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(OCD), Tourette’s syndrome and major depressive disorder [3-
5]. This expansion to additional indications is also due to the 
relative safety of the method. Nevertheless, serious adverse 
events such as intracerebral hemorrhage occur in up to 2% of 
patients, and surgery can be fatal in up to 0.4% of cases [2]. For 
this reason DBS indications can only be considered in patients 
with severely disabling diseases resistant to conventional, on-
invasive treatments.

Several lines of observation may currently advocate for further 
research of DBS in SUD: observed effects on consumption 
in patients treated primarily for PD or psychiatric disorders, 
preclinical data using DBS to modulate consumption behavior, and 
experiences with DBS in patients treated primarily for addiction. 
A further line of research, which has until now rather been 
neglected, is to explore its effect on specific traits of addictive 
behavior. Addiction is, among others, characterized by what 
has been called “a low intention–behavior correlation” [6]. This 
means that persons with addictions may well have the intention to 
behave in one way (not to consume) but eventually nevertheless 
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behave in another way (consuming). The psychological concept 
of impulsivity may be well suited to rationalize this phenomenon, 
as it is one individual difference variable that may influence the 
strength of the intention–drug use relationship [6].

Thus, the effect of DBS on addictive behavior through the 
modulation of impulsivity could be a promising approach to 
explore in future studies.

DBS in Patients Primarily Treated for Non-Addictive 
Disorders: Effect on Addictive Behaviours
Several publications [2,7,8] describe small series of PD 
patients with preoperative active pathological gambling due 
to dopaminergic treatment. The disabling motor fluctuations 
improved under sub thalamic nucleus stimulation, allowing 
reductions of the dopaminergic treatment and subsequent 
improvement of the gambling addiction.

Case reports and case series of have also been described for 
patients treated by DBS for anxiety disorders, OCD or Tourette’s 
syndrome, who showed improving of alcohol misuse [9,10], 
heroin use [11] and cigarette addiction [12-14].

Preclinical Addiction Models and DBS
Animal studies using various models of addiction (2-bottle self-
administration, reinstatement, conditioned place preference) 
have corroborated the interest of the DBS in the treatment of 
addictive disorders. While other brain regions have also been 
targeted with DBS, the Nucleus Accumbens (NAc) remains the 
most studied target region in animals.

High frequency DBS of the NAc has shown promise in animals at 
reducing alcohol intake in alcohol-preferring rats [15-17], cocaine 
self-administration and reinstatement of cocaine seeking [18-
20], as well as reinstatement and preference for opiates [21-23]. 
On the other hand, subtalamic nucleus (STN) DBS was shown to 
reversibly reduce the motivation to work for cocaine-injections, 
and to increase motivation to work for sucrose pellets [19]. A 
similar effect was found for place preference.

DBS in Patients Primarily Treated for Addiction
Currently, no published randomized controlled trial on the 
effect of DBS in addiction is available, data being restricted to 
case reports or case series. In these studies NAc DBS in alcohol 
addicted patients has been found to decrease cravings [24-26], to 
promote abstinence [24-27], and to reduce tobacco consumption 
[25]. Similarly, in heroin addicted patients NAc, DBS induced 
sustained abstinence [28,29], reduced craving [28,29], and was 
accompanied as well by a decrease in the number of cigarettes 
smoked [29].

DBS and Impulsivity
Available data indicate an effect of STN-DBS (mainly studies with 
PD patients) as well as NAc-DBS (mainly patients treated primarily 
for addiction) on addictive behaviors. Thus, the ideal DBS target 
for the treatment of addiction begins to become a matter of 
debate [17]. If we consider impulsivity to be an endophenotype 
underlying many manifestations of addiction, it would be 
important to know the efficacy of the different DBS-targets on 
impulsivity and its correlation with clinical efficacy.

While the rational to experiment NAc modulation appears 
obvious in consideration of its role in addiction, the use of STN-
stimulation appears less evident.

Due to its strategical position in cortico-subthalamic and cortico-
striatal pathways, the STN is considered to play a crucial role not 
only in motor, but also in cognitive and motivational functions 
Also, many brain areas such as the prefrontal cortex and striatum 
involved in impulsivity are connected to the STN their functions 
may thus be influenced by STN-DBS [30-32].

The available studies investigating an effect of DBS on impulsivity 
used mainly STN-DBS in PD patients, and indicated that STN-
DBS may induce both positive and negative outcomes regarding 
impulse control [32-34], for example: STN-DBS in PD patients 
has been found to improve performances in the stop-signal task 
[35-37], the go/no-go task [35,38], the Game of Dice Task [39,40] 
and the Simon task [41]. No effect was found regarding delay 
discounting [42]. On the other hand, STN-DBS in PD patients has 
also been found to increase risky choices in the Iowa Gambling 
Task [43], to increase commission errors during Go/No Go tasks 
[44], and to generate more errors in a ‘moving dots’ task under 
speed pressure [45], and to increase scores on the UPPS Lack of 
Premeditation scale [46] and on the Barratt Impulsiveness Scale [47].

Finally, PD patients under STN-DB have been found to show 
improvements [1,7,48] but also, in other studies, emergence 
or worsening of Impulse Control Disorders (ICD) [48,49]. It has 
been stressed out, however, that most persistent postoperative 
ICDs occurred in those patients who remained on high-dosage 
dopaminergic treatment [48], and that in the prospective studies 
with a marked decrease in dopaminergic treatment ICDs tended 
clearly to disappear [50,51].

To explain these at first glance conflicting results, STN has been 
proposed to modulate response thresholds and speed-accuracy 
trade-offs in high conflict situations providing a dynamic “hold 
your horses” signal to allow more time to choose the best option 
[33]. Conversely, speed pressure is hypothesized to dampen the 
activity of the STN and lower response thresholds, resulting in fast, 
errorful responses. Modulation of STN hyperactivity with DBS has 
thus been hypothesized to be able to improve impaired proactive 
inhibition in PD patients, but to possibly induce impairment of 
reactive inhibition leading to premature and impulsive responses. 
In PD patients, STN-DBS could consequently contribute to certain 
impulsive behavior during high-conflict decisions.

Imaging studies may support this hypothesis, identifying brain 
networks involved in stopping actions, including frontal regions 
together with subcortical areas, such as the STN or caudate [34]. 
They have especially revealed activation of the STN during motor 
inhibition and conflict resolution. The STN was also shown to be 
particularly engaged by late inhibition, as reflected by correlations 
of STN activation with longer stop signal delays [52].

Recent studies have specifically looked for changes in STN local 
field potential activity during stop signal tasks and suggested that 
beta-band subthalamic activity is involved in reactive inhibition 
[53-55] and in the performance of go no-go and stroop tasks 
[56,57]. Furthermore, analyses of STN gamma band activity 
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suggest that the STN implements a signal from the prefrontal 
cortex to switch from automatic to controlled processing, as 
necessitated by task demands or context [31,58,59].

What is to be Done
In order to further explore the relationship between DBS, 
impulsivity and addiction, several lines of research appear to be 
warranted.

- Most preclinical studies have used NAc-DBS. Animal studies 
may help to resolve the contradicting results of human 
STN-DBS regarding its effect on impulsivity.

- Future studies of NAc-DBS in humans could include 
measures on impulsivity and analyses on correlations with 
therapeutic efficacy.

- As modulation of STN hyperactivity with DBS has been 
hypothesized to be able to improve impaired proactive 

inhibition, it could be tested in patients treated 
primarily for their addiction, as addiction therapy can be 
conceptualized as a reinforcement of proactive inhibition 
of consumption behaviors. In other words, STN role in 
the implementation of a frontally signaled switch from 
automatic to controlled processing [59] could be used 
as support for motivational therapy, as one objective 
of this intervention is to reinforce conscious reasoning 
to counterweight automatic unreflective responding to 
consumption-triggering stimuli.

In conclusion, despite promising results, additional studies are 
required before definitive conclusions can be reached concerning 
the efficacy of DBS in SUDs. Almost all currently available studies 
on DBS in SUDs have clear limitations, and some results are 
contradictory. To consider impulsivity as a pivotal therapeutic 
target may help to clarify some of the remaining questions.
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