Available online at <u>www.pelagiaresearchlibrary.com</u>

Pelagia Research Library

Advances in Applied Science Research, 2011, 2 (5):64-76

Cross class evolutionary pattern of ALCAM proteins and their homologs

Swati Singh¹ and Anoop Chaturvedi²

¹Center of Bioinformatics, University of Allahabad, Allahabad, India ²Department of Statistics, University of Allahabad, Allahabad, India

ABSTRACT

Activated leukocyte cell adhesion molecule ALCAM or CD166 is a type I membrane protein that belongs to the Ig superfamily, and it has five extracellular variable type and constant type Ig domains and a single transmembrane domain. Activated leukocyte cell adhesion molecule is expressed in various tissues, cancers, and cancer-initiating cells. Alterations in expression of ALCAM have been reported in several human tumors, and cell adhesion functions have been proposed to explain its association with cancer. The present study has been done on wide range of ALCAM protein sequences and their homologs from various organisms. In order to decipher the phylogenetic blueprints the proteins from higher organisms to the lower hierarchical order of organisms were selected as the kernel of the investigation. The tree was drawn by Maximum parsimony method while using the bootstrapping as a test of inferred phylogeny. The phylogenetic trees were constructed from multiple aligned sequences showing bootstrap values on nodes and species codes on leaves. The analysis of data led to a single most consistent tree. The study endow with a fine idea about the evolutionary pattern of this protein family and their homologs across an extensive array of animal phyla. Moreover the data provide a basis for future functional studies on this vital protein family.

Key words: ALCAM, CD 166, homologs, phylogeny.

INTRODUCTION

Cell adhesion molecules normalize a variety of endothelial cell functions such as exodus, retort to inflammation, and angiogenesis. Activated leukocyte cell adhesion molecule (ALCAM), a limb of the Ig superfamily, has been detected in the primitive subsets of hematopoietic cells and endothelial cells during embryogenesis [1]. Activated leukocyte cell adhesion molecule (ALCAM/CD166) is one of the members of a small subgroup of transmembrane lycoproteins in the immunoglobulin superfamily IgSF. The grown-up proteins of this subgroup are structurally characterized by the presence of five extracellular immunoglobulin Ig domains, comprising two

NH2 -terminal, membrane-distal variable -(V-) type and three membrane-proximal constant -(C2)- type Ig folds, followed by one transmembrane region and a short cytoplasmic tail of variable length (Figure 1). The consecutive Ig domains define the VVC₂C2C₂ motif characteristic of this subgroup [2].

D1D2D3D4D5tmcytFigure 1: Schematic representation of the polypeptide structure of the cell adhesion molecules of the
VVC2C2C2 subgroup in the immunoglobulin superfamily. All known members are type I transmembrane
proteins and consist of five extracellular NH2 –terminal immunoglobulin domains (D1, D2, D3, D4, D5), a
transmembrane domain (tm), and a relatively short, C- terminal tail (cyt).

Human ALCAM was initially isolated as a ligand of CD6, a cell surface receptor belonging to the scavenger receptor cysteine rich protein superfamily [3]. CD6 is expressed on the surface of mature T cell and chronic B cell lymphocytic leukemia. Expression of CD6 on T cells is upregulated following activation, and prior information suggest that CD6 modulates T cell receptor signaling [4] Therefore, binding of ALCAM to CD6 suggests that ALCAM may be involved in immune and/or inflammatory responses. In addition, ALCAM has been detected in a variety of cell types where it participates in heterophilic interactions with unknown ligands as well as homophilic interactions, suggesting that ALCAM has varied functions [2, 5].

Expression of ALCAM has been associated with differentiation state and progression in many tumors [6,7]. In addition, ALCAM is a marker of cancer stem cells and its expression at the tumor cell surface has been correlated with shortened survival in colon-rectal cancers [8] and with the vertical growth phase of progression in cutaneous melanoma [9].

Despite of being conserved and having major role in expression of this protein in cancerous cell, little is understood about the evolution and genomic diversity of ALCAM proteins among different taxa. Objective of this study was to evolutionarily characterize these proteins in higher eukaryotic organisms as well as to carry out comparative analysis of these organisms based on ALCAM protein sequences. In order to decipher the phylogenetic blueprints the proteins from *Homo sapiens* to the lower hierarchical order of organisms like arthropods were selected as the kernel of the investigation.

MATERIALS AND METHODS

In order to search ALCAM protein family members PSI BLAST [10] was performed by using blastp program in the protein database at NCBI [11]. This database has also been used by A. Karunasagar et al [12]. *Homo sapiens* protein's gi|68163411|ref|NP_001618.2| CD166 antigen precursor was used as seed sequence and the iterations were performed upto level 5. From the hits 36 sequences (Table 1) each from different proteins were selected for further studies. All the sequences were taken in FASTA format. The sequences were examined individually and aligned using ClustalW [13] similar to Shashidher et al [14]. Bioedit version 7.0.9.0 [15] was used for manual editing and analysis of sequences. Entropy [16] was calculated as

$H(l) = -\Sigma f(b, l) \log_{(\text{base 2})} f(b, l)$

where H(l) = the uncertainty, also called *entropy* at position *l*, *b* represents a residue (out of the allowed choices for the sequence in question), and f(b,l) is the frequency at which residue *b* is found at position *l*. The information content of a position *l*, then, is defined as a decrease in uncertainty or entropy at that position. A window of defined size that was 13 is moved along a sequence, the hydropathy scores were summed along the window, and the average (the sum divided by the window size) was taken for each position in the sequence. The mean hydrophobicity value was plotted for the middle residue of the window. Eisenberg *et. al.* method [17] was used to plot hydrophobic moment profile with a window size of 13 residues having six residues on either side of the current residue and rotation angle, $\theta = 100$ degrees.

$$\mu H = \{ [\Sigma H_n \sin(\delta n)]^2 + [\Sigma H_n \cos(\delta n)] \}^{(1/2)},$$

Where μH is the hydrophobic moment, Hn is the hydrophobicity score of the residue H at position n, δ =100 degrees, n is position within the segment, and each hydrophobic moment is summed over a segment of the same defined window length.

S.No.	Name of Species	Protein	NCBI Accession Code	Lengthaa
1	[Homo sapiens]	CD166 antigen precursor	gi 68163411 ref NP_001618.2	583
2	[Homo sapiens]	MEMD	gi 3183975 emb CAA71256.1	582
3	[Rattus norvegicus]	CD166 antigen precursor	gi 13929058 ref NP_113941.1	583
4	[Bos taurus]	CD166 antigen precursor	gi 296491434 gb DAA33487.1	583
5	[Mus musculus]	CD166 antigen precursor	gi 31791059 ref NP_033785.1	583
6	[Pongo abelii]	CD166 antigen precursor	gi 197099250 ref NP_001126619.1	570
7	[Gallus gallus]	BEN glycoprotein precursor	gi 63088 emb CAA45579.1	588
8	[Gallus gallus]	CD166 antigen precursor	gi 45383998 ref NP_990510.1	588
9	[Homo sapiens]	kin of IRRE-like protein 1 precursor	gi 166295173 ref NP_060710.3	757
10	[Rattus norvegicus]	kin of IRRE like 1 Drosophila	gi 149048212 gb EDM00788.1	603
11	[Mus musculus]	Kirrel protein	gi 112180401 gb AAH23765.3	634
12	[Homo sapiens]	NEPH1	gi 14572521 gb AAK00529.1	605
13	[Xenopus laevis]	ALCAM	gi 148232286 ref NP_001085996.1	573
14	[Xenopus laevis]	MGC84135 protein	gi 148228231 ref NP_001086195.1	570
15	[XenopusSilurana tropicalis]	ALCAM	gi 118404578 ref NP_001072753.1	560
16	[Rattus norvegicus]	NEPH1	gi 30314348 gb AAP12626.1	702
17	[Aedes aegypti]	nephrin	gi 157131565 ref XP_001655882.1	505
18	[Rattus norvegicus]	rCG54063	gi 149056328 gb EDM07759.1	565
19	[Danio rerio]	activated leukocyte cell adhesion molecule	gi 94732958 emb CAK05472.1	544
20	[Homo sapiens]	MUC18 glycoprotein	gi 529724 gb AAA20922.1	646
21	[Homo sapiens]	Melanoma cell adhesion molecule variant	gi 62089436 dbj BAD93162.1	659
22	[Mus musculus]	Bcam protein	gi 13435987 gb AAH04826.1	650
23	[Mus musculus]	Lutheran antigen	gi 10566959 dbj BAB16053.1	622
24	[Mus musculus]	1-gicerin/MUC18	gi 10566953 dbj BAB16050.1	648
25	[Homo sapiens]	B-CAM	gi 535179 emb CAA56327.1	588
26	[Gallus gallus]	HEMCAM	gi 1621230 emb CAA70080.1	626
27	[Mus musculus]	NEPH1	gi 14572519 gb AAK00528.1	392
28	[Mus musculus]	transmembrane glycoprotein	gi 452103 gb AAA37528.1	357

Table 1: ALCAM protein and related homolog sequences with their length and NCBI accession code.

29	[Xenopus (Silurana) tropicalis]	bcam protein	gi 120537350 gb AAI29006.1	673
30	[Gallus gallus]	melanoma cell adhesion molecule	gi 52694650 ref NP_001004768.1	626
31	[Danio rerio]	basal cell adhesion molecule	gi 115495543 ref NP_001070095.1	547
32	[Culex quinquefasciatus]	nephrin	gi 170030192 ref XP_001842974.1	1360
33	[Aedes aegypti]	nephrin	gi 157138488 ref XP_001657321.1	1262
34	[Acromyrmex echinatior]	Nephrin	gi 332029549 gb EGI69438.1	1273
35	[Ascaris suum]	Nephrin	gi 324501983 gb ADY40877.1	1168
36	[Camponotus floridanus]	Nephrin	gi 307190069 gb EFN74258.1	1300

Multiple sequence alignment, phylogenetic and molecular evolutionary analyses were conducted using MEGA version 5 [18]. Similar approach has been applied by A. Mani et al. [19]. For pair wise and multiple alignment gap open penalty was 10 and gap extension penalty was -1 [20]. BLOSUM weight matrix was used for substitution scoring [21]. The multiple alignments of sequences of ALCAM proteins were used to create phylogenetic trees. The evolutionary history was inferred using the Maximum Parsimony method [22]. The consensus tree inferred from 18 most parsimonious trees is shown. Branches corresponding to partitions reproduced in less than 50% trees are collapsed. The consistency index is 0.768402 (0.767846), the retention index is 0.875202 (0.875202), and the composite index is 0.672507 (0.672020) for all sites and parsimony-informative sites. The percentage of parsimonious trees in which the associated taxa clustered together are shown next to the branches. The MP tree was obtained using the Close-Neighbor-Interchange algorithm [23] with search level 0 in which the initial trees were obtained with the random addition of sequences (10 replicates). The analysis involved 36 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 220 positions in the final dataset. Evolutionary analyses were conducted in MEGA5 [18].

RESULTS AND DISCUSSION

3.1 Multiple sequence alignment

The Multiple alignment of CD166 and related sequences (Figure 2) resulted into an alignment having 1466 positions. By statistical analysis of multiple aligned sequences it was observed that leucine, valine, serine, threonine, glycine, glutamic, alanine, proline, lysine, isoleucine are the most frequently present amino acids with frequency percentage of 8.29, 8.01, 8.47, 7.62, 6.92, 6.67, 6.45, 6.26, 5.46, 5.19 respectively. The multiple aligned sequence of ALCAM and other related homologs protein sequences was found with No. of conserved sites=121, No. of parsimony informative sites= 1028 and No. of singleton sites= 214.

Adv. Appl. Sci. Res., 2011, 2 (5):64-76

gi[68153411]raf[NP_001618.2] C gi[3183975]emb[CAR71256.1] HER gi[3183975]emb[CAR71256.1] HER gi[31932058]raf[NP_113941.1] C gi[31791059]raf[NP_03785.1] C gi[31791059]raf[NP_03785.1] C gi[31791059]raf[NP_03785.1] C gi[31791059]raf[NP_00510.1] C gi[316308]emb[CAR45579.1] EEN g gi[3129308]raf[NP_00510.1] C gi[3126295173]raf[NP_00510.1] C gi[3126295173]raf[NP_00106739.1] ki gi[31232266]raf[NP_001065396. gi[332332]]raf[NP_001065396. gi[332332]]raf[NP_001065396. gi[332332]]raf[NP_001055362. gi[332332]]raf[NP_001055362. gi[332332]]raf[NP_001055362. gi[332332]]raf[NP_001055362. gi[332332]]raf[NP_001055362. gi[332332]]raf[NP_001055362.] HER gi[332334]]raf[NP_001055362.] JM[01] gi[33234]]raf[NP_001055362.] JM[01] gi[3334]]raf[NP_001055362.] JM[01] gi[3344]]raf[NP_001055362.] JM[01] gi[3344]]raf[NP ori 194732958 emb (CAK05472.1) ac gi|529724|gb|AAA20922.1| HUC18 gi|62089436|dbj|BAD93162.1| He

gi|68153411|zef|NP_001518.2| C gi]3353975|amb|CDA71256.1| NHRK gi]3329050|sef|NP_1133941.1| C gi]236491434|gb|DDA33487.1| CD gi]37909250|sef|NP_001126619. gi]37909250|sef|NP_00126619. gi]450369|seb|CDA4557.1| EBST gi]450369|seb|CDA4557.1| EBST gi]450369|seb|CDA4557.1| EBST gi]45048212|gb|CDM00788.2| ki gri 112180401 | gb | AAH23765.3 | Ki gi|14572521|gb|AAK00529.1| NEP gi|148232286|ref|NP_001085996. gi|148228231|ref|NP_001086195. gill4228231 href NP_001065195 gill2040575 href NP_001072753. gill204155 href NP_001072753. gill2041555 href NP_0010555862. gill49552855 href NP_0010555862. gill49572956 href NP_0010555862. gill49572956 href NP_0010555862. gill49572956 href NP_0010555862. gill49529564 href NP_001252. gill49529564 href NP_001252. gill49558655 href NP_001253. gill05566555 href NP_001250. gill49558655 href NP_001250. gi|535179|emb|CAA56327.1| B-CA gi|1621230|emb|CAA70080.1| HEH gillS21230 |emb |CAA70080.1 | HEH gillS21231 |gb |AAK00528.1 | NEH gillS21031 |gb |AAK07528.1 | trans gill2053750 |gb |AAL7528.1 | trans gill2053750 |gb |AAL2006.1 | bb gilS2694650 |ref |NP_001004768.1 gillS1364543 |ref |NP_0018452974. gillS13020549 |gb |EG169438.1 | Ne gillS213502549 |gb |EG169438.1 | Ne gillS0194068 |gb |EEM74258.1 | Ne

gi|170030192|ref|XP_001842974. gi|157138488|ref|XP_001657321. gi 32029549 gb [EGI69438.1] Ne gi 324501983 gb [ADY40877.1] Ne gi 307190069 gb [EEN74258.1] Ne

Pelagia Research Library

gil 1947329581 emb (ZARO5472.11 ac gil 529724 [gb/AA2O922.11 MOC18 gil 620894361 eb; [BAD393162.11 MOC18 gil 1205695391 eb; [BAB106052.11 J gil 1205695391 eb; [BAB10605.11 J gil 1205695391 eb; [BAB10605.11 J gil 120569531 eb; [BAB10605.11 J gil 1205201 eb; [CAB10605.11 J gil 1205210 eb; [CAB10605.11 J gil 1205210 eb; [CAB10605.11 J gil 1205210 eb; [CAB10605.11 J gil 125204501 es; [BZ 001070058.11 J gil 125924501 es; [BZ 001070058.11 gil 12595451 es; [BZ 001070058.1] gil 125204501 gb; [BZ 107438.1] M gil 12071300069] gb] [ZT974258.1] M gil 12071300069] gb] [ZT974258.1] M

gi |68163411| xmf |NP_001618.2| C gi |3183975| mb| CAA71256.1| MEM gi |33829058| xmf |NP_112941.1| C gi |31294054] xmf |NP_112941.1| C gi |31791059| xmf |NP_0012765.1| C gi |31791059| xmf |NP_00126619. gi |319709820| xmf |NP_00126619. gi |31930980| xmf |NP_00120619. gi |45833980| xmf |NP_000708.3| ki gi |14904822| gb| ZMM0786.3| ki gi |1420401| gb| ZMM0529.1| NEE gi |14572521| gb| ZMM0529.1| NEE gi |14572520| gb| ZMM0529.1| NEE gi |14572520| gb| ZMM0529.2| NEE

rill 1221804011gb1AAA23765.31 KE pi1145725211gb1AAX05325.11 NEE pi114622322801 nee11K_001085195. pi114622322801 nee11K_001085195. pi1146205231 nee11K_001085195. pi11303134461gb1AA212622.11 NeE pi12572141gb1AA220222.11 MOC18 pi1269261321 gb1AA203222.11 MOC18 pi1269261321 gb1AA203222.11 MOC18 pi126926131 gb1AA203222.11 MOC18 pi126926913 gb1AA203222.11 MOC18 pi126956951 gb1AA203222.11 MOC18 pi12692691 gb1AA203222.11 BCC8 pi12692691 gb1AA203222.11 BCC8 pi126921091 gb1AA203222.11 BCC8 pi126921091 gb1AA373282.11 KEANS pi1252051821 nee1182_00126778.11 pi13520354591 gb1E3276428.11 Me pi137203591 gb1AA2740877.11 Ne pi33701900891 gb1A2740877.11 Ne pi33701900891 gb1A2740877.11 Ne pi3371900891 gb1A274928.11 Me

gi (8163411 : xxf: NF_001618.2] C gi (3163975) cmb) (CAR71256.1] MCM gi (3296491434 (gb) (2007278.2) (C gi (3199059) xxf: NF_003785.1] C gi (319709250) xxf: NF_003785.1] (C gi (319709250) xxf: NF_003785.1] (C gi (31086) cmb) (CAA5579.1] AEDI gi (31086) cmb) (CAA579.2) (CAA579.2) gi (31086) cmb) (CAA579.2) gi (31086) cmb) (CAA579.2) (CAA579.2) gi (31086) cmb) gi | 14572521 | gb | AAK00529.1 | NEF gil43/32211gb1AAR00529.11 NEC gil482282511ref1W_00085996. gil482282511ref1W_001085996. gil184028511ref1W_001085982. gil18015518ref1W_001855882. gil49055281gb1EUN07759.11 ac gil947329581mb1CAN05472.11 ac gil527741gb1AA20922.11 M0C18 gi 129724(gb) ALX022.11 MC18 gi 120744(gb) ALX022.11 MC18 gi 12064430(db) [BDJ3162.1] Bot gi 1345397(gb) AM0(452.1] Bot gi 136564531(db) [BDJ1605.1] Bot gi 136564531(db) [BDJ1605.1] 1 gi 13531791(mb) (AAS5327.1] B-C3 gi 1422201(mb) (AAS5327.1] B-C3 gi 14222319(gb) AAX0528.1] M20 gi 14522319(gb) AAX0528.1] Kzans gi 120537330(gb) AAX7528.1] Kzans gi 120537330(gb) AAX7528.1] Kzans gi 120537330(gb) AAX7528.1] Kzans gi 120537330(gb) AAX7528.1] Kzans gi 120537330(gb) AAX7528.2] Kzans gi 120537330(gb) AAX7528.2] Kzans gi 120537330(gb) AAX7528.2] Kzans gi 1320234521 xeel Jb_0010768.3] gi 1320234521 xeel Jb_0010768.3] gi 1320234521 yeel Jb_00167323.1] M6 gi 1320234591 yeb 12576442874.] M6

Adv. Appl. Sci. Res., 2011, 2 (5):64-76

Figure 2: MSA of ALCAM and related homologs

3.2 Entropy plot

An entropy plot, measure of the lack of the information content and the amount of variability, was generated for all the aligned positions. The plot shows that entropy rarely goes above a scale of two, showing minimal entropy at several positions from position 950 to position 1090 and also from position 1210 to position 1450 where entropy rarely crosses a scale of one, which is a sign of minimal variability in the region.

Figure 3: Entropy (Hx) Plot for aligned ALCAM and related homologs protein sequences

3.3 Hydrophobicity Profile

A hydrophobicity profile plot shows that mean hydrophobicity of the protein for most of the positions is in all the species is below zero, occassionaly it turns to be positive. Maximum hydrophobicity is observed from positions 100 to 200 for nephrin proteins of *Ascaris Suum*, *Aedes aegypti and Mus musculus*.

From Position 1010 to 1060, increase in hydrophobicity of *Culex quinquefasciatus, Acromyrmex echinatior, Camponotus floridanus* can be seen from Figure 4.a and *HomoSapiens, Musmusculus,* and *Xenopus (Silurana) tropicalis* exhibits high increase in hydrophobicity from position 1060 and 1150. These proteins are basically of non-hydrophobic in nature as most of the positions are across show a below mean hydrophobicity in the case of most of the organisms studied here.

Figure 4.a: Eisenberg scale mean hydrophobicity profile plot

Figure 4.b: Colour legend for Eisenberg scale mean hydrophobicity profile plot

3.4 Phylogeny

The phylogenetic tree was constructed by using Maximum Parsimony method. The tree shows different organisms on tree nodes branched on the basis of their ALCAM and related homologs proteins. *Nephrin* proteins of *Camponotus floridanus, Acromyrmex echinatior, Aedes aegypti* and *Culex quinquefasciatus* craft a totally diverged branch from the main tree among 36 selected proteins. From a close view at the tree (Figure 5) it becomes clear that the tree can be sub divided mainly into three clusters. Cluster A belongs to hierarchy of nephrin and similar proteins showing evolution of Nematode, arthropod and mammalian nephrins consecutively. However cluster B mainly represents HEMCAM and BCAM proteins and the ALCAM proteins are represented by cluster A. Close homology of Nephrin proteins to the Cell adhesion molecule proteins in sequence similarity search shows their close evolutionary relationship and from the tree it appears that during the course of evolution of cell adhesion molecule proteins BCAM, HEMCAM, MCAM and ALCAM evolved consecutively. ALCAM proteins appear to have evolved rapidly in parallel order to other CAM proteins and specialized themselves as leukocyte cell adhesion molecules during the course of evolution.

Figure 5: Phylogenetic tree of ALCAM proteins and their homologs constructed by maximum parsimony method.

CONCLUSION

This is the first study that has been done on wide range of ALCAM protein sequences and their homologs from various organisms. In order to decipher the phylogenetic blueprints the protein

sequences from higher organisms to the lower hierarchical order of organisms were selected as the kernel of the investigation. The study endows with a fine idea about the evolutionary pattern of this ALCAM family and other cell adhesion molecule proteins across an extensive array of animal classes. Moreover the data provide a basis for future functional studies on this vital protein family.

Acknowledgements:

First Author is thankful to University Grants Commission, New Delhi for a research fellowship.

REFERENCES

[1] K. Ikeda and T. Quertermous, J. Biol. Chem. Vol., 2004, 279, No. 53.

[2] G.W. Swart, European Journal of Cell Biology, 2002, 81, 313-321.

[3] D.D. Patel, S.F. Wee, L.P. Whichard, M.A. Bowen, J.M. Pesando, A. Aruffo, B. F. Haynes, *J Exp Med.*,1995,1814:1563-8.

[4] D.D. Patel, B.F. Haynes, G.C. Starling, J.A. Gebe, and J.Bajorath, *Immunol. Today*, **1997**, 18, 498–504.

[5] A.P. DeBernardo, S. Chang, J. Cell Biol., 1997, 133, 657–666.

[6] F. Micciche`, L. D. Riva, M. Fabbi, S. Pilotti, P. Mondellini, S. Ferrini, S. Canevari, M.A.Pierotti, I.Bongrazone, *PLoS ONE 62: e17141.*, **1997**, doi:10.1371/journal.pone.0017141.

[7] N.K. Haass, K.S.Smalley, L. Li, M. Herlyn, *Pigment Cell Res*, 2005, 18: 150-9.

[8] T.G. Levin, A.E. Powell, P.S. Davies, A.D. Silk, A.D.Dismuke et al., Gastroenterology, **2010**, 139: 2072–82.

[9] L.C. van Kempen, J.J. van den Oord, G.N. van Muijen, U.H. Weidle, H.P. Bloemers, *et al.*, *A m J Pathol*, **2000**, 156: 769–74.

[10] S.F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman, *Nucleic Acids Res.*, 2000, 25, 3389-3402.

[11] <u>www.ncbi.nlm.nih.gov/entrez</u>, National Centre for Biotechnology Information.

[12] R. Adiga, I. Karunasagar, I. Karunasagar ,Advances in Applied Science Research, **2010**, 1 (3), 222-228.

[13] D. Higgins, J. Thompson, T. Gibson, J.D. Thompson, D.G. Higgins, T.J. Gibson, *Nucleic Acids Res.*, **1994**, 22, 4673-4680.

[14] B. Shashidher, P. C. Kamal, A. Swetha, A. Priyanka, N. Prudhvi, *Der Pharmacia Sinica*, **2011**, 2 (3): 131-145.

[15] T.A. Hall, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucl. Acids. Symp. Ser.*, **1999**, 41, 95-98.

[16] J.R. Pierce; an Introduction to Information Theory: Symbols, Signals and Noise, Dover Publications, *Inc., New York*, **1980**.

[17] D.E. Eisenberg, M. Komaromy and R.Wall, J. Mol. Biol., 1984, 1791, 125-42.

[18] K. Tamura, D. Peterson, N. Peterson, S. Stecher, M. Nei and S. Kumar, *Molecular Biology* and Evolution, <u>Mol Biol Evol.</u>, 2011, May 4.

[19] A. Mani, S. Singh, M. Dwivedi, V. Tripathi, D.K.Gupta, 2011, European Journal of Experimental Biology, 2011, 1(1), 148-155.

[20] S.F.Altschul, G. Gish, *Methods Enzymol.*, **1996**, 266, 460-480.

[21] S. Henikoff S., J.Henikoff, Proceedings of the National Academy of Sciences USA, 1992,89, 10915-10919.

[22] S. Sridhar, F.Lam, G.E. Blelloch, R. Ravi, R. Schwartz, *BMC Bioinformatics*, 2007, 8:472.
[23] M. Nei, S. Kumar; Molecular Evolution and Phylogenetics. *Oxford University Press, New York*, 2000.