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ABSTRACT

We analyse the effect of radiation on combined kraaisfer of an electrically conducting viscousidlin a non-
uniformly heated corrugated pipe in the presenceaofonstant heat source. A non —uniform temperatsre
maintained on the boundary. Taking the slapef the boundary of the pipe as perturbation pagten the
equations governing the flow , heat transfer andynedic induction have been solved. The velocity serdperature
have been evaluated for variations in the differegbverning parameters. The effect of the varioagegning
parameters on flow, heat transfer has been exhiliteough various profiles of velocity, temperatdistributions.
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INTRODUCTION

Thermal convection problem in porous occurs in aabrspectrum of the disciplines, ranging from Cloani
Engineering to Geophysics. Applications include thiesulations by fibrus materials, spreading of lytaints
convection of Earth’s mantle. Alarge cross-sectbfundamental research has been carried out bgrakauthors
in the recent times. In most of the investigatidhe boundaries are uniform in cross-sections a$ althe
boundary temperatures. However, there are a fewsigdly situations which warrant the assumption of-no
uniformity in either the boundaries or the boundmperatures. In a convection flow through a cledsnch a
non-uniformity creates a secondary flow. This seleown flow is of vital importance to technologicabpesses. For
example, the process of modified chemical vapoynogigion(MCVD[3,5])has been suggested in drawingoah
glass fibkres of extremely low and wide band widBerforms from which these fibres are drawn are ariayl
passing a gaseous mixture into a fused-silicon witieh is heated locally by an oxy-hydrogen flovartitulates of
Sio2-Geo2 composition are formed from the mixturd eoillect on the interior of the tube. Subseqlyefhese are
fused to form a vitreous deposit as the flamesetsad along the tube. The deposition is carriedirothe radial
direction through the secondary flow creates dusoto-uniform wall temperature.

In most of the studies pertaining to convectiomiahrough the pipes, the axial dependence ofltve ¥ariables
[2,4,5,6,9,10,12] is neglected and either the teatpee or its gradient in maintained uniform on tieeindary .Also
the heat transfer analysis is investigated in th&eace of any internal heat sources in the floedfilThe heat
transfer in a flow through a pipe in the presentadtitional internal heat source has direct agpiln to the
modified chemical vapour deposition process. ThBWD process is being used to make high qualitycaptylass
fibres [13,17,18].

In hydro magnetic case flow through channel witm-onoiform gap has been considered by Mc Michael an
Deutsch [11] in their paper on MHD laminar flowtime slowly varying tube in the presence of an amiagnetic
filed. They considered a small paramedex<1 (given by the ratio of radial to axial lengslealing ) which
characterises the wall slope of the regions of imgryadius. The problem is analysed as a regulauition
problem at finite magnetic Reynolds number and idart number as large as3df) . It is observed that the onset
of flow separation is associated with adverse ayiatlients of wall pressure created by radial maghedy forces.
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These are produced by electric currents inducéidsabrder by zeroth order stream lines crossheguniform field,
developing obviously large radial pressure gradiefithe dimensionless current density is independérthe
Hartmann and Reynolds numbers, so that the physicegnt density varies linearly with flow rate asgblied field
strength high current densities are localized i@ titinity of maximum wall slope near the half naglipoint.
Magnetic effects, treated as first order pertudrato the basic local Hagen-poiseuville flow, ldadseparation in
both converging and diverging sections of the tubbile inertial effects promote separation onlydiverging
sections. The induced magnetic filed un affectsfibn even at the first order as long as long &Rj remains
sufficiently small and thus the interactions betwéee induced field and the base flow are onlysafcond order.
This analysis has been extended by Deschikachalr (8) to include the effect of unsteadiness onflbw. Such
purely oscillatory flow over non-uniform surfacdmat are not straight exhibits a steady stream chbgehe non-
linear equations governing the motion. This phermenef steady streaming is of great mathematicalmdical
interest. The pressure and sheer stress on théovahrious parameters governing the flow arewlsed.

Krishna et al[8] have analysed the combined fres fanced convection flow through an axially varyiagrtical
pipe in the presence of an internal heat sour@@w$tant strength. Murthy[12] has extended thistualy the effects
of a uniform axial magnetic filed. Costa[l] has Igsad the viscous dissipation effects in naturad amxed
convection heat transfer. Recently Basack et alfisfe discussed the natural convection flow imuwase cavity
filled with a porous heated bottom wall and adiab#&tp wall maintaining constant temperature ofdceértical
walls. Several authors [6a,11a-11d, 14a] have dssmlthe flow of the viscous through channels ofabée cross
section under different conditions.

In this paper, we investigate the effect of radiaton combined heat transfer of an electricallydtmting viscous
fluid in a non-uniformly heated corrugated pipe the presence of a constant heat source. A non erumif
temperature is maintained on the boundary. Takhe gloped of the boundary of the pipe as perturbation
parameter, the equations governing the flow , braaisfer and magnetic induction have been solvéeé. velocity
and temperature have been evaluated for variatiotie different governing parameters. The eftddhe various
governing parameters on flow, heat transfer has ledibited through various profiles of velocitgntperature
distributions.

FORMULATION OF THE PROBLEM

We consider the steady axisymmetric flow of an mpeessible ,viscous electrically conducting fluda vertical
pipe of variable cross section maintained at nafeum temperaturg(dx/a). The Boussinesq approximation is used
so that the density variations will be retainedyonl the buoyancy force. The viscous dissipatiomeglected in
comparison to the heat flow by convection. The eotr@tion on these walls is taken to be constam. dylindrical
polar system(r,x) is chosen with x-axis along tkis af the pipe. The boundary of the pipe is asslitoebe

r =af(ox/a)

where ‘a ‘ is characteristic radial length, f iside differentiable and®’is a small parameter proportional to the
boundary slope. The flow is maintained by a coridtaw for which a characteristic velocity U is d&éd as

_ 2  caf(&/a)
u_(g)j0 urdr )

The applied magnetic field Bo is uniform and diegtlong the axis of the pipe. No electric fieldapplied and
there is no induced electric field for the consttsigiven(24).The electrical conductivity of the@iwalls remains
arbitrary and without influence on the flow are

P.(00) == Dp+10°q + 1, (XB) - g )
- 3)
P£.Co(AO)T =A0°T+Q _%% “
p—p.==B(T-T) o
The Maxwell's equations related to the magnetiaoiin vectorB are
0B =0 o
OXB =470 . o
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The Ohm'’s law gives

J = oy, (GxB) 8)

Wherepe is the density of the fluid in the equilibriunat, q is the velocity is the viscosity p, is the pressure. T,

is the temperature in the flow regipnis the density of the fluid |k is the coefficient permeability, Q is the
strength of the heat sourqge is the coefficient of viscosity, Cp is the spezifieat at constant pressarés the

coefficient of thermal conductivity, is the coefficient of volume expansiorB is the magnetic induction vector,

J is the current density vectorjs the electrical conductivity of the fluid ,D ise molecular diffusivity,k is the
cross diffusivity andpe is the magnetic permeability.

Invoking Rosseland approximation the radiative lileatis given by

__40° a1 ©

" B or
and expandingil"4 by Taylor's expansion after neglecting higher orgems we get

14 377 4
T'4 O4T2T' - 3T, (10)
In the equilibrium state

0P,
-—— - =0 (11)

x P9

Where p=p, + Py ; Pp is the hydrodynamic pressure.

Introducing the non-dimensional variables

q”=q/U,p”=p/pu? B =BIB,,J"=J/0UB,

T-T,
0=——=,y = ylAT
at,

e

AT, =T.(0)-T.(a)

The equations (2)-(8) after using (9)&(10) reduzé¢dn dropping the asterisks)

R.(5) +D(p+- ) + 0%+ M *(38) ~G(6) 12)
q
0g=0 13]
_ 0’6 106 0°0 4 ,0°0 1046
P(@D)f=—+""+—+ +=)+a 14
(a0 o’ ror ox :«’;Nl(ar2 r ar) 4
O0B=0 (15)
OxB =R _J (16)
J = (GxB) (17)
where

R, _Ya (theReynoldsnumbe), R, = gy u.a (themagnet Reynoldsnumbel)
vV

3
M = aBO(i)l’z(theHartmam numbe) ,G = LoATE (theGrashofmumbe)
oV

V2
HUC

a 2
P = TP (thePeclehumbe) , D™ = a? (theDarcyParamete}
%
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(Heat source parameter)

Qa’
C

—_ :BRT: 1ati —_
N, = =% (theRadiationparametej,a =
4o o

Under these constraints imposejjhas only the azimuthal componentswhile q and B have axial and radial
components.

Weassume q=(uv) , B=(f,q)
The boundary conditions relevant to the problem are
ov 00
v(r,x)=0,—=0,—=0 onr=0
or or
u(r,x) =0, T -T, = Y(X) onr=a (18)

Equations (12)-(17) constitute a system of sixatigns for the seven unknowns u,v,feg@hd®. These may be

reduced to three equations for the Stoker’s strizamotion (r,x) and the magnetic stream functigifr, X) given
by

__Ea_(l/ V:Ea_w f :—E% —E%

ror r ox ror 't ox
(The subscripts x and r denote the respectivegbalerivatives).
Combining (16) and (17)to eliminate J. We find

Ep= Rm((%)(wxcor 4. 19)

Where the operator’fis denoted by

0 190 0°
E2=r > () +—
ar(r ar) ox?

Eliminating J between (12) and (17) and takingdhe of the former to eliminate the pressure, we ge

10@ 0(E°Y)-10W 0(E*Y) 204 5\ oo
Re((r OX or ror ox r? ox B -EEY)~

+M?*/R{(1Ng (E°Y), - W )¢ (E*9), -

06
- @IT)e{EY), ~{GIR)( () (20)
The energy equation is
H(awx - 6x(0r) = 6rr +1/r)6r + NZHXX + al (21)
where
3N,

2: H.:F)eNZ alzaNZ

4+3N,

The current density can be found ocandg are known from equations (17) which reduce to

Jo =) @6 -¢.9) (22)
These coupled equations (21)-(22) are to be s@ubject to non dimensional boundary conditions.
v =0 L@n¥= (24)
or or
% =0 onr =0 (25)
or
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W, x) = -1/2, %—‘f - (26)
o(r,x)=y(x) onr=f (27)

The value ofyy on the boundary assures the constant volumetng fh consistence with the hypothesis (1) and
conditions (24) & (26) corresponds to axial symmeirthe flow.

Electric currents within the fluid induces a magnéeld exterior to the tube as well as within.ig lexternal field,
O o g O O
B =(f,Q) is given by a potentiaA = g€, , such that
O O
B=0xA,or
O O O O
f=-Wne, g=Urng
O
Since R, = 0 in the exterior region equation (18) requires E? =0
Both the potential and the field itself must betammous at the wall (7). Hence we may write theahitg condition
are
O
p=¢ at r="1(x)
]
@ =@ at r=f(x
The problem statement is completed by boundaryitond at r = 0 , £ +c. Because of symmetry the radial field
must vanish at the centre line.
@me=0atr=0
and we must retrieve the uniform applied field biathfrom the tube,
]
lim @/r)g=Ilim@/r)g =-1
I —too X — too
On the boundary with variable cross-section (g)/(0r ) is either a constant or a function x. Suppoging 0 then

f is function of x along the tubs. In view of thentinuity requirements it follows that in the neiigurhood of the
tube at any case r.

m] m]
f=-/r)g =-1
m]

Lt@/r)e =-1

m]
Therefore@, # 0 on r = f(x) leads to a contradiction.
m]
But ¢ = @, in view of the matching condition on r = f(x).
m]
Thereforeonr=1f(x), @ =@, =0

ANALYSISOF THE FLOW
We introduce the transformations [1X]= JX

0 0
we assum%— = O(9) suchthat x = 0O() for small values 0fd ,the flow develops slowly along the axial
X X

direction with gradienO(J) .Making use of the above transformation the equatit®)-(22) reduce to

2 1
E o= éRm((;)(t//xqor -Y.9) (28)
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10y A(Ejw) - 10y O(Efy) _ 2 oy
(aRE)((r X or ror X r’ ox

+M? IR AN (ELQ), - W@ (Bl — - (2IT°){EXQ),) —{G/Re)(r(¥))

(d:i)(erwi - HXW) = Hrr + (1/r)6r + 52N26xx + al (29)
0,10 9°

where Ef =r—(=)+d°N,—
or ror 0X

Assume R, = O@)inthelimit 0 — Othe inertial terms vanish in equations (29) leadimg viscous terms and

the magnetic terms. The order of the magnetic epends on M as well a® .From equation (28) we find that

EZp=0(J) for R, = O(1).Thus we may consider the Hartmann number M as lasg®(d ?)and stil

retain only the viscous terms at the zeroth ordigh Wwoth inertial and magnetic perturbations apjpgam first

order. Thus we elevate magnetic effects to firdeoneglecting the second order inertial and visegtects .
Taking the transformation

-
()

the above equations reduce to
1
Flp=(of Rm)((E)(wx@, ~4,%) (30)

@t R)(ILOEN LV OFY)_2 0F

nox on nonp O0x  n®ox
+(fM2/RN(AIN@ F29), - WUng, (F@)y -
- @In%)efF w),,)—{ef“/Re)(n(%» (31)

(5 f H.)(ngi - ex%) = 9/]/7 + (1/,7)617 + 52 f 2NZHXX + all‘f ? (32)

Ely)-Ey +

Foy)-Fy+

We use the asymptotic expansions

W, %) = Wo (7, %) + 0, (17, %) + 3°W, (7, %) + oo
67, %) = 6,17, X) + 36,(17, %) + 526,(17, %) + v.vveee..
@7, %) = @ (17,%) + 04 (7, %) + 3°@ (17, %) + oo (33)

Substituting (33) in equations(30)-(31) and sepagathe like powers ofd ,the equations corresponding to the
zeroth order are

B.on +%90,,, +a,f?=0 (34)
F'w, —h°Fy +i4( (@, +NC,, ) =0 35

0 0 Re 7 0 onll — ( )
F’g =0 (36)
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The corresponding conditions ag, 60 , andg, are

W, (LX) =-1/2, Wo,)p=0

(’7‘/’0,,7,7 _wo,q)/7=0 = O’ ‘//o (0’ )_() = O (37)
60 (1’ X) = y(i), (Ho,r] )/7:0 = O (38)
@, 0,%) =0 Lim(% @,)=-1 (39)
The equations to the first order are
,701.,/7/] + 01,/7 = H_(wo,ieo,/; _wo,qgo,i) (40)
FZ(FZ - hz)‘/ll = f 4Re(‘//0,i(|:2‘//o),7 _l//o,q(FZ‘//o)i -
2 A
_(r_z)wo,i(szo))_M2f4/Rm)(%,>?(F2%),; (41)
2 Gf*

=%, (F*@): ~ (s (F @) + R 7(6,,))
F’@ =R, Wox®, ~¥o, %) (42)
where

M2 =aM2? 00(),h? = M?f?

The corresponding conditions @n, 6, , andg, are

Y,A%)=-0, W)y =0

(,7(’[/117/] _wl,/] )/7=0 = O’ 1/’1 (O’ X) =0 (43)
6, (LX) = (X), (6,,),-0 =0 (44)
@,0%=0 @,=@,=0on n=1 (45)

The equations to the second order are
no,,, +6,, = RWoxb., ~¥o,0ux * W56, ~¥1,6,x) (46)
|:2(|:2 _hz)l/lz = f4Re(‘//1,i(F2wo)q _l//o,q(FZ‘/ll)i -

- (r%)(wo,x (F2,) + 0, (F00)) ~ o (F21,),, -
g (F), — (M2 E IR )@ (F2m), -, (F2)s
St e,

2 2
(r—z)%,y(F @)+ R
F?@ = R.Wox®B, ~Wo,Bx + Wiz, ~¥1,%x) (48)

)

The corresponding conditions @n, 6, , andg, are

Y,0%)=-0,  Wy,)ym =0

(’7()[/2,/;/7 _wZH)I7=0 = O’ l/’z (O’ )_() = O (49)
6,(LX)=0, (6,,),-0 =0 (50)
¢2,x (0’ )_() = 0! ¢2,/] = &2,/1 = O on ,7 =1 (51)
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where
F2 = 0° 10
an? /70/7

SOLUTION OF THE PROBLEM
Solving the coupled equations (34)-(36) subjecthi®m corresponding boundary conditions (37)-(39), geé the
expressions for zeroth order

6,(X,7) = y(X) = 2 (1-n")/4

_ a, , 83 g
—a +-4p2-8
lﬂo 5 4 ,7 36C,7

2

%:—%

Solving the coupled equations (40)—(42) subjectthie corresponding conditions(43)-(45),the solutifom
6., andg are

_ ag 3 alO 5 all 7 a12 9
=2 -+ 22 -+ (7 -1 - 22 (p° -1
9(f7 )+25(f7 )+49(/7 ) 81(/7 )

= 8n 2 +% 3 4788 a33 + +
@ 4 n 9 7 /7 ’7 81,7
_ % 3, % 5, %3 6, B 7, B 8. e 9
g o7 "180" 6’7 1225/ (36x64),7 (49x81)'7
+ ag; 7 + Agg 7+ Agg 7 + Az - + an i
6400 B81x2) 14400 (160x12] (144x189
+%f72 +B,
where @, ......coovevvvvneenns, &1 Bi1,B; are constants.

RATE OF HEAT TRANSFER
The local rate of heat transfer coefficient(Nusselmber) on the boundary of the pipe is calculaisthg the
formula

1 06
Nu=——-——(-"))
f(6,-86,) on
where 6, = ZJdeU
and the corresponding expression is
Bl7 + £18

B (Bis + 3By — ¥(X))
DISCUSSION OF THE NUMERICAL RESULTS

The aim of the analysis is to study of the effectaaliation on convective heat transfer flow in@runiform pipe
which is maintained at non-uniform temperature lie presence of a constant heat source/sink. Thplezbu
equations governing the flow and heat transfer Hsaen solved using a perturbation technique. Thecitg and

the temperature distributions in the fluid regiae analytically evaluated and their behaviour witfierence to
variations in the governing parameters BJ,a, a; and N has been analyzed numerically. For computational

purpose the geometry of the pipe wall in the nanatisional form is assumed to ye= f (X) = 1 +Bexp(-¥) and
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the prescribed wall temperaturéX) is chosen to be; sin (X) . B > 0 corresponds to dilation afet0 corresponds
to constriction of the pipe. In this analysis wafioe our study in a dilated pipe.

Figs. 1-10 give the profiles of u and v for diffetgparametric values in a dilated pipe. We may nbét the axial
flow due to imposed flux and the pressure gradigmiositive along the x-axis and hence negativalarlocity
corresponds to the reversal flow. Such reversaldl@re consequences of thermal buoyancy and géeeta
convection cells. It is interesting to observe tihat geometry of the boundary has direct influemrcéhe occurrence
of these convection cells. Fig.1 shows that thalelow continuously positive in both heating arabling cases of
the pipe. It follows that the reversal flow appeiarthe case of higher [€9x10° and no such reversal flow occurs in
the case of G > 0.

Fig. 6 shows that this secondary velocity v in latdd pipe is towards the boundary for all G. Aoré@ase in the
strength of the magnetic field K 4 decreases |u| and enhances witk Bl Also |v| enhances in the fluid region
with M. Fig 2 and 7 represents u and v with heate® parametenr’. It is found that u enhances with increas@in
< 4 and depreciates with=> 6 and it reduces withu]. v reduces with increase én> 0 and enhances with|| From
fig. 4 & 9, we find that ‘U’ enhance < 0.5 and decreases wifh= 0.7 and again g = 0.9, u enhances in the
central region and reduces in region adjacent. &lsohances with increaseir= 0.5 (fig.9).The influence of the
non-uniform temperature shows that |u| decreagisimgrease in the amplitude of the boundary teampee (fig. 5)

while |v| enhances with; (fig. 10). The variation of u and v with radiatiparameter Nis sown in figs. 3 and 8. An
increase in Nenhance u and reduces v in the entire flow region.

45 2
4 1.5 4
35 1]
s 0.5
25 - '
u 2 =1l u 0 T T T
=i 02 04 06 \\08
1.5 1 -0.5
1 1
0.5
1.5
0 T
0 0.2 04 0.6 0.8 1 2
n n
Fig. 1 : Variation of u with M Fig. 2 : Variation of u with o
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1 11
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0.2 4 0.2
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The temperature distributioB)(is exhibited is figures 11-15 for different vditams in governing parameters M;,N

a, oy, B. It is found tha® is positive for all variations. The profile fo#'‘gradually falls from its maximum at the
mid region to attain its prescribed value on thargtaryn = 1. The variation 08 with Hartman number M reveals
that the axial temperature depreciates with ineéadM everywhere in the flow region (fig. 11). Fitp represents
the variation o® with heat source parameter It is found that the axial temperature enhancigéls iwcrease iro <

0 and reduces withi]. An increase in Nleads to an enhancement in the axial temperatutteei entire flow region
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(fig. 13). An increase in p results in an enhanaenie the axial temperature. Thus greater the idiladf the pipe
larger the axial temperature (fig. 14). We findnfrdfig. 15) that the axial temperature experierare&nhancement
with increase in the amplituag of the boundary temperature.

The average Nusselt number (Nu) which measuresatheof heat transfer at the boundary is showmlies (1 &

2) for different parametric values. An increaseha strength of heat source depreciates the rateaiftransfer for
all G, while an increase in the strength heat smsiak leads to the depreciation for [Nu| for G and enhances for
G < 0. The variation of Nu with M indicates thatjhér the Loretz force larger the heat transfenatsoundary. The
variation of Nu withp shows that greater the dilation of the pipe, sendMu| for G > 0 and larger |[Nu| for G < 0.
Also an increase in the amplitude’¢f the boundary temperature leads to an enhanceimethe rate of heat
transfer. From table 1 we find that an increasthéradiation parameter;M 2.5 reduces the rate of heat transfer at
boundary while for higher {#5. From table 2, we find that the rate of heatdfandepreciates in the heating case
and enhances in the cooling case with increasirfy) #in increase the amplitude, of the boundary temperature
results in an enhancement in the rate of heatferanga the boundary.

Table-1 Nusselt Number (Nu)atn=1

G | Il I v \ VI \all Vil IX
10° 0.4507| 0.311 0.274 -0.274 -0.101 -0.067 0.318 4.200.142
3X10° | 0.147 | 0.040] 0.032 -0.57p -0.434 -0.413 0.104 ®.170.253
-10° 0.833 | 0.645] 0.565 0.13 0.368 0.4%8 0.166 0.7196980
-3X10° | 1.329 [ 1.065 0.918 0.74 1.078  1.267 1.281 1.4715411

a 2 4 6 -2 -4 -6 2 2 2
M 2 2 2 2 2 2 2 2 2
Ny 0.5 0.5 0.5 0.5 0.5 0.5 2.5 5 10

Table-2 Nusselt Number (Nu)atn=1

G | 1l Il \4 \ VI i
10° 0.714| 0.329] 0.192 -0.06p 0.451 0.565 0.674
3X10° | 0.557| 0.337] 0.268 0.144 0.447 0.550 0.647
-10° 0.887] 1.096/ 1.201 134 0.833  1.2p4 1.489
-3X10° | 1.080| 1.166] 2.149 2.44 1.329 1.4B5 1.637
B 0.3 0.5 0.7 0.9 0.5 0.5 05
[of 0.3 0.3 0.3 0.3 0.5 0.7 0.9
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