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Abstract
Objectives: This paper presents a statistical review of modelling simulations for frequency and sensitivity of 
COVID-19 testing paradigms. 
Methods: We performed a review of preprints and published articles on PubMed from January 1, 2020-March 
1, 2021 using the search terms “COVID screening testing”, “COVID testing frequency”, “COVID testing frequency 
screening” and “SARS-CoV-2 testing frequency”.
Results: Several authors’ conclusions support the claim that test frequency and test sensitivity both play a role in 
reducing SARS-CoV-2 transmission. We highlight the interplay between frequency of testing, test sensitivity and 
the speed at which test results are available in our review. 
Conclusion: Evidence suggests that sensitivity and frequency of testing both play a part in decreasing transmis-
sion of disease. We conclude that, overall, test sensitivity plays less of a role in reducing disease transmission in a 
population compared to the frequency of testing and how quickly test results are available.
Key Words: COVID-19; Rapid testing; Test sensitivity; Test frequency; Testing programs; Compartmental models

INTRODUCTION
The SARS-CoV-2 pandemic continues to impact every aspect of 
society, even as more vaccines are approved, manufactured and 
distributed. Nearly 200 million individuals have been infected, 
with over 4 million deaths reported worldwide. Despite these 
growing numbers, a reluctance to vaccinate, socially distance, 
or adhere to masking recommendations continues to put lives 
at risk. Additionally, mutations, such as the Delta variant, pose 
a further threat with greater infectiousness than the wild type 
virus [1,2]. The virus spreads primarily through respiratory drop-
lets and can be transmitted from infected individuals before they 
begin to experience symptoms [3,4].

Identifying persons who are infected as rapidly as possible so 
they can be quarantined and not expose others is a key effort 
to slow the pandemic. PCR tests can take days to receive results, 
which allows for further disease transmission if individuals do 
not self-isolate while awaiting their results. With the develop-
ment and availability of rapid tests, which offer results in hours 

or even minutes, mass testing has become more feasible.This pa-
per reviews publications that have examined rapid testing strate-
gies as a means for reducing the spread of SARS-CoV-2, focusing 
on statistical simulations. The various testing strategies are dis-
cussed along with the assumptions, settings, and other factors 
of interest.

This section serves as a summary of the statistical methods that 
were utilized in the publications under review, including the SIR/
SEIR framework of epidemiological models, time varying Poisson 
processes, and a brief review of less frequently used stochastic 
modeling approaches.

Compartmental SIR/SEIR Models
The SIR and SEIR methodologies are stochastic models which are 
composed of three and four compartments, respectively. The 
Susceptible Infected Recovered (SIR) model is composed of three 
compartments: susceptible, infected and recovered, with two 
transitions [5]. The first transition is when a susceptible (S) indi-
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vidual interacts with an infectious individual and becomes infect-
ed (I). This first transition is determined based on two parame-
ters: the number of contacts the susceptible person has had with 
the infected individual and the probability that each contact with 
an infected individual will result in transmission of the disease. 
The second transition is from infection (I) to recovered (R). This 
transition does not rely on any interaction with other individuals 
and is dependent only on the length of time to recover or die 
from the infection [6,7]. A common variant of SIR is the Suscepti-
ble Exposed Infected Recovered (SEIR) model. SEIR models have 
an additional exposed compartment (E), which occurs between 
susceptible (S) and infected (I). This transition includes people 
who have been exposed to the disease but are not yet infectious. 
The rate of becoming exposed and the rate of becoming infected 
are partially dependent on a new parameter which is the likeli-
hood that someone who is exposed also becomes infected [8].

Similar model extensions were developed using the compart-
mental framework of SIR/SEIR models, such as SIDHRE-Q and 
CEACOV, to model the COVID-19 pandemic. The former model 
is comprised of 7 compartments, which are quarantine uninfect-
ed, susceptible, infected undetected, infected detected, hospi-
talized, recovered, extinct (dead), and quarantine recovered [9]. 
The latter model has 3 health states: susceptible, people who ac-
quired SARS-CoV-2, and COVID-19 related deaths, and 7 possible 
compartments of SARS-CoV-2 transitions: latent, asymptomatic, 
mild/moderate illness, severe illness, critical illness, recupera-
tion, and recovered [10].

Other Stochastic Models
A stochastic branching process simulates in terms of “timesteps”. 
For each timestep, the disease parameters for each infected case 
are stochastically determined. To determine these parameters, 
this model evaluates the virus trajectory and viral kinetics to pre-
dict an individual’s ability to transmit infection and the timing of 
symptom onset. The viral trajectory and kinetics are estimated by 
simulating for each person a 50 day titer trajectory.

See et al. used a Reed Frost model to demonstrate the trans-
mission of SARS-CoV-2 [11]. This model is an example of a chain 
binomial model, meaning infection spreads in populations in dis-
crete units of time. The primary important assumption in Reed-
Frost transmission models is that all exposures are independent 
of each other [12].

Additionally, certain stochastic models use an agent based ap-
proach compared to the compartmental models listed above. 
While compartmental models assume random mixing, agent 
based models generally create a network based approach where 
a “person” has a probabilistic chance of interacting with people 
estimated from variables like geography and socioeconomic sta-
tus [13].

Time Varying Poisson Process Model
A Poisson process refers to a time series model that measures 
the number of times an event occurs over a discrete time interval 
[14]. For the purposes of modeling the spread of SARS-CoV-2, the 
model is based on two parameters: number of days since infec-
tion (also called the index) and the number of days in isolation, 
a random variable that estimates the effect of isolation in elim-
inating infections beyond time T. As the number of days since 

infection increases, the probability of infecting another follows a 
Poisson distribution, meaning that the infected has more chanc-
es to infect others. Isolating after T days decreases the number 
of chances of infecting a person as well as potentially eliminates 
days with the greatest likelihood of infection. 

Time-Dependent Weibull Transmission Models
The time-dependent Weibull transmission model is a skewed 
model defined by two parameters, α (the shape parameter) and 
β (the scale parameter). This model is used to define the gen-
eration time, which is the time between the source (or original 
person) being infected, and the recipient (second person) being 
infected. Bootsma et. al used this model, with predefined shape 
(2.2826) and scale (5.665) parameters, as it was found to be the 
best fit for transmission of infection from Ferriti et al., who ap-
plied various functional forms to data from the early stages of the 
SARS-CoV-2 epidemic in China [15,16].

Bayesian Models
Bayesian models use Bayes’ Theorem which gives the relation-
ship between a hypothesis given evidence (H|E) and evidence 
given hypothesis (E|H). This relationship is broken into three 
components: the posterior distribution, the likelihood, and the 
prior distribution. The posterior distribution is the estimation of 
a new parameter (or H|E) and is proportional to the likelihood 
(observed evidence given hypothesis or E|H) and the prior distri-
bution (historical information regarding the parameter). This can 
be useful for estimating COVID-19 infection times. In Hellewell 
et al., a likelihood function was used to estimate the posterior 
distribution of infection time for a person based off their last as-
ymptomatic reported date and their first symptomatic reported 
date. This likelihood function is estimated from the lognormal 
distribution for the incubation period of COVID-19. Additionally, 
the prior for infection time is the standard uniform distribution. 
This is a noninformative prior, meaning that it will not bias the 
result towards a particular outcome [17-19].

METHODS
We performed a statistical review of statistical modeling sim-
ulation studies from both preprints and published articles in 
PubMed from January 1, 2020-March 1, 2021 using the search 
terms “COVID screening testing”, COVID testing frequency, COVID 
testing frequency screening and SARS-CoV-2 testing frequency. 
The final selection of studies took place on April 1st, 2021. A va-
riety of statistical modeling simulations were sought, as well as 
simulations offering differing results.

Papers were included that primarily aimed to evaluate the im-
pact of test sensitivity and test frequency on transmission dy-
namics using a statistical modelling approach, and were excluded 
from the scope of the review if they focused on pooled testing, 
compared testing modalities without assessing test frequency 
and/or test sensitivity or focused on real world evidence. 

RESULTS
To evaluate the impact of various testing strategies on managing 
the ongoing COVID-19 pandemic, authors have considered two 
overarching settings: (1) cohort level, such as college campuses, 
nursing homes, healthcare facilities, and businesses, which have 
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emphasized testing as a method to quickly detect cases and re-
duce infection rates; and (2) population level, which have em-

phasized testing as a surveillance tool and reduction of disease 
burden. The statistical methodologies utilized are described in 

Model Refer-
ence R0

Test 
Frequency

Test 
Sensitivity

Test 
Delay Conclusions

Cohort Level - University

SEIR

Paltiel 1.5, 2.5, 
3.5 1, 2, 3, and 7 days 70-99% 8 

hours

A highly specific test given to each student regardless of 
symptom status at least weekly can help mitigate infections in a 

college campus.

Larre-
more 1.5, 2.5, 5 None, 3 ,7, 14 days LOD 

103,105,106
0, 1, 2 
days

Results demonstrate that effective screening depends largely 
on frequency of testing and the speed of reporting and is only 

marginally improved by high test sensitivity.

Martin 2.0, 2.5, 
3.0

0-100% of popula-
tion tested monthly 85% N/A

Widespread testing of 100% of the campus population every 
month is required to detect an outbreak when there are fewer 

than 9 detectable infections.

Hart-
vigsen 2.4 0, 1, 2, 3, 7, 14, 28, 

105 days 90% 1 day
In a college population, proportion of masking and test frequen-
cy had the most substantial impact on reduction of infections, 

with daily testing resulting in the fewest number of cases.

Rogers
2.00, 2.25, 

2.50, 
2.75, 3.00

0-20% of population 
tested daily 60-90% 0, 1, 2 

days

Frequency of testing was more important than sensitivity, be-
havioral compliance, contact tracing capacity, and time between 

testing and results for minimizing epidemic size.

SUPR Mukher-
jee

Approx-
imately 
1-5.5a

Daily tests: 1K, 5K, 
10K, 15K 92% Imme-

diately

The key to designing an effective reopening strategy is a combi-
nation of rapid testing and effective preventative measures such 

as mask wearing and social distancing.

Stochastic Brook 2.2 Twice weekly, week-
ly, 14 days

LOD 101, 
103, 105, 107

1-5, 
10 

days

Surveillance testing can overcome uncertainty surrounding 
asymptomatic infections, with the most effective approaches pri-
oritizing frequent testing with rapid turnaround time to isolation 

over sensitivity.

Time-Vary-
ing Pois-

son
Chang

1, 1.5, 
1.6, 2.0, 

2.5
3, 7 days 60%, 80%, 

100%

1, 2, 
and 3 
days

Testing frequently while minimizing the delay from testing until 
isolation for those found positive are the most controllable levers 

for preventing large residential college outbreaks.

Cohort Level - Healthcare

SEIR

Chin 1.5, 2, 2.5 Daily to monthly

Time-vary-
ing: 50-80%
Ideal: 100%

0, 1, 
3, 5 
days

Routine testing substantially reduces risks of outbreaks but may 
need to be as frequent as twice weekly.

De-
launay 1.5, 2, 3

Weekly (50%, 100% 
of population)

Twice a week (50%, 
100%)

Daily (14%)
Weekdays (20%)
Every two weeks 

(100%)

75%, 90%, 
100%

0, 5 
days

Weekly testing of 50% of residents and staff should be used if 
low transmission rates. 100% of residents should be tested in 

higher infectiousness contexts.

Holm-
dahl N/A 1, 7 days & 2.3x/

week

LOD 103 
(PCR), 

105, 107 
(antigen)

0 days 
(anti-
gen), 
1,2,7 
days 

(PCR)

In a simulated nursing home population, more frequent antigen 
testing at the LOD 105 was more effective than higher sensitivity 

PCR testing with longer delays.

Obama
3.2, 3.4 

(seasonal 
average)

1, 5 days

85% (anti-
gen),

95% (PCR) 
at peak 

probability 
of detection

0.5-4 
days

In a closed facility, testing every 5 days with a 24-hour delay 
resulted in up to a 40% reduction in the number of infections.

Stochastic See 1.366689 1, 3, 7 days 50%, 85%, 
95%

0, 1, 2 
days

Outbreak testing could prevent 54% to 92% of SARS-CoV-2 in-
fections. Non-outbreak testing could prevent up to an additional 

8% of infections

Table 1:  Publications Evaluating the Impact of Testing Strategies in the COVID-19 Pandemic by Setting
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Bayesian Hellewell N/A 1, 2, 4, 7, 14 days

64% (lateral 
flow test), 

77% (PCR) 
at peak 

probability 
of detection

1, 2 
days

PCR testing every 2 days in a population of UK healthcare 
workers would detect 57% of symptomatic cases prior to onset 
and 94% of asymptomatic cases within 7 days, given a one-day 

reporting delay.

Cohort Level - Workplace

SIR Lying 2.5 1, 3, 7, 14 days 60%, 80%, 
98%

0, 2 
days

Key characteristics of viable testing strategies include high 
frequency testing with a moderate or high sensitivity test and 

minimal results delay.

SEIR Vander-
Waal 2, 4 3, 7, 14, 28 days 90% 1, 3, 5 

days

In a simulated meat processing plant, testing every 3 days 
averted 25-40% of COVID cases, with test frequency having a 

more substantial impact on reduction in cases than delay, R0, or 
background community transmission. However, testing may not 
be enough to prevent an early outbreak, as results were seen to 

be most effective with residual immunity.

Stochastic Chowell

9-16 
(ship)

0.6-1.6 
(shore)

Once or daily

80-95% at 
peak prob-

ability of 
detection

Within 
hours

PCR testing at embarkation and daily testing of all individuals 
aboard, together with increased social distancing and other 
public health measures, should allow for rapid detection and 
isolation of COVID-19 infections and reduce the probability of 

onboard COVID-19 community spread.

Other Meier N/A Daily and weekly
60%, 70%, 
80%, 90%, 

95%

1, 2 
days

The primary factors determining the effectiveness of a screening 
program are test sensitivity and frequency of testing, with repeat 

testing able to compensate for lower sensitivity.

Population Level

SEIR

Paltiel 0.9-2.1 1-15 days 70%-95% 0 days High frequency home testing using an inexpensive imperfect 
test could contribute to pandemic control at justifiable cost.

Bosetti 1.2, 1.3, 
1.4, 1.6 1 to 30 days 60%, 75%, 

90% N/A
One round of mass testing could reduce expected infections 

by up to 20-30%, with more frequent testing resulting in greater 
reductions in infections.

SIR Atkeson N/A 0-3 days 97%

Ap-
proxi-
mately 
2 days

Fiscal, macroeconomic and health benefits of rapid testing 
programs far exceed their costs.

SIDHRE-Q Nash Estimated 
from data 1, 3, 7, 14, 21 days 30%-90% 0 days

High frequency, strategic population-wide rapid testing at vari-
ous accuracy levels diminishes COVID-19 infections, hospital-

izations, and deaths.

CEACOV Neilan 0.9-2.0 1, 3, 14, 30 days 30%-100% 1 day

Assuming the cost of PCR testing ($51), symptomatic and 
monthly asymptomatic testing became cost-effective at a Re 
greater than or equal to 1.6. When using a test costing $5, 
repeat testing was cost-effective in all epidemic scenarios.

Time 
Dependent 

Weibull
Bootsma 1.3, 2.0, 

2.5
1, 3, 5, 7, 9, 11, 13 

days
Time-depen-

dent, 80% 0 days
Regular universal random screening is not a viable strategy, but 
targeted screening approaches are needed to better use rapid 

testing.

Stochastic Berg-
strom 2.5 1, 2, 3.5, 7 days

50%, 60%, 
70%, 80%, 

90%

0, 0.5, 
1, 2, 
3, 5 
days

Less sensitive tests administered at higher frequencies can be 
effective at the population level compared to less frequent tests 

with higher sensitivity.

aThe Ro values were not provided in this article but were estimated using the base infectivity levels that were provided.

further detail in the Table 1.

Cohort Level
University setting: Several authors analyzed the impact of vari-
ous COVID-19 testing approaches with simulations of a college 
campus [20-27]. Paltiel et al. proposed a modified SEIR model 
to demonstrate the effect of test frequency and sensitivity on 
infections and isolation practices in a university environment of 
5,000 students with 10 initial infections. Using a minimally sensi-
tive (70%) but a highly specific (98%) test, their model estimated 
1840 cumulative infections under weekly testing and 162 under 
daily testing over the course of an 80 day semester. Using a test 
with the same specificity but 90% sensitivity resulted in 1118 cu-
mulative infections when testing weekly and 149 when testing 

daily. In this simulation, increasing frequency of testing was more 
important than increasing test sensitivity in reducing the number 
of cumulative infections. Thus, they recommend giving a highly 
specific test to each student weekly, regardless of symptom sta-
tus. In another simulation, Larremore et al. used a SEIR model, 
consisting of 20,000 individuals with a constant binomial proba-
bility of being infected from an external source. As with Paltiel et 
al., Larremore et al. found frequency of testing is more important 
than sensitivity to manage an epidemic [20-21]

Rogers et al. used SIR to model the effectiveness of a rapid test-
ing program in a simulated university campus. They evaluated 
the utility of screening programs testing 0%-20% of the popula-
tion per day with test sensitivity ranging from 60%-90%. Rogers 
et al. demonstrated test frequency was the most important fac-
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tor in reducing infections compared to test sensitivity and behav-
ioral compliance. Hartvigsen also applied SIR to model networks 
of transmission in a university population. He found mask com-
pliance and frequency of testing were the two most important 
factors in reducing disease spread, explaining 45% of the total 
variance in the model [25,26].

Muhkerjee et al. used an agent based model, to evaluate the 
effectiveness of testing using a rapid test at a university. They 
found a testing program with an average of 10,000 daily tests at 
92% sensitivity resulted in 8,650 less infections over a 120 day 
semester compared to no testing. They concluded that to imple-
ment a testing program at the university level, it is essential to 
consider the ratio of total daily tests to the population, which 
they estimated to be around 0.2 (approximately representing 
testing 1 time/week) for management of infections [27].

While other compartmental models focused on testing to identi-
fy cases and prevent further infections, Martin et al. used a SEIR 
model with the focus of determining the necessary test frequen-
cy to identify an outbreak prior to having 10 cases in a hypothet-
ical university. Assuming 85% test sensitivity, they conclude the 
entire campus population must undergo monthly testing to limit 
an outbreak [22].

In addition to SIR models, research authors have investigated 
other modeling strategies to consider transmission in the univer-
sity setting. Brook et al. applied a stochastic branching process 
model to demonstrate the impact of asymptomatic surveillance 
testing and behavior modifications on COVID-19 transmission in 
a university modeled after UC Berkeley. They evaluated reduc-
tion in overall cases across twice a week, weekly, and every two 
week testing programs with sensitivity reflective of ranges for 
available tests. They found that combined with behavior modifi-
cations, the most effective testing program was a rapid test with 
a one day delay, with a mean of 8,200 infections avoided over a 
50 day simulation period [23].

Chang et al. used a time varying Poisson process to model expect-
ed transmission in a population of 10,000 students, with testing 
either once every three days or weekly with a one day delay over 
the course of 80 days. They use the concept of the reproductive 
number (R0), denoting the expected number of infections a sin-
gle infection will produce. They aimed to quantify the maximal 
R0 under which infections would remain below 5% of the tested 
population. Under four possible distributions for test sensitivity, 
they found the worst case scenario for maximal R0 is 1.4 when 
testing weekly and 1.75 when testing every three days. There-
fore, testing every three days allows for a higher R0 as compared 
to testing weekly, while still maintaining infection control [24]. 

Healthcare setting: Chin et al. developed a stochastic simula-
tion to model the effectiveness of routine testing in a high risk 
healthcare environment. They estimated the required frequen-
cy of testing asymptomatic individuals to bring the effective re-
productive number (Re) below 1. They simulated a population of 
100 individuals, with test frequency ranging from daily to once 
a month and test sensitivity ranging from 50%-80%. Chin et al. 
found when R0=2, twice weekly testing would be required to 
manage infections and avoid an outbreak by bringing Re below 1. 
Additionally, increasing test frequency was more important than 
increasing sensitivity in reducing infections. With daily testing 
and R0=1.5, a reporting delay of 3 days reduced Re by 56.5% com-

pared to an 85.3% reduction with a one day reporting delay [28]. 
Hellewell et al. used a Bayesian modeling approach to evaluate 
the effectiveness of routine, asymptomatic PCR testing in a pop-
ulation of UK healthcare workers. Assuming a one day reporting 
delay, they concluded testing every other day would detect 94% 
of asymptomatic cases within 7 days and 57% of symptomatic 
cases prior to onset. They also noted a potential trade-off be-
tween test frequency and delay i.e., testing at a lower frequency 
can be compensated by a shorter delay in reporting results [29].

Holmdahl et al. applied a SEIR model in a simulated nursing 
home population, comparing the effectiveness of testing reg-
imens using PCR versus antigen testing at frequencies ranging 
from daily to weekly. With no testing, estimated cumulative inci-
dence is 65%. With weekly antigen testing for the entire nursing 
home population, estimated cumulative incidence is 42% versus 
51% for weekly PCR. The most effective testing regime was daily 
antigen testing, with an estimated cumulative incidence of 30%. 
Therefore, Holmdahl et al. recommend antigen testing with in-
creased frequency to reduce infections more effectively than 
higher sensitivity PCR testing with longer delays [30].

Obama et al. also used a SEIR model to evaluate testing program 
effectiveness in closed facilities, including long term care facilities 
(LCTF) and prisons. They considered test sensitivities reflective of 
antigen testing (maximum 85%) and PCR (maximum 95%), and 
they found that in an LCTF, testing staff members daily with anti-
gen was more effective at reducing infections than testing every 
5 days with a PCR test. For example, they observed a 55% reduc-
tion in the epidemic peak during the second wave using antigen 
testing compared to 40% with PCR. In the prison setting, howev-
er, they noted testing alone would not be sufficient to contain in-
fections due to high infectiousness and crowding conditions [31].

Delaunay et al. used a stochastic, agent-based model for a hy-
pothetical LTCF consisting of 280 residents and healthcare work-
ers. This simulation introduces one infection at baseline with all 
individuals susceptible. The simulated LTCF follows a specified 
testing strategy until a first positive case is identified, at which 
point the number of people already infected is estimated. At 90% 
sensitivity, the authors compared test frequencies ranging from 
100% of the population twice a week to every 2 weeks using a 
base R0=3. Testing 100% of the population weekly resulted in a 
mean of 3.8 cumulative cases at first positive case identification; 
increasing this frequency to twice weekly reduced the mean to 
1.8 cases. Delaunay et al. recommend testing 100% of the pop-
ulation weekly when R0=3, with increased frequency required in 
higher infectiousness scenarios [32].

See et al. used a Reed-Frost stochastic model of transmission to 
examine the effect of testing in a simulated nursing home popu-
lation including 86 residents and 129 healthcare providers. They 
found testing asymptomatic people when there are known infec-
tions using a rapid test every 3 days with 85% sensitivity reduced 
infections by 89.7%, whereas using a test with a 2 day delay every 
3 days reduced infections by 79.3%. For the 2 day delay test, sen-
sitivity is modeled after RT-PCR testing, with a peak sensitivity of 
95% that varies over the course of illness. When testing asymp-
tomatic people with no known infections, using the same param-
eters, the point of care test reduced infections by 94.8% and the 
2 day delay test by 85.9%. Therefore, the authors suggest imple-
menting tests with rapid reporting times at a high frequency of 
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testing, prioritizing symptomatic residents/healthcare providers 
but also testing asymptomatic individuals if possible [11].

Workplace setting: In the business environment, research au-
thors considered whether implementing routine testing can per-
mit return to work programs by managing disease spread. Meier 
et al. investigated the value of an employee screening program in 
a hypothetical workplace, varying test sensitivity/specificity, de-
lay, frequency, and disease transmission dynamics such as preva-
lence and group size in the employee population. They conclude 
test frequency and sensitivity are the primary factors impacting 
the effectiveness of a screening program, with repeat testing 
able to compensate for lower sensitivity. For example, a test with 
80% sensitivity would have a 96% probability to detect an infect-
ed person after 2 test cycles [33]. 

Lying et al. simulated transmission in a workplace setting by in-
cluding a time dependent term to represent “the rate in (peo-
ple/time) of infections from outside interactions continuously in 
time.” They considered a test sensitivity of 98% with a two day 
delay in results, 98% test sensitivity with no delay, and 60% test 
sensitivity with no delay. They found a 98% sensitive test imple-
mented weekly with a two day delay resulted in 58 cases in the 
low infectiousness scenario and 249 in the high infectiousness 
scenario. For the 60% sensitive test with no delay, testing every 3 
days resulted in 11 cases in the low infectiousness scenario and 
71 in the high infectiousness scenario. Thus, implementing a less 
sensitive test more frequently can more effectively reduce the 
burden of disease in a workplace compared to a more sensitive 
test with a longer delay [7].

In specific workplace settings, Vander Waal et al. evaluated the 
utility of a PCR based screening program in pork processing 
plants. Across possible parameters such as test delay, frequency, 
proportion of the population tested, they found frequency had 
the most substantial impact on reducing transmission, with test-
ing every 3 days reducing cases by 25%-40% and testing every 14 
days reducing cases by 7%-13% [34]. Chowell et al. also assessed 
the value of a PCR testing program, but in the environment of a 
cruise ship in which outbreaks could lead to high infection rates. 
They considered two strategies for testing passengers: (1) at em-
bark, and (2) at embark combined with daily testing. Chowell et 
al. found embarkation testing resulted in a mean of 14.9 cases, 
whereas embarkation combined with daily testing resulted in a 
mean of 2.9 cases. Therefore, they concluded embarkation test-
ing in addition to regular testing on a cruise ship would reduce 
the possibility of an outbreak [35].

Population Level
Testing as a surveillance tool: Research authors have considered 
the utility of testing as a surveillance tool for large populations. 
Bergstrom et al. used a stochastic modeling approach to com-
pare testing programs with sensitivity ranging from 50%-90% at 
frequencies ranging from 1 to 7 days. They found less sensitive 
tests administered at higher frequencies can be effective at the 
population level compared to less frequent tests with higher sen-
sitivity. For instance, assuming immediate turnaround in test re-
sults, administering a 50% sensitive test daily yielded a reduction 
of 80% in contagious exposure time for an infected individual, 
compared to a 60% reduction when testing twice weekly with a 
90% sensitive test. Thus, Bergstrom et al. suggest implementing 

a proactive testing regime employing frequent use of rapid tests 
with minimal turnaround times [36].

Not all authors agreed on the feasibility of a widespread testing 
program as a surveillance tool. Bootsma et al. developed a time 
dependent Weibull transmission model in which they modelled 
sensitivity as a function of time since infection. Under a base 
R0 of 2.5, they found 100% of the population would need to be 
tested every 3 days to bring Re below 1. If additional protective 
measures were implemented to bring R0 to 1.3, 80% of the pop-
ulation would need to be tested weekly to bring Re below 1. They 
conclude regular testing of the population is not a viable strategy 
to reopen society due to the magnitude of R0 and the delay of 
any test to detect infections after exposure. Despite this, Boots-
ma et al. emphasize increased test frequency is more impactful 
on controlling transmission than increased sensitivity according-
ly; targeted rapid screening could be a feasible strategy for popu-
lation level surveillance [15].

Testing to reduce disease burden: Reduction of disease burden 
has also been considered at the population level. Nash et al. eval-
uated the impact of a rapid testing program on infections, hospi-
talizations, and total deaths in three regions in the United States 
as well as São José do Rio Preto, Brazil. They concluded increasing 
test frequency rather than increasing test sensitivity more sub-
stantially reduced the proportion of individuals with infections, 
hospitalizations, and deaths. For example, in Los Angeles where 
an outbreak already affected the population, administering a 
90% sensitive test every 10 days resulted in 2.5% of the popu-
lation being infected, while a 30% sensitive test would require 
testing every 5 days to achieve the same infection rate [9].

 Bosetti et al. considered the implementation of mass testing in 
metropolitan France to reduce infection rates. They found using 
a 90% sensitive test, one round of mass testing 75% of the pop-
ulation reduced infections by 21% in the 10 days following the 
campaign [37]. More frequent testing could further reduce the 
impact of disease burden if implemented at the population level.

Authors, such as Neilan et al., have also considered the poten-
tial economic impact of testing programs. They considered the 
economic utility of testing in Massachusetts under four possible 
testing scenarios: hospitalized only, symptomatic only, symptom-
atic+one time asymptomatic, and symptomatic+monthly asymp-
tomatic. They found compared to hospitalize only, all repeated 
testing scenarios reduced infection rates. Considering hospital-
ization and testing costs, symptomatic and monthly asymptom-
atic testing became cost effective at a Re ≥ 1.6. Additionally, Nei-
lan et al. note that less expensive, rapid testing could improve 
economic utility-“if low cost testing were available at $5/test, it 
would be cost effective or cost saving to offer repeat testing in all 
epidemic scenarios” [10].

Atkeson et al. evaluated the economic benefits of a testing pro-
gram in the US using a behavioral SIR model consisting of five 
age groups and 66 private economic sectors. Using a screening 
test with 97% sensitivity assumed to cost $5, their model pre-
dicted avoiding 66,000 deaths when testing weekly. They found 
net economic benefits range from $75-120 billion for bi-weekly 
testing and $150-200 billion for weekly testing, depending on 
screening test sensitivity. Overall, they emphasize the econom-
ic and health benefits of testing programs outweigh their costs, 
especially when rapid tests are accompanied by highly specific 
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confirmatory testing [6].

Paltiel et al. examined the clinical and economic outcomes of a 
nationwide, home based, antigen testing program. For their base 
case scenario, they used a sensitivity of 80% in addition to pessi-
mistic assumptions for behavioral responses to testing, with 50% 
of individuals participating in at home testing, 50% of individuals 
isolating after receiving a positive result, and 20% of isolated in-
dividuals abandoning their isolation each day. They found com-
pared to no testing, weekly home testing under the base case 
scenario reduced infections from 15 to 11 million and deaths 
from 125,000 to 106,000. This intervention also averted a cost 
of $5,400 per infection and $1.1 million per death. Paltiel et al. 
conclude a nationally implemented, home based testing program 
would be beneficial both clinically and economically, even given 
potential variations in adherence [38].

DISCUSSION
The numerous studies above conclude that disrupting the trans-
mission of SARS-CoV-2 is attainable under testing strategies that 
optimize the test frequency of the test given its sensitivity. Using 
a variety of statistical models and varying the different param-
eters of SARS-CoV-2 transmission, the majority of authors con-
clude that testing frequently is more impactful in reducing trans-
mission than testing with a highly sensitive test. Thus, using a 
less sensitive test, such as a rapid test, can provide huge benefit 
if utilized frequently. Additionally, some studies showed that the 
speed of test results plays an important role in reduction of trans-
mission of disease.

CONCLUSION
As both asymptomatic and pre-symptomatic patients, and per-
haps even fully vaccinated persons, will continue to spread 
SARS-CoV-2, cost-effective and scalable screening methods are 
essential to identify these patients for quarantine and to stop 
transmission. Rapid tests that can be used frequently compen-
sate for their lower sensitivity and would serve to make re-open-
ings more feasible and safer. With these key findings in mind, fre-
quent screening with a rapid test could identify silent spreaders 
of SARS-CoV-2 to disrupt and control the COVID-19 pandemic.
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