC) 5. Electrical installed 10-40% of PEC, (35% PEC) 6. Buildings, process and auxiliary 10 – 70% of PEC, (65% PEC) 7. Service facilities and yard improvements

₦ 2.711 x 10⁶

₦ 1.437 x10⁶

₦ 9.487 x 10⁵

₹ 2.033 x 10⁶

₦ 9.487 x 10⁵

₦ 1.762 x 10⁶

₦ 1.897 x 10⁶

40 – 100% of PEC, (70% PEC) 8. Land	№ 1.355 x 10 ⁵
1 – 2% of FCI or 4 – 8% of PEC, (5%PEC)	
TOTAL II. Indirect cost	\mathbb{N} 1.187 x 10 ⁷
These are expenses which are not directly involved with material and labour of actual instal facility. They are $15 - 30\%$ FCI	lation of complete
1. Engineering and supervision	№ 2.968 x 10 ⁶
5 – 30% of direct cost, (25%)	
2. Construction expense and contractor's fee 30 -60% of direct cost, (55%)	№ 6.53 x 10 ⁶
3. Contingency	4
5-15% of direct cost (13%) TOTAL	₩1.543 x 10 ⁶ ₩1.104 x 10 ⁷
III. Fixed Capital Investment	H1.104 X 10
Fixed CI = Direct Cost + Indirect Cost	№ 2.291 x 10 ⁷
IV. Working Capital,	₩2.521 x 10 ⁶
11-20% of fixed capital investment (11%)V. Total Capital Investment (TCI)	N 2.521 X 10
Total $Cl = Fixed Cl + Working C$	№ 2.544 x 10 ⁷
Estimation of Total Product Cost	
I. Manufacturing Cost = Direct production + Fixed charges + Plant overhead cost A. Fixed Charges	
10-20% of total product cost	
(i) Depreciation	
13% of FCI for machinery and equipment and 2-3% of building value for buildings.	6
Depreciation = 13% . Fixed Cl + 3% Build	№ 3.032 x 10 ⁶
(ii). Local Taxes1-4% of fixed capital investment (3%)	№ 6.874 x 10 ⁵
(iii).Insurance	110.07 1 X 10
0.4-1% of fixed capital investment (0.75%)	№ 1.719 x 10 ⁵
(iv). Rent	NO 201 106
8-12% of value of fixed capital investment 10% Total	₩2.291 x 10 ⁶ ₩6.182 x 10 ⁶
Fixed capital investment = 15% TPC	100.102×10^{7}
B. Direct Production Cost:	1(1.12 A 10
i. Raw Materials	_
10-50% of total product cost (49%)	№ 2.02 x 10 ⁷
ii. Operating Labour (OL)	NC 505 106
10-20% of total product cost (16%)iii. Direct Supervisory and Clerical Labour (DS & CL)	№ 6.595 x 10 ⁶
10-25% of OL (25%)	№ 1.649 x 10 ⁶
iv. Utilities	
10-20% of total product cost (18%)	₩7.419 x 10 ⁶
 v. Maintenance and repairs (M & R) 2-10% of fixed capital investment (7%) 	№ 1.604 x 10 ⁶
vi. Operating Supplies	H1.004 X 10
10-20% of M & R or 0.5-1% of FCI (18%M)	№ 2.887 x 10 ⁵
vii. Patent and Royalties	(
0-6% of total product cost (6%)	$\mathbb{N}2.473 \times 10^{6}$
Total C. Plant Overhead Costs	$\mathbf{N}4.154 \ge 10^7$
50-70% of operating labour, supervision, and maintenance or 5-15% of total product cost;	includes for the
following: general plant upkeep and overhead payroll overhead, packaging, medical, safe	
restaurants, salvage, laboratories, and storage facilities.	'
Considering the plant overhead cost to be 55% of OL, DS & CL and M & R	NE 416 106
Manufacture cost - Direct production cost + Fixed charges + Plant everhead cost	№ 5.416 x 10 ⁶

Manufacture cost = Direct production cost + Fixed charges + Plant overhead cost

№5.314 x 10⁷

 II. General Expenses A. Administrate costs 2-6% of total product cost (6%) B. Distribution and Selling Costs 2-20% of total product cost (17%.) C. Research and Development Costs 3% of total product cost Total III. Total Production Cost Manufacture Cost + General Expenses IV. Gross Earnings/Income Selling Price = ₩300/tonne 		N2.473 x 10^6 N7.007 x 10^6 N1.236 x 10^6 N1.072 x 10^7 N6.386 x 10^7
Quantity = $3 \times 10^9 \frac{\text{Kg}}{\text{yr}}$ No of working days= 331 day		
Total income Gross income		$\mathbf{N}7.5 \ge 10^7$
Total income – Total Product Cost		№ 1.114 x 10 ⁷
Tax rate 15% of Gross income Net profit Rate of Return:		№16.71 x 10 ⁶ №9.471 x 10 ⁶
$ROR = \frac{Netprofit}{Total - CI} 100\%$	ROR = 37.236%	
Pay Back Period: $PBP = \frac{1}{ROR} yr$	= 2.686yrs	
= 3yrs		
Cash Flow Cash Flow = Total income – T prod C		№ 1.114 x 10 ⁷
Net Present Worth NPW = $\sum_{i=1}^{n} \frac{Cash Flow}{(1+r)^{n}}$ r = ROR; n = 1 Therefore:		
NPW = $\sum_{i=1}^{n} \frac{Cash _Flow}{(1+r)^{n}}$		₩8.119 x 10 ⁶
Discounted Cash Flow Rate or Return $DCF = \sum_{i=1}^{n} \frac{Cash - Flow}{(1+r)^{n}} = 0$		
r = 45% n := 65	DCFRR $= 45\%$	

DCF = $\sum_{i=1}^{n} \frac{Cash Flow}{(1+r)^{n}}$ Return on Investment

ROI = 95.958%

REFERENCES

DCF = 0

Coulson, J.M. and Richardson, J.F; *Chemical Engineering, Volume 6*; Butterworth Heinemann; **1998**; Pg 604.
 Crompton, T.R., *Battery Reference Book*, Butterworth Heinemann, London, **1990**.

Pelagia Research Library

[3] Linden, D., Handbook of Batteries, Maiden Head, McGraw, 1995.

[4] Linford, R.G., Electro Chemical Science and Technology of Polymers, Elsevier, New York, 1990,

[5] Mantel, C.L., *Industrial Electrochemistry*, 3rd Edition, McGraw-Hill Book Company, (1950), Pg160 – 180.
[6] Perry, R.H, and Green D.W, *Perry's Chemical Engineer's Handbook*, 7th Edition. McGraw-Hill H Book Company, 1998, Pg 19-16 to 19-35.

[7] Peters, M.S. and Timmerhaus, K.D., Plant Design and Economics for Chemical Engineers, 3rd Edition, McGraw-Hill Book Company, 1995, Pg 147-209.

[8] Sinnot, R.K., *Chemical Engineering Design*. 2nd Edition, Volume 6, Butterworth Heinemann, **1993**, Pg 212-245.

[9] Urells, A.F., Structural Inorganic Chemistry, Oxford Claredon Press. 1995.