

Decrease Levels of Oxygen in the Water and its Effect on Aquatic Life

Keywords: Algae growth; Dissolved oxygen; Plants

Received: September 06, 2021, **Accepted:** September 21, 2021, **Published:** September 28, 2021

Low dissolved oxygen basically comes from excessive algae growth caused by phosphorus. Nitrogen is another supplement that can contribute to algae development. As the algae die and decompose, the method consumes dissolved oxygen. Die-off and decay of submerged plants moreover contributes to low dissolved oxygen.

Eutrophication is the method by which a complete body of water, or parts of it, gets to be continuously improved with minerals and supplements. It has also been characterized as nutrient-induced increment in phytoplankton efficiency. Water bodies with exceptionally low supplement levels are called oligotrophic and those with moderate supplement levels are named mesotrophic. Progressed eutrophication may moreover be referred to as dystrophic and hypertrophic conditions.

Nutrients, particularly phosphorus compounds and natural matter, collect in water bodies. These supplements derive from degradation and arrangement of minerals in rocks and by the impact of lichens, mosses and organisms effectively scavenging supplements from rocks [1]. Anthropogenic eutrophication is a more fast process in which supplements are included to a water body from any of a wide variety of contaminating inputs counting untreated or mostly treated sewage, industrial wastewater and fertilizer from cultivating practices. Supplement contamination, a frame of water contamination, could be an essential cause of eutrophication of surface waters, in which excess supplements, usually nitrogen or phosphorus, stimulate algal and aquatic plant development.

Eutrophication may be a prepare of expanding biomass generation in a water body caused by expanding concentrations of plant supplements, most commonly phosphate and nitrate. Expanding supplement concentrations lead to expanding fertility of aquatic plants, both macrophytes and phytoplankton. As more plant material gets to be accessible as a nourishment asset, there are related increases in invertebrates and fish species. As the method proceeds, the biomass of the water body increases but natural diversity decreases [2].

The essential limiting factor for eutrophication is phosphate. The accessibility of phosphorus usually advances intemperate plant development and decay causing an extreme reduction in water

Alessia Rossi*

Department of Environmental Health Science, University of Genoa, Genoa, Italy

***Corresponding author:**

Alessia Rossi

 alessiarossi124@ug.it

Department of Environmental Health Science, University of Genoa, Genoa, Italy

Citation: Rossi A (2021) Decrease Levels of Oxygen in the Water and its Effect on Aquatic Life. J Aquat Pollut Toxicol. Vol.5 No.5:25

quality. Phosphorus may be a essential supplement for plants to live, and is the limiting factor for plant development in most freshwater ecosystems [3]. In marine environments nitrogen and iron are the essential limiting supplements for the accumulation of algal biomass [4].

Eutrophication is commonly caused by human activities, it can moreover be a natural process, especially in lakes. Anthropogenic eutrophication is speeds up normal eutrophication because of human action. Due to clearing of land and building of towns and cities, land runoff is accelerated and more supplements such as phosphates and nitrate are provided to lakes and streams, and after that to coastal estuaries and bays. When macrophytes and algae die in over-productive eutrophic lakes, rivers and streams, they decompose and the supplements contained in that natural matter are converted into inorganic form by microorganisms. This deterioration handle consumes oxygen, which decreases the concentration of dissolved oxygen.

Enhanced growth of algal blooms, phytoplankton and oceanic vegetation disturbs normal working of the environment, causing a variety of issues such as a need of oxygen required for fish and shellfish to survive. Eutrophication moreover reduces the value of rivers, lakes and aesthetic enjoyment. Health issues can happen where eutrophic conditions interfere with drinking water treatment.

Eutrophication is commonly happening in coastal waters, In contrast to freshwater systems where phosphorus is regularly the limiting supplement, nitrogen is more commonly the key limiting supplement of marine waters; hence, nitrogen levels have greater significance to understanding eutrophication issues in salt water [5].

References

1. Sawyer CN (1966) Basic Concepts of Eutrophication. *J Water Pollut Control Fed* 38: 737–744.
2. Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. *Environ Pollut* 100: 179-196.
3. Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, et al. (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. *Proc Natl Acad Sci* 105: 11254-11258.
4. Bristow LA, Mohr W, Ahmerkamp S, Kuypers MM (2017) Nutrients that limit growth in the ocean. *Curr Biol* 27: 474-78.
5. Paerl HW, Valdes LM, Joyner AR, Piehler MF, Lebo ME (2004) Solving problems resulting from solutions: evolution of a dual nutrient management strategy for the eutrophying Neuse River Estuary, North Carolina. *Environ Sci Technol* 38: 3068-3073.