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ABSTRACT 
 
We analyse the effect of radiation on combined heat transfer of an electrically conducting viscous fluid in a non-
uniformly heated corrugated pipe in the presence of a constant heat source. A non –uniform temperature is 
maintained on the boundary. Taking the slope δ of the boundary of the pipe as  perturbation parameter, the 
equations governing the flow , heat transfer and magnetic induction have been solved. The velocity and  temperature 
have been evaluated for variations in the different  governing parameters. The effect of the various governing 
parameters on flow, heat transfer has been exhibited through various profiles of velocity, temperature distributions. 
 
Keywords : Wavy pipe, Heat Transfer, Non-uniform Temperature, Axial Magnetic Field 
_____________________________________________________________________________________________ 

 
INTRODUCTION 

 
Thermal convection problem in porous occurs in a broad spectrum of the disciplines, ranging from Chemical 
Engineering to Geophysics. Applications include heat insulations by fibrus materials, spreading of pollutants 
convection of Earth’s mantle. Alarge cross-section of fundamental research has been carried out by several authors 
in the recent times. In most of the investigations the boundaries are uniform in cross-sections as well as the 
boundary temperatures. However, there are a few physical situations which warrant the assumption of non-
uniformity in either the boundaries or the boundary temperatures. In a convection flow through a channel such a 
non-uniformity creates a secondary flow. This secondary flow is of vital importance to technological processes. For 
example, the process of modified chemical vapour deposition(MCVD[3,5])has been suggested in drawing optical 
glass fibkres of extremely low and wide band width. Performs from which these fibres are drawn are made by 
passing a gaseous mixture into a fused-silicon tube which is heated locally by an oxy-hydrogen flow. Particulates of 
Sio2-Geo2 composition are formed from the mixture and coillect on the interior of the tube. Subsequently ,these are 
fused to form a vitreous deposit as the flames traversed along the tube. The deposition is carried out in the radial 
direction through the secondary flow creates due to non-uniform wall temperature. 
 
In most of the studies pertaining to convection flows through the pipes, the axial dependence of the flow variables 
[2,4,5,6,9,10,12] is neglected and either the temperature or its gradient in maintained uniform on the boundary .Also 
the heat transfer analysis is investigated in the absence of any internal heat sources in the flow filed. The heat 
transfer in a flow through a pipe in the presence of additional internal heat source has direct application to the 
modified chemical vapour deposition process. This MCVD process is being used to make high quality optical glass 
fibres [13,17,18]. 
 
In hydro magnetic case flow through channel with non-uniform  gap has been considered by Mc Michael and 
Deutsch [11] in their paper on MHD laminar flow in the slowly varying tube in the presence of an axial magnetic 
filed. They considered a small parameter δ <<1 (given by the ratio of radial to axial length scaling ) which 
characterises the wall slope of the regions of varying radius. The problem is analysed as a regular perturbation 
problem at finite magnetic Reynolds number and Hartman number as large as o(δ-1/2) . It is observed that the onset 
of flow separation is associated with adverse axial gradients of wall pressure created by radial magnetic body forces. 
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These are produced by electric currents induced at first order by zeroth order stream lines crossing the uniform field, 
developing obviously large radial pressure gradients. The dimensionless current density is independent of the 
Hartmann and Reynolds numbers, so that the physical current density varies linearly with flow rate and applied field 
strength high current densities are localized in the vicinity of maximum wall slope near the half radius point. 
Magnetic effects, treated as first order perturbation to the basic local Hagen-poiseuville flow, lead to separation in 
both converging and diverging sections of the tube, while inertial effects promote separation only in diverging 
sections. The induced magnetic filed un affects the flow even at the first order as long as long as (δRm) remains 
sufficiently small and thus the interactions between the induced field and the base flow are only of  second order. 
This analysis has been extended by Deschikachar et al (3) to include the effect of unsteadiness on the flow. Such 
purely oscillatory flow over non-uniform surfaces that are not straight exhibits a steady stream caused by the non-
linear equations governing the motion. This phenomena of steady streaming is of great mathematical and physical 
interest. The pressure and sheer stress on the wall for various parameters governing the flow are discussed. 
 
Krishna et al[8] have analysed the combined free and forced convection flow through an axially varying vertical 
pipe in the presence of an internal heat source of constant strength. Murthy[12] has extended this to study the effects 
of a uniform axial magnetic filed. Costa[1] has analysed the viscous dissipation effects in natural and mixed 
convection heat transfer. Recently Basack et al[16] have discussed the  natural convection flow in a square cavity 
filled with a porous heated bottom wall and adiabatic top wall maintaining constant temperature of cold vertical 
walls. Several authors [6a,11a-11d, 14a] have discussed the flow of the viscous through channels of variable cross 
section under different conditions. 
 
In this paper, we investigate the effect of radiation on combined heat transfer of an electrically conducting viscous 
fluid in a non-uniformly heated corrugated pipe in the presence of a constant heat source. A non –uniform 
temperature is maintained on the boundary. Taking the slope δ of the boundary of the pipe as  perturbation 
parameter, the equations governing the flow , heat transfer and magnetic induction have been solved. The velocity 
and  temperature have been evaluated for variations in the different  governing parameters. The effect of the various 
governing parameters on flow, heat transfer has been exhibited through various profiles of velocity, temperature 
distributions. 
 
FORMULATION OF THE PROBLEM 
We consider the steady axisymmetric flow of an incompressible ,viscous electrically conducting fluid in a vertical 
pipe of variable cross section maintained at non-uniform temperature γ(δx/a).The Boussinesq approximation is used 
so that the density variations will be retained only in the buoyancy force. The viscous dissipation is neglected in 
comparison to the heat flow by convection. The concentration on these walls is taken to be constant. The cylindrical 
polar system(r,x) is chosen with x-axis along the axis of the pipe. The boundary of the pipe is assumed to be  
 

)/( axafr δ=  

 
where ‘a ‘ is characteristic radial length, f is twice differentiable and ‘δ’is a small parameter proportional to the 
boundary slope. The flow is maintained by a constant flow for which a characteristic velocity U is defined as 
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The applied magnetic field Bo is uniform and directed along the axis of the pipe. No electric field is applied and 
there is no induced electric field for the constraints given(24).The electrical conductivity of the pipe walls remains 
arbitrary and without influence on the flow are 
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The Maxwell’s equations related to the magnetic induction vector B  are 

0. =∇ B                                                                      (6) 

JBX π4=∇ .                                                              (7) 
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The Ohm’s law gives 

)( BxqJ eσµ=                                   (8) 

 
Where ρe is the density of the fluid in the equilibrium state, q  is the velocity,ζ  is the viscosity p, is the pressure. T, 

is the temperature in the flow region,ρ is the density of the fluid ,k is the coefficient of permeability, Q is the 
strength of the heat source ,µ is the coefficient of viscosity, Cp is the specific heat at constant pressure,λ is the 

coefficient of thermal conductivity,β1 is the coefficient of volume expansion, B is the magnetic induction vector, 

J is the current density vector,σ is the electrical conductivity of the fluid ,D is the  molecular diffusivity,k11 is the 
cross diffusivity and  µe is the magnetic permeability. 
 
Invoking Rosseland approximation the radiative heat flux is given by 

r
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and expanding 4T′ by Taylor’s expansion after neglecting higher order terms we get 
434 34 ee TTTT −′≅′                    (10) 

 
In the equilibrium state 
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Where DDe pppp ;+=  is the hydrodynamic pressure. 

 
Introducing the non-dimensional variables 
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The equations (2)-(8) after using (9)&(10) reduce to (on dropping the asterisks) 
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Under these constraints imposed J has only the azimuthal components Jθ while q and B have axial and radial 
components. 

We assume ),(,),( gfBvuq ==  

The boundary conditions relevant to the problem are 
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Equations  (12)-(17) constitute a system of six equations for the seven unknowns u,v,f,g,J0, and θ. These may be 
reduced to three equations for the Stoker’s stream function ψ(r,x) and the magnetic stream function ),( xrφ  given 

by  
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(The subscripts x and r denote the respective partial derivatives). 
 
Combining (16) and (17)to eliminate J. We find 
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Eliminating J between (12) and (17) and taking the curl of the former to eliminate the pressure, we get 
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The energy equation is 
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The current density can be found once ψ and φ are known from equations (17) which reduce to 
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These coupled equations (21)-(22) are to be solved subject to non dimensional boundary conditions. 
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The value of ψ on the boundary assures the constant volumetric flow in consistence with the hypothesis (1) and 
conditions (24) & (26) corresponds to axial symmetry of the flow. 
 
Electric currents within the fluid induces a magnetic field exterior to the tube as well as within. This external field, 
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Both the potential and the field itself must be continuous at the wall (7). Hence we may write the matching condition 
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The problem statement is completed by boundary conditions at r = 0 , r→±∞. Because of symmetry the radial field 
must vanish at the centre line. 
(1/r) φx = 0 at r = 0 
 
and we must retrieve the uniform applied field both far from the tube, 
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On the boundary with variable cross-section (1/r) (∂φ / ∂r ) is either a constant or a function x. Supposing φr ≠ 0 then 
f is function of x along the tubs. In view of the continuity requirements it follows that in the neighbourhood of the 
tube at any case r. 

1)/1( −=−=
∧∧

rrf φ  

1)/1( −=
∧

∞→ r
r

rLt φ  

Therefore 0≠
∧

rφ  on r = f(x) leads to a contradiction. 

But rr

∧
= φφ  in view of the matching condition on r = f(x). 

Therefore on r= f(x),     0==
∧

rr φφ  

 
ANALYSIS OF THE FLOW 
We introduce the transformations [11] xx δ=  
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Assume 0lim)1( →≈ δittheinORe the inertial terms vanish in equations (29) leading the viscous terms and 

the magnetic terms. The order of the magnetic term depends on M as well as δ .From equation (28) we find that 
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retain only the viscous terms at the zeroth order with both inertial and magnetic perturbations appearing in first 
order. Thus we elevate magnetic effects to first order neglecting the second order inertial and viscous effects . 
Taking the transformation 
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We use the asymptotic expansions 
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Substituting (33) in equations(30)-(31) and separating the like powers of δ ,the equations corresponding to the 
zeroth order are 
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The corresponding conditions on ψ0, θ0 , and φ0 are 
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The equations to the first order are 
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The corresponding conditions on ψ1, θ1 ,  and φ1 are 
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The equations to the second order are 
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The corresponding conditions on ψ2, θ2 , and φ2 are 
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SOLUTION OF THE PROBLEM 
Solving the coupled equations (34)-(36) subject to the corresponding boundary conditions (37)-(39), we get the 
expressions for zeroth order 
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where a1,a2,…………………,a71  ,B1,B2 are constants. 
 
RATE OF HEAT TRANSFER 
The local rate of heat transfer coefficient(Nusselt number) on the boundary of the pipe is calculated using the 
formula 

1)(
)(

1
=∂

∂
−

= ηη
θ

θθ wmf
Nu  

where   ηθθ dm ∫=
1

0
2  

and the corresponding expression is 
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DISCUSSION OF THE NUMERICAL RESULTS 

 
The aim of the analysis is to study of the effect of radiation on convective heat transfer flow in a non-uniform pipe 
which is maintained at non-uniform temperature in the presence of a constant heat source/sink. The coupled 
equations governing the flow and heat transfer have been solved using a perturbation technique. The velocity and 
the temperature distributions in the fluid region are analytically evaluated and their behaviour with reference to 
variations in the governing parameters M, β, α, α1 and N1 has been analyzed numerically. For computational 
purpose the geometry of the pipe wall in the non-dimensional form is assumed to be η = f )(x = 1 +βexp(-x2) and 
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the prescribed wall temperature γ )(x  is chosen to be α1 sin )(x . β > 0 corresponds to dilation and β<0 corresponds 

to constriction of the pipe. In this analysis we confine our study in a dilated pipe.  
 
Figs. 1-10 give the profiles of u and v for different parametric values in a dilated pipe. We may note that the axial 
flow due to imposed flux and the pressure gradient is positive along the x-axis and hence negative axial velocity 
corresponds to the reversal flow. Such reversal flows are consequences of thermal buoyancy and give rise to 
convection cells. It is interesting to observe that the geometry of the boundary has direct influence on the occurrence 
of these convection cells. Fig.1 shows that the axial flow continuously positive in both heating and cooling cases of 
the pipe. It follows that the reversal flow appears in the case of higher |G|≥3x103 and no such reversal flow occurs in 
the case of G > 0.  
 
Fig. 6 shows that this secondary velocity v in a dilated pipe is towards the boundary for all G. An increase in the 
strength of the magnetic field M ≤ 4 decreases |u| and enhances with M ≥ 6. Also |v| enhances in the fluid region 
with M. Fig 2 and 7 represents u and v with heat source parameter ‘α’. It is found that u enhances with increase in α 
≤ 4 and depreciates with α ≥ 6 and it reduces with |α|. v reduces with increase in α > 0 and enhances with |α|.  From 
fig. 4 & 9, we find that ‘u’ enhances β ≤ 0.5 and decreases with β ≥ 0.7 and again at β = 0.9, u enhances in the 
central region and reduces in region adjacent. Also v enhances with increase in β ≥ 0.5 (fig.9).The influence of the 
non-uniform temperature shows that |u| decreases with increase in the amplitude of the boundary temperature (fig. 5) 
while |v| enhances with α1 (fig. 10). The variation of u and v with radiation parameter N1 is sown in figs. 3 and 8. An 
increase in N1 enhance u and reduces v in the entire flow region.  
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The temperature distribution (θ) is exhibited is figures 11-15 for different variations in governing parameters M, N1, 
α, α1, β. It is found that θ is positive for all variations. The profile for ‘θ’ gradually falls from its maximum at the 
mid region to attain its prescribed value on the boundary η = 1. The variation of θ with Hartman number M reveals 
that the axial temperature depreciates with increase in M everywhere in the flow region (fig. 11). Fig. 12 represents 
the variation of θ with heat source parameter α. It is found that the axial temperature enhances with increase in α < 
0 and reduces with |α|. An increase in N1 leads to an enhancement in the axial temperature in the entire flow region 
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(fig. 13). An increase in p results in an enhancement in the axial temperature. Thus greater the dilation of the pipe 
larger the axial temperature (fig. 14). We find from (fig. 15) that the axial temperature experiences an enhancement 
with increase in the amplitude α1 of the boundary temperature.  
 
The average Nusselt number (Nu) which measures the rate of heat transfer at the boundary is shown in tables (1 & 
2) for different parametric values. An increase in the strength of heat source depreciates the rate of heat transfer for 
all G, while an increase in the strength heat source sink leads to the depreciation for |Nu| for G > 0 and enhances for 
G < 0. The variation of Nu with M indicates that higher the Loretz force larger the heat transfer at the boundary. The 
variation of Nu with β shows that greater the dilation of the pipe, smaller |Nu| for G > 0 and larger |Nu| for G < 0. 
Also an increase in the amplitude ‘α’of the boundary temperature leads to an enhancement in the rate of heat 
transfer. From table 1 we find that an increase in the radiation parameter N1 ≤ 2.5 reduces the rate of heat transfer at 
boundary while for higher N1≥5. From table 2, we find that the rate of heat transfer depreciates in the heating case 
and enhances in the cooling case with increasing in β. An increase the amplitude α1 of the boundary temperature 
results in an enhancement in the rate of heat transfer on the boundary.  
 

 Table-1 Nusselt Number (Nu) at ηηηη = 1 
 

G I II III IV V VI VII VIII IX 
103 0.4507 0.311 0.274 -0.274 -0.101 -0.057 0.318 0.204 0.142 

3X103 0.147 0.040 0.032 -0.572 -0.434 -0.413 0.104 -0.170 -0.253 
-103 0.833 0.645 0.565 0.138 0.368 0.458 0.766 0.719 0.698 

-3X103 1.329 1.065 0.918 0.743 1.078 1.267 1.281 1.471 1.541 
α 2 4 6 -2 -4 -6 2 2 2 
M 2 2 2 2 2 2 2 2 2 
N1 0.5 0.5 0.5 0.5 0.5 0.5 2.5 5 10 

 
Table-2 Nusselt Number (Nu) at ηηηη = 1 

 
G I II III IV V VI VII 

103 0.714 0.329 0.192 -0.069 0.451 0.565 0.674 
3X103 0.557 0.337 0.265 0.144 0.447 0.550 0.647 
-103 0.887 1.096 1.201 1.348 0.833 1.264 1.489 

-3X103 1.080 1.166 2.149 2.448 1.329 1.485 1.637 
β 0.3 0.5 0.7 0.9 0.5 0.5 0.5 
α1 0.3 0.3 0.3 0.3 0.5 0.7 0.9 
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