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ABSTRACT

Photon echo-based quantum memory protocols presented over the last decade are primarily to solve the population 
inversion constraint in conventional photon echoes. In addition to population inversion, other major constraints 
limiting quantum memory applications are the low retrieval efficiency and short storage time, in which the importance 
of these factors has recently increased because of the challenges of the entangled qubit scalability and quantum 
repeaters. Here, I present, analyze and discuss the solution model for a Controlled Double Rephasing (CDR) echo 
protocol to satisfy non-inversion, near-perfect retrieval efficiency, and ultra-long storage time. In the CDR echo, a 
coherent Rabi pulse pair plays a key role for controlling both the ensemble phase and echo propagation direction, 
where the followings are the major results. Firstly, a counter propagating control Rabi pulse-pair-induced backward 
echo is free from echo reabsorption, resulting in a near perfect retrieval efficiency. Secondly, the control Rabi pulse 
pair induces an optical-spin coherence conversion like in the ultraslow light-based photon storage, resulting in a 
storage time extension up to spin decay time. Finally, the control Rabi flopping to a third state induces a π phase shift 
to the ensemble coherence, resulting in an emissive echo in the double rephasing scheme, where the π phase shift is 
due to optical-spin coherence conversion process. 

Conclusion: This study reveals that the control Rabi flopping in a three-level system applied to conventional photon 
echoes for storage time extension induces a π phase shift to the coherent ensemble.
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INTRODUCTION

Over the last two decades, quantum technologies have been employed toward potential applications of quantum 
cryptography [1-4] and quantum computers [5-7]. Although qubit scalability has recently been demonstrated for up to 
51 controllable qubits [8], entangled qubit scalability has still been remained as a problem, where the main constraint 
is quadratically increased decoherence with respect to the entangled qubit number [9]. Especially, quantum error 
corrections necessary for fault-tolerant quantum computing need hundreds or thousands of redundant qubits [6], where 
each quantum gate operation accumulates errors mainly due to individual qubit decoherence at each stage. Thus, both 
ultralong coherence and near unity retrieval efficiency of qubits become essential factors for the implementation of 
quantum technologies. In long-distance quantum communications based on quantum repeaters [10], the transmission 
(entanglement swapping) distance increases logarithmically as the qubit coherence time increases. According to the 
quantum repeater protocol, a quantum memory as an essential hardware component needs minute-order storage time 
for just a ~500 km entanglement swapping distance [11]. So far, such an ultra-long quantum memory has not yet been 
demonstrated. Here, the quantum memory should be compatible with optical photons for access to a free space or an 
optical fiber. Thus, an active control of decoherence in qubits has become one of the most important tasks in quantum 
technologies, where the ultra-long quantum memory with near perfect retrieval efficiency paves a road to both circuit- 
[5,6,12] and measurement-based [12,13] quantum computing as well as long distance quantum communications based 
on quantum repeaters [10,11]. 
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In light-matter interactions, light absorption strongly depends on the interaction cross section in the matter, where an 
ensemble has the benefit of a large cross section compared with a single atom, eliminating the use of an optical cavity 
[14]. In general, an ensemble whose broadening is inhomogeneous has a fundamental defect of ultrafast decoherence, 
preventing its use as a qubit. Photon echoes turn this defect into a benefit via a rephasing process, where rephasing is 
a reversible coherence evolution process activated by an optical π pulse [15]. This makes the photon echo effective 
in quantum information processing with both wide bandwidth and multimode functionality. This π pulse-induced 
reversible coherence evolution, however, results in population inversion, preventing photon echoes from quantum 
memory applications due to potential quantum noises by a spontaneous or stimulated emission process. Thus, 
modified photon echo schemes have been sought over the last decade for the use of the multimode and wide bandwidth 
functionality for quantum memories [16-30]. Here, the photon echo is simply a retrieved coherence burst of the initially 
excited coherence in the matter by a (quantum) light pulse. In modified photon echo methods such as Controlled 
Reversible Inhomogeneous Broadening (CRIB) [16,17], gradient echoes [18-21] and atomic frequency comb (AFC) 
echoes [22-26], population inversion has been removed by not using the π optical pulse [17]. However, Doppler shifts 
[16], spectral tailoring [18] or a long AFC preparation time [22] makes the system inefficient or impractical. To keep 
all benefits of photon echoes, quantum coherence control has recently been adapted for an ensemble phase control, 
especially for extending the photon storage time up to spin population relaxation time, T1 [27-30].

Double Rephasing (DR) in photon echoes offers the inherent benefit of having no population inversion. However, 
the coherence of the second DR echo becomes absorptive and thus impractical unless the echo phase is controlled 
to be extracted from the optically dense medium [31-33]. Therefore, the first DR echo must be erased or silenced; 
otherwise it affects the second echo due to coherence retrieval of the ensemble [31]. Here, it should be noted that 
recently observed DR echoes [31-33] violate the relation between absorptive coherence and echo emission, where 
echo emission is simply due to coherence leakage by Gaussian light pulses spread out over the transverse spatial 
domain [34]. 

To solve absorptive coherence in DR echoes [31-33], quantum coherence control in a three-level system has been 
adapted [28-30]. In a three-level system, resonant Raman pulse excited two-photon (spin) coherence results in a π/2 
phase shift with respect to the optical coherence [35]. This quarter wave relation induced by a control Rabi pulse is 
the origin of the ensemble phase control, which is the novelty of the present paper. Although stop-light experiments 
have been intensively studied for quantum memories in the 2000s [36-38], the phase shift in the coherence transfer 
between optical and spin states has not drawn much attention because there is no need for spin rephasing in cold 
atoms [36] or atomic vapors [37]. Spin inhomogeneity, however, is a critical matter for rephasing in solids, where 
the optical phase matching condition for stop light recovery cannot be met without it [38]. In the present paper, a 
new quantum memory protocol of controlled double rephasing (CDR) photon echoes is introduced, analyzed, and 
discussed for collective atom phase control in a solid ensemble for practical quantum information applications. For 
this, various modified photon echo schemes are reviewed, compared with each other, and discussed regarding the 
basic mechanisms, including ensemble phase control.

In Section A, both conventional photon echo and the first modified photon echo, i.e., CRIB are reviewed to elucidate 
the fundamental physics of coherent transients, where in CRIB the rephasing is accomplished by opposite Doppler 
shift-induced ensemble phase shift, resulting in no population inversion. In Section B, the origin of the ensemble phase 
shift by control Rabi flopping in a three-level system is analyzed and discussed, revealing the fundamental physics of 
coherence control in an ensemble. In Section C, the DR echo scheme is analyzed regarding ensemble phase evolutions, 
and its impracticality based on absorptive echoes is discussed; some related DR echo techniques are criticized as well. 
In Section D, one example of the dc Stark echo protocol in the modified DR echoes is analyzed and discussed in 
terms of the silencing mechanism of the first echo. In Section E, the CDR echo scheme is introduced, analyzed and 
discussed for the atom phase control, resulting in a near perfect, and ultra-long, multimode quantum memory protocol. 
For these, a full numerical approach is adapted to continuously trace individual atom phase evolutions in light-matter 
interactions. In addition to the detailed numerical calculations, intuitive analytical solutions are also sought using a 
simple phase evolution process obtained by the interaction Hamiltonian approach. For the atom phase control in CDR 
echoes, control Rabi flopping becomes the most important aspect of coherence control, satisfying both ultra-long 
storage and near perfect retrieval efficiency.

METHODS: NUMERICAL CALCULATIONS

For the numerical calculations presented in all figures, all decay rates are set to zero for clear visualization of individual 
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atom-phase evolutions. The density matrix approach is powerful in dealing with an ensemble medium for light-matter 
interactions, especially when continuously tracing the coherence evolutions of individual atoms. Thus, the phase 
evolutions can be clearly visualized for (modified) photon echoes, including CDR echoes. For the analytic approach, 
the simple phase term of each atom under a rotating wave approximation in the interaction Hamiltonian is used to 
show how each atom’s phase evolves in the time domain with and without interacting optical fields. The equations of 
motion of the density matrix operator ρ are determined by the Liouville-von Neumann equation:

[ ] { }1, ,
2

d i H
dt
ρ ρ ρ= − Γ



The following equations are time-dependent coherence terms of ijρ in a lambda-type, three-level system interacting 

with two resonant optical fields, obtained by solving the time-dependent Schrodinger wave equations, 
˙

i |  H=
∂ψ
∂τ

Ψ    
where H is the interaction Hamiltonian [39]:
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ρ ρ ρ ρ δ ρ γ ρ= − Ω − + Ω + − 		                                                                            (3)

Here Ω1 is the Rabi frequency of the resonant optical field (related to photon echoes) between the ground state 1

and the excited state 2 , Ω2 is the Rabi frequency of the resonant control field between the auxiliary ground state 3  

and the excited state 2  and δ1 (δ2) is the atom detuning from the resonance field Ω1 (Ω2). Instead of using Maxwell-

Bloch equations as is done in many photon echo studies with appropriate approximations, we focus on the coherence 
evolutions of individual atom phases in the time domain without any assumptions. Although complete light-matter 
interactions can be solved by combining both density matrix equations and Maxwell-Bloch equations, a complete 
solution has been limited to the short time scale of picoseconds in a personal computer environment, due to limited 
computing power [40]. 

For all numerical simulations, nine total time-dependent density matrix equations including equations (1)-(3) are 
calculated without any approximations. For this, an in homogeneously broadened lambda-type three-level optical 
system is chosen, where the optical inhomogeneous broadening and the interacting optical Rabi frequencies are chosen 
to be similar to the experimental parameters used in a rare-earth Pr3+ doped Y2SiO5 (Pr:YSO) [41]. The actual optical 
and spin decay rates of Pr:YSO are negligibly small down to ~kHz or less compared to the optical inhomogeneous 
broadening. Here, the optical inhomogeneous broadening of Pr:YSO can be experimentally manipulated via spectral 
hole-burning owing to the ultra-long spin relaxation decay time among three hyperfine states in the ground level. The 
optical inhomogeneous broadening is assumed to be Gaussian. In each figure, the optical inhomogeneous broadening 
is divided into a certain number (81-161) of atom groups with a 10 kHz spectral spacing, then each atom group is 
calculated in both the time and spectral domains with a different weight factor given by the Gaussian profile at a 
different detuning. Finally, all individual density matrix calculations are summed together for the overall coherence 
evolution in the time domain.

RESULTS AND DISCUSSION

Review of modified photon echoes for population inversion removal
Figure 1 shows the fundamental physics of the storage mechanism of conventional two-pulse photon echoes in a two-
level system, where the π optical pulse R reverses all inhomogeneously broadened atoms’ phase evolutions triggered 
by the data pulse D, resulting in a photon echo. For photon echoes, the medium must be inhomogeneously broadened 
and the data pulse spectrum must be within this broadening. Each optical pulse is assumed to be monochromatic 
with a rectangle pulse shape for simplicity. In Figure 1a, the initial coherence of the system is ρij=0, except for ρ11=1. 
Figure 1b shows the calculation result for Figure 1a, while Figure 1c is for a 3D picture of Figure 1b. Figure 1d is the 
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Figure 1: Storage mechanism in photon echoes. (a) A schematic of two-pulse photon echoes. The pulse arrival time for D (R) is t=5 (10) 
with 0.1 µs pulse duration. All decay rates are set to zero. Inset: Energy levels of inhomogeneously broadened atoms (FWHM: 340 kHz). (b) 
Numerical calculations for (a). The photon echo appears at t=15. (c) A 3D color map of (b) for all spectral distributions. (d) A Bloch vector 
diagram for a detuned atom pair at δj= ± 40 KHz. The mark ‘x’ is for the echo timing. (e) and (f) Details of (c) for rephasing during 10.00<t 
≤ 10.10. (g) Details of (c) for phase grating at t=5.1 (dotted, D), t=10.0 (blue, before R), t=10.1 (red, after R), and t=15.0 (dashed, echo). (h) 
Details of (c) for population grating (ρ22) at t=5.1 (dotted, D), t=10.05 (blue, middle of R). The green curve is for ρ11 at t=10.05 (middle of 
R). In the programming the time increment is 0.01 µs, where R is turned on at t=10.01 µs during 10.00<t ≤ 10.10. The time unit is µs. For 
calculations, 99.55% of the optical inhomogeneous width is divided into 81 groups with 10 kHz spectral spacing

coherence evolutions of a symmetrically detuned atom pair, where the evolution direction is determined by the atom 
detuning sign from the resonance frequency. The mark ‘x’ in Figure 1d indicates the photon echo generation position, 
resulting in a π phase shift. As shown in Figures 1e and 1g, inhomogeneously broadened atoms excited by D (π/2 pulse 
area) induce a phase grating in its spectral domain of the ensemble medium, where the modulation frequency of the 
phase grating is time-dependent determined by  1/(t−tD). By the π pulse of R, this phase grating gains a π phase shift 
due to population inversion in equation (1), resulting in rephasing (see the color change in Figure 1e).

( ) ( )*t tρ ρ→
This means that the coherence evolution direction is reversed by R, and thus a photon echo generates as the retrieved 
coherence for the D-excited ensemble. Thus, phase grating becomes the storage mechanism in two-pulse photon 
echoes. For multiple data pulses, the echo sequence is obviously reversed by the rephasing mechanism.

When the rephasing pulse R is evenly divided into two (delayed) pulses whose pulse areas are π/2 each, the conventional 
three-pulse photon echo scheme is satisfied [42]. In Figures 1e and 1f, the phase grating at t=10.0 µs just before R 
is now converted into a population grating by the first half R, at t=10.05 µs. In Figures 1g and 1h (blue curves), the 
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modulation frequency is calculated at 200 kHz 1)(( ) )Dt t −−  at t=10.0 µs;  t−tD=5 μs. When the second half R interacts, 
the population grating in Figure 1f switches to the phase grating with a π phase shift (see the color swapping along R 
in Figure 1e). Here, the important physics is that the coherence conversion between phase and population gratings is 
reversible. Thus, the population grating becomes the storage mechanism in conventional three-pulse photon echoes, 
as proven even for quantum memories based on atomic frequency comb (AFC) echoes [22-26]. Here, AFC uses a 
phase matched population grating constructed and accumulated by many consecutive weak two-pulse sets as a storage 
medium, where the AFC grating can last up to the spin population relaxation time. Because the data retrieval process 
in AFC echoes is actually initiated by the READ (the second half of R) pulse in the three-pulse photon echoes, the 
AFC storage time is limited by the phase grating. Unlike the three-pulse echoes, consecutive quantum data storage 
(this is actually consecutive READ process) in AFC echoes, therefore, results in the same echo sequence, where the 
multiple readouts are owing to the accumulated coherence [24]. This is the correct understanding of AFC echoes, 
where the storage time is too short to be applied for quantum technologies (Figure 1).

The first trial to solve the population inversion constraint in conventional photon echoes was done in both a Doppler 
medium [16] and a non-Doppler medium [17], referred to as CRIB. In the CRIB echo scheme of Figures 2a and 
2b, a counter-propagating control pulse set (C1 & C2) excites opposite Doppler shifts on the same moving atoms, 
where the opposite Doppler shifts resemble a symmetrically detuned atom pair as seen in Figure 1d. This symmetric 
detuning effect combined together with Rabi flopping-induced coherence conversion mimics the rephasing in photon 
echoes as shown in Figure 2c [27-30,35]. Thus, a photon echo without population inversion is achieved. In Figure 2f, 
the opposite Doppler shifts are visualized to show a different mechanism for the time reversal process in Figure 1d. 
The CRIB mechanism in Figure 2, however, needs to be modified when applied to a solid medium due to no Doppler 
effects [17]. Here, the population transfer to the third state 3  results in a storage-time extension up to spin T2, where 
spin T2 is similar to spin T1 if the thermal spin bath is frozen, e.g., by applying zero first-order Zeeman field [43] or 
dynamic decoupling [44]. Moreover, the backward control pulse set satisfies non-degenerate phase conjugation and 
results in a near perfect retrieval efficiency with a backward echo even in an optically dense medium [16,45] 
(Figure 2).

The idea of CRIB has been adapted to gradient echoes in a two-level solid medium [18], where reversed dc electrode 
pairs replace the control pulses in the CRIB technique of Figure 2a, resulting in the same effect as rephasing without 
population inversion. For this, spectral tailoring is a prerequisite for an optically dense and spectrally narrow solid 
ensemble. The following opposite gradient electric fields result in rephasing by reversing the sign of detuning in each 
atom. Unlike conventional photon echoes governed by Beer’s law, where there is a severe echo reabsorption problem, 
CRIB-based modified photon echoes offer very high echo retrieval efficiency [19]. In the gradient echoes, the high 
echo efficiency is obtained by using the reversed spatial gradient of the atom distribution so that there is no echo 
reabsorption along the longitudinal axis, as is the case for the backward echo in CRIB. For the storage time extension, 
the gradient echo is modified by adding a control pulse for the Raman scheme [46,47]. This modified gradient echo 
technique [20,21], however, never works in a solid ensemble due to spin inhomogeneity necessary for spin rephasing 
as demonstrated in both slow-light-based quantum memories [38] and resonant Raman echoes [46,47]. Moreover, the 
off-resonant Raman scheme never satisfies a complete population transfer between the Zeeman states, resulting in 
very low retrieval efficiency for multimode storage [24].

The third attempt to solve the population inversion problem in photon echoes was done by AFC echoes [22]. The 
AFC technique is based on population grating in a persistent spectral hole-burning medium composed of at least three 
energy levels. Unlike the three-pulse photon echoes whose grating is formed by consecutive two pulse pair, a repeated 
weak two-pulse train renders the population (grating) coherence accumulated, while removing the excited population 
to an auxiliary third state. Although such accumulated coherence in the ground state grating can enhance the echo 
efficiency based on Kerr nonlinear optics, there is always a trade-off between data absorption and echo reabsorption, 
resulting in limited retrieval efficiency far less than 50% [22-26].  Moreover, the AFC storage time is too short, where 
the storage time is determined by the optical phase grating of the ensemble (Figure. 1g) [48]. To extend the photon 
storage time in AFC echoes, the same control Rabi pulse pair has been adapted in a forward scheme [25]. However, 
the modified AFC echo scheme with the π-π control Rabi pulses is not correct because of the Rabi flopping-induced 
coherence inversion as shown in Figure 2e, resulting in an absorptive echo [16,17,46-49]. Here, the control Rabi 
flopping-induced coherence inversion has no relation with its propagation directions. 

The fourth technique for solving the population inversion problem in photon echoes was presented by CDR echoes 
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[29]. Because each π optical pulse in a two-level system induces a population inversion, double π pulses should fix the 
inversion problem of DR echoes. To work with the CDR echo protocol for quantum memories, however, the following 
requirements must be satisfied.

Requirement I: The first echo generated by the first π optical pulse must be killed (erased or silenced) in order to not 
affect the second echo.

Requirement II: The second echo must be emissive in collective atom coherence.

For the first requirement, a silent echo concept with on-demand phase mismatching between the data and the first 
echo has been firstly presented [31]. Because a photon echo is a direct result of a macroscopic (or collective) coherent 
transient effect, an easy way to destroy echo formation is simply to add phase turbulence or to violate the phase 
matching condition. Such a silent echo can also be obtained by using the dc Stark effect [50,51], magnetic effect-
based phase turbulence [52,53] or ac Stark effect [30,54]. Although the first echo e1 is removed, however, the second 
echo is still absorptive in refs. [31-33,54]. Like the controlled AFC, DR echoes cannot be extracted from the medium, 
where the echo observations are due to coherence leakage by the Gaussian rephasing pulses [34]. The all-pervasive 
misunderstandings of coherence in photon echoes and the modified methods mentioned above have motivated in the 
present paper, and I now present the quantum coherence control for a correct solution of DR echoes that satisfy the 
second requirement of the CDR echo.
Analytic expression for coherence inversion via control rabi flopping
Before discussing the CDR echoes, optical Rabi flopping in a resonant Raman system needs to be analyzed with a 
simple state vector approach using the Schrodinger wave equations. Here, our interest is how the Rabi flopping due to 
the control pulse C affects the ensemble coherence excited by a data pulse D (Figure 3a). The coherence conversion 
process between optical and spin states has already been analyzed as a key mechanism in the modified photon echoes 
for quantum memories [35,47]. In Figure 3, control Rabi flopping-affected optical coherence in a resonant Raman 
system is analyzed and compared with the results of a two-level system. The two-level system in Figure 3a is simply 
obtained by setting 23 130 and 0C γ γΩ = = = . For this, two different schemes are independently shown in Figure 3b. 
Figures 3c-3f show the numerical calculations for Figure 3b. In Part I, the analytical approach is performed using state 
vector notations in the time-dependent Schrodinger wave equations, and then it is compared with numerical results 
obtained by solving density matrix equations. In Part II, the physics discussed in Part I is applied to a real system of 
photon echoes and discussed for the coherence control of echo signals.
Part I
Via the data pulse excitation with Rabi frequency ΩD for the first part in Figure 3b, the state vector ( )|

D
tΨ  resulting 

from atom-field interactions is described by:

( ) 1t t| cos sin 2
2 2
D D

D
t iΩ Ω   Ψ = +  


+ 

  
					                                                                                 (4)

Thus, the optical coherence ρ12 ( )*
1 2c c=  is denoted by t tcos  t

2 2 2
D D

D
ii sin sinΩ Ω  − = − Ω 

 
, resulting in a Rabi oscillation 

with frequency ΩD (see the first parts of Figures 3c-3f). The excited state population ( )*
22 2 2 c cρ =  is described by 

( )( )2 t 1sin 1 cos t
2 2
D

D
Ω  = − Ω 

 
. Therefore, the coherence oscillation frequency exactly matches the population 

counterpart (see also the numerical results in Figures 3c and 3d.

For a three-level Raman system of Figures 3a (second part of Figure 3b), the state vector ( )  |
R

tΨ  is described for the 
optical Rabi frequencies ΩD and ΩC:

( )
2 2

2 2

t
2 t t| 1 sin 2 cos 1 | 3

2 2

C D
D CD

R

cos
t i

  Ω  Ω + Ω     Ω ΩΩ Ω  Ω       Ψ = + + −     Ω Ω Ω    
 
 

	                                                                        (5)

Here, ΩC is the Rabi frequency of the pulse C, and Ω is the generalized Raman Rabi frequency, where 2 2
D cΩ = Ω + Ω . 

For C DΩ Ω  satisfying the quantum memory condition, the control pulse ΩC (~Ω) in Equation 5 becomes a dominant 
factor:
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calculations, 99.55% of the optical inhomogeneous width is divided into 81 groups with 10 kHz spectral spacing.
Figure 2: Controlled reversible inhomogeneous broadening (CRIB) echoes. (a) and (b) Schematics of CRIB echoes. (c) Numerical results 
of (b). (d) A 3D plot of (c) for Reρ12. (e) A Bloch vector model for a detuned atom’s coherence evolution. (f) A Bloch vector model for a 
symmetrically detuned atom pair at δ= ± 50 kHz with Г21=Г23=5 kHz. The optical inhomogeneous width is 510 kHz (FWHM). For calculations, 
99.55% of the optical inhomogeneous width is divided into 121 groups with 10 kHz spectral spacing. The mark ‘x’ in (e) and (f) denotes the 
echo timing. All decay rates are zero, otherwise specified

 

D C

(a)

D C

Ra
bi

 fr
eq

(M
Hz

)

(b)

D

Ti
m

e 
(µ

s)

Atom detuning (100kHz)

Imρ12

(e)

(c) (d)

Co
he

re
nc

e 

Po
pu

la
tio

n 

Green: ρ33

Blue: ρ11

Dotted: ρ22Red: Reρ13

Blue: Imρ12

Time (µs)

Time (µs)

Atom detuning (100kHz)

(f)

Ti
m

e 
(µ

s)

ρ11−ρ22

Time (µs)

(8π)

Figure 3: Direct vs. indirect coherence excitations. (a) and (b) Schematics of atom-light interactions for direct (D only) and indirect (D and C; 
resonant Raman) coherence excitations. The pulse area of D and Raman is 8π each. (c) and (d) Overall coherence and population oscillations for 
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For calculations, a total 99.55% of the optical inhomogeneous width is divided into 121 groups at 10 kHz spacing
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Thus, the optical coherence ( )*
22 1 2c cρ = in a Raman system is proportional to

t
2
Disin Ω

− , which has a twice slower 

oscillation frequency compared with that in a two-level system (see the second parts of Figures 3c-3f). Note that the 
exact form of ρ12 can be derived from equation 5 as:
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2 2D C D
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t iρ

 Ω  Ω   Ω Ω + Ω         = −
Ω

,		  			                                                                (7)

where, ( )12 2
D tt i sinρ Ω Ω = −  Ω  

 for C DΩ Ω . On the other hand, the oscillation frequency of the excited state population 

ρ22 in equation 5 is the same as that in the two-level system (see also the dotted curve in Figure 3d). Thus, control Rabi 
flopping by C for the excited state atoms ρ22 induces a π phase shift in the ensemble coherence ρ12 in a three-level system. 
Such a coherence inversion has already been discussed in resonant Raman echoes [46,47]. In other words, control 

pulse-induced (Raman) Rabi flopping inverts the system coherence at every 2π of ( ) ( ): | |
R R

T t T tΩ Ψ + = − Ψ . 

This control Rabi flopping is also shown in the CRIB case of Figure 2e with Doppler effects. Here, it should be noted 

that the origin of the coherence inversion via control Rabi flopping belongs to the Raman coherence ρ13 as shown in 
Figure 3c [35].
Part II
What happens if the pulses D and C in the resonant Raman scheme of Figure 3b are temporally separated? Figure 
4 is an extension of Figure 3 for the delayed Raman scheme, which is helpful for understanding CDR echoes. In 
nonlinear optics, the time delay between the resonant Raman pulses must be shorter than the inverse of the optical 
inhomogeneous width [55]. This is the direct result of macroscopic coherence for the phase matching condition. 
However, in the coherent transients such as photon (spin or Raman) echoes, this rule is no longer effective, because 
rephasing is involved [56] (Figure 4).

The collective (overall) Raman coherence excitation ρ13 in a delayed scheme of Figure 4a is zero at all times due 
to the delay longer than the inverse of the optical inhomogeneous width. Thus, the ᵡ(3)-dependent nonlinear effect 
is also nullified. The collective (overall) optical coherence ρ12 decays as a function of the inverse of the optical 
inhomogeneous broadening [1/(510,000π)=0.6 µs]: optical FID. However, individual atoms are independent of the 
FID, but dependent on the optical homogeneous decay time (Figure 4b). Both optical and spin homogeneous decay 
rates are set to zero for simplicity. The optical coherence ρ12 of individual atoms oscillates at a twice slower speed in 
the delayed Raman system (Figures 4b and 4c). Thus, a 2π control pulse C induces coherence inversion (ρ12  -ρ12) 
as discussed in equations (5) and (6) (Figure 4d). This means that a 2π (4π) control pulse C applied to photon echoes 
results in an absorptive (emissive) echo, as shown in Figure 4e (see the dotted (solid) curve) [57]. Figure 4f represents 
that the single 4π pulse area of C in Figure 4e can be divided into two control pulses, C1 (π) and C2 (3π) [56,57] for 
the same result. The maximum delay of C2 from C1 is determined by the spin dephasing time [25,56]. There is always 
trade-off between the echo efficiency and storage time. In the CDR echo with the control Rabi flopping, the storage 
time can be extended by many orders of magnitude without nearly sacrificing the echo efficiency.

Although the 2π (or π-π) control pulse C in Figure 4g gives the same coherence inversion as in CRIB (Figure 2e), 
the rephased coherence evolution direction does not change in solids, resulting in an absorptive echo. This is the 
fundamental difference between Doppler [16] and non-Doppler [17] media in the application of control Rabi flopping. 
Thus, unlike the π-π control pulse sequence in a Doppler medium [16], the same control pulse sequence does not work 
in a solid medium [17,56,57]. In other words, the controlled AFC echo with a π-π control pulse sequence [25] in a solid 
medium results in an absorptive echo, where AFC is based on a single rephasing scheme of three-pulse photon echoes 
as discussed already  [24,47-49]. The proof of principle of the phase dependent absorptive echo was demonstrated in 
the resonant Raman scheme [46,47]. Thus, experimental observations of the controlled AFC echoes are simply due 
to imperfect rephasing by Gaussian control light whose spatial distribution in the transverse mode results in many 
different pulse areas [34]. These effects partially violate the atom phase recovery condition of 4nπ of the control 
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Rabi flopping in Figure 4h. Thus, any rephasing pulse area can generate a photon echo experimentally. Only matter 
is reduced echo efficiency [33]. To solve the absorptive echo problem in Figure 4g (see the mark ‘x’) [25], another 
2π control pulse is needed, as shown in Figure 4h. Full analytical expressions have also been presented [58]. With 
counter-propagating control pulses C1 (π) and C2 (3π), the echo direction kE is predetermined backward with respect 
to kD(kE=- kD +Kc1+kc2), satisfying near perfect retrieval efficiency ηe [16,45,59]. 

ηe=(1-e-d)2 , where d is the optical depth.

Ananytic expression for doubly rephased photon echoes: Understanding macroscopic coherence evolution
A doubly rephased two-pulse photon echo in a two-level system is analyzed in Figure 5. Initially all atoms are in 
the ground state 11 12|1 : 1; 0〉 ρ = ρ = . Figure 5b shows the numerical results, where the first echo e1 and the second 
echo e2 are opposite in terms of coherence as expected. Figure 5c shows the phase evolution of a δj-detuned atom. 
Here, the free evolution after each pulse is described by only the function of its detuning δj under the rotating wave 
approximation of the interaction Hamiltonian (unitary evolution): ( ) ( ), ji tr t r e δ±Ψ = Ψ . For simplicity, let tD=0 and tR-
tD ≡ T where tz represents the arrival time of pulse z. The detuning ± δj is for a symmetrically detuned ± jth atom pair 

from the line center of 2N contributed atoms in an optical inhomogeneous broadening; N
N−∆ = ∑ ρj gj  gj is a Gaussian 

weight factor. As shown in Figures 5c and 5d, the first π pulse R (c-d) rephases the individual coherence with a π phase 
shift at t=tR=T and individual atom phase evolutions continue to evolve in the t’ time domain (see the interval d-e): 
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Figure 4: Atom phase control in a delayed Raman system. (a) Time-delayed light-matter interactions for the resonant Raman scheme of Figure 3. 
The pulse area of D and C is 5π/2 and 8π, respectively. (b) Coherence evolution of a detuned atom in (a). (c) A 3D color map of (a). (d) Coherence 
inversion by a 2π control pulse C in (b). (e) Atom phase control by C. (f) Controlled photon echo with C1(π) and C2(3π). (g) and (h) Bloch vector 
models for a detuned atom (δ=40 kHz) of (e) and (f), respectively. The mark ‘x’ is for the echo timing. Optical inhomogeneous broadening is 510 
kHz (FWHM). All ρij(t=0)=0, except for ρ11(t=0)=1. All decay rates are zero. For calculations, a total 99.55% of the optical inhomogeneous width is 
divided into 121 groups at 10 kHz spacing
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( )
( )( )  j j j j

R
i t i T i t i t Te e e e

π
δ δ δ δ± ± ± −′ ′→ = 					                                                          (8)

where Rt t t′ = − . Thus, the first echo e1 is generated at 1 ' 2 'RR et t t T T T= = + = + under population inversion. The 
echo e1 is supposed to be erased so as to not affect the second echo e2 via phase mismatch [31] or controlled phase 
turbulence [30,32,33,50-54].

The second π optical pulse RR (e-f) in Figures 5c and 5d arrives after e1 at 1 2e Rt t t T T= = + =  (or ( )2 't t T T= − +′′ ), 
rephases the system coherence again for the first echo e1 and each atom phase evolution continues in the time domain 
''t  (see the interval after f):

( )
( )

( ) ( )( ) j j j j
RR

i t T i T T T i t i t Te e e e
π

δ δ δ δ± − + − ± ±′ ′ ′′ ′′ ′−→ = ,			                                                                            (9)

where (2' .' )t t T T ′= − +  

Thus, the second echo e2 is generated at ( )2 2 'et t T T= = + (see the mark ‘x’) with no population inversion (see the 
dotted curve in Figure 5b). This final echo e2, however, cannot be extracted from the medium because its macroscopic 
coherence is absorptive like the data pulse D. For better visualization, the experimental decay parameter γ is included, 
where the magnitude of e2 at point ‘x’ is smaller than the data excited coherence at point ‘b.’ This absorptive echo 

e2 is obvious, where double rephasing results in a 2π phase shift (i.e., no phase shift): ( ) ( ) ( )
1 2*t t''

R R
tρρ → →ρ′ . Like the 

controlled AFC [25] discussed in Figure 4, the DR echoes [31-33] are also absorptive and thus impractical [29]. The 
observations of the DR echoes [31-33] are also due to the non-uniform pulse area applied to each atom, resulting from 
the Gaussian light distributed in the transverse spatial mode perpendicular (x- and y-axis) to the beam propagation 
direction (z-axis) [34]. To fix the absorptive echo e2 in Figure 5b, CDR echoes are introduced in Section E (Figure 6).

dc Stark echoes in a double rephasing scheme: An absorptive echo problem
The dc or ac Stark echo represents a technique for erasing the first echo e1 in DR echoes by using dc or ac 
Stark-induced phase turbulence, respectively [30,54]. The dc Stark control in the DR scheme of Figure 5 has 
the advantage of mitigating drawbacks of the gradient echoes [33], in which a persistent spectral holeburning, 
ultradense and bandwidth-limited optical medium is no longer a prerequisite. The ac Stark echo [30] is much 
simpler in configuration and has more advantages compared with its dc counterpart, where the dc Stark effect 
was first observed in two-pulse spin echoes half a century ago [50]. Here, the spin echoes are the magnetic 
version of photon echoes [60]. In both cases, two unbalanced Stark pulses are inserted across the first rephasing 
pulse R1, followed by the second rephasing pulse R2. Here “unbalanced” stands for the silencing condition of 
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a total 99.55% of the optical inhomogeneous width is divided into 161 groups at 10 kHz spacing
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the first echo e1, where the second Stark pulse must come after e1 (Figure S4) [30,33]. In the dc Stark case, due 
to the ± ∆ω Stark splitting symmetry, the excited atoms (spins) by D are divided into two groups, resulting in fast 
and slow phase evolutions [61]. Thus, the phase accumulations between the two groups interfere with each other 
and cancel out under the specific condition of no echo generation [32,50,61]

(j)
12 12

(( ) )i i cose eωτ ωτ α ωτ+ −ρ = ρ +∑  

 . The silent echo condition for the first dc Stark shift is 
( )1 2 1 / 2DC n πΦ = ∆ωτ = − . Interestingly, this silencing echo condition is exactly the same as in the ac Stark 

case, but in a different mechanism [30].

Because the second dc Stark shift must be the same as the first, their gradient polarity also must be same each other, 
and thus, it does not affect the phase on the second echo e2. This means that the second echo e2 has the same coherence 
as the D excited ensemble coherence: absorptive echo. The analytic solution for the dc Stark echoes is:

( ) ( )
( ) ( )'

1 1 1 1 2 2 2 2

'
1 1 1 1 1 1 1 1

2 2
 ( )  

1 1   ( )

. j j

j j j

DC R
i t T i t Ti i i i

DC Ri t i t i t Ti i i i

e e e e e e

e e e e e e e

δ δω τ ω τ ω τ ω τ

δ δ δω τ ω τ ω τ ω τ

± − ± −+ ∆ − ∆ + ∆ − ∆ ′′ ′

± ± ± −− ∆ + ∆ + ∆ − ∆

→ + + + →

→ + → +
,                                                                      (10)

where, 't t T= − , ( )2 t 2TRt t t T= − = −′ +′ ′  and 1 2 2DC DC
π

Φ = Φ = . This result in equation (10) is the same as the 

doubly rephased echo e2 in equation (9) (see also the mark ‘x’ in Figure 5d for numerical calculations), whose 
coherence is absorptive, too. 

Here, the detuning signs applied to the atoms by the dc (ac) Stark splitting are predetermined for each atom in a solid, 
i.e., the Stark fields are applied to the same atom groups without intermixing in rare-earth doped solids [62].
Controlled double rephasing (CDR) echoes
To solve the three major constraints of population inversion, ultralow retrieval efficiency and short storage time 
in conventional photon echoes, the CDR echo protocol has been proposed for quantum memory applications [29]. 
However, the main purpose of the CDR echo is to solve the absorptive echo problem in DR echoes, as seen in Figure 
5. The solution model to overcome the ultralow retrieval efficiency and short storage time is given by Kerr (χ(3)) 
nonlinear optics induced by the control Rabi pulses in DR echoes [29]. Figure 6 represents the CDR echoes with the 
control pulse pair C1 and C2 added to the DR echo scheme, where quantum coherence control for the ensemble phase 
plays a key role in solving the absorptive photon echo dilemma in various modified photon echo schemes [25,31-33]. 
Unlike the π−3π control pulse sequence in a single rephasing scheme (Figure 4f) [57], a π−π control pulse sequence is 
required for the double rephasing scheme for emissive echoes (e2 in Figure 6b). 
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As shown in Figures 6c and 6d, an individual atom’s coherence of the DR echo e2 at point ‘f’ experiences a complete 
coherence inversion by the control Rabi pulse pair. Thus, the system coherence reaches point ‘h’ through the point 
‘g,’ where the point ‘g’ represents zero optical coherence: i T i Te eδ δ′ ′→ −  ; 1RR eT t t=′ − (Equation (9)). Here, the 
optical coherence at ‘g’ is completely transferred to the spin state by C1: 12 13 ρ ρ→ . The coherence evolution after 
C2 is denoted by ( )i t Te δ ′′± − ′− , 

where,

( )2 CT T Tt t + +′=′ −′ , R DT t t= − and 2 1C C CT t t= − .

This means that the coherence ρ12(t) of echo e2 becomes emissive without population inversion at ( )2 Ct T T T′= + +
(mark ‘x’ in Figure 6d).

It should also be noted that the zero optical coherence at point ‘g’ offers a storage time extension by TC, which is 
determined by the spin phase decay time [16,17,25,29,48,55,56]. The storage time extension up to spin population 
decay time T1 can be obtained via zero first-order Zeeman effects [43,63] or dynamic decoupling [44] through freezing 
the thermal spin bath. Even without magnetic fields or consecutive rf pulses for dynamic decoupling, the spin T1-
limited storage time can also be obtained by an optical locking technique [27,28], where the three-pulse photon echo 
scheme is required for the DR echo scheme. The control pulse set of C1 and C2 can also be positioned immediately 
after R but before e1 [58]. For the near unity echo retrieval efficiency, the counter-propagating C1 (π) and C2 (π) 
are used for the backward echo ( )2 1 22 e D C Ce = − + +k k k k [16,56]. The echo efficiency based on this Kerr type 
nonlinearity depends on the spin coherence ρ13, which is relied upon by the population transfer via the control Rabi 
pulses. Here, the rephasing pulses R and RR have nothing to do with the four-wave mixing processes for 2ek as 
experimentally demonstrated [56]. Thus, the backward echo in the CDR scheme has angle flexibility applicable to 
spatial multiplexing in a quantum interface, which is a great benefit in quantum network in the future.

Quantum 
Memory 
protocol

Mechanism Storage time Retrieval 
efficiency (%) Advantages Disadvantages Ref

CRIB (2001) -Doppler shift
-CCC Spin T2 ~100 No rephasing pulse

Atomic diffusion (atomic 
vapors)

(solids: rf rephasing)

[16]

[17]

Gradient 
(2008)

-Spectral tailoring 
-Two levels

-Three levels (Raman)

Optical T2

Spin T2 
(Raman)

<100

<100 (Raman)
No rephasing pulse

-Atomic diffusion 
-Short storage time (10 

ns~µs)
-Spectral tailoring

[18,19]

[20,21]

AFC (2008)
-Population grating

-Accumulated coherence
-Two levels

Optical T2

<50
For multiple 
storage: ~1

No rephasing pulse -Preparation time (~ms)
-Short storage time [22-24,26]

Controlled 
AFC (2010)

-Population grating
-Accumulated coherence 

-CCC
Spin T2

<50
-For mutimode: ~1 No rephasing pulse -Preparation time (~ms) [25]

†Optical 
locking (2009)

-Raman echo
-CCC

-Four levels
Spin T1 <100 Ultralong storage -Rephasing pulses

-Population inversion [27]

CDR (2-pulse) 
(2011)

-Two pulse echo
-CCC

-NDFWM
Spin T2 ~100 Ultralong storage Rephasing pulses [29]

CDR (3-pulse) 
(2012)

-Three pulse echo
-CCC

-NDFWM
Spin T1 ~100 Ultralong storage Rephasing pulses [28]

CASE (2017) -Two pulse echo
-NDFWM Spin T2 ~100 Ultralong storage Rephasing pulses [30]

*CRIB: Controlled Reversible Inhomogeneous Broadening
*CCC: Controlled Coherence Conversion (Controlled Rabi flopping)
*CDR: Controlled Double Rephasing
*AFC: Atomic Frequency Comb
*CASE: Controlled ac Stark echoes
*Operating temperature: ~4K if the medium is a rare-earth doped solid
* In rare-earth doped solids, optical (Spin) T2<ms. With Zeeman (or DD coupling), spin T2~spin T1 (s~min)
* In atomic vapors (e.g. Rb), optical (Spin) T2~10 ns (~µs). With paraffin coating, spin T2 >ms
* Raman (Controlled) Gradient does not work in rare-earth doped solids due to spin inhomogeneity [20,21]
*All are multimode in time domain
†The original Optical locking protocol needs to be modified by adapting 3-pulse CDR (discussed elsewhere)

Table 1: Photon echo-based quantum memory protocols
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CONCLUSION

Various modified photon echo protocols demonstrated for quantum memory applications were reviewed, analyzed, 
and discussed to give a clear understanding of collective atom phase control in controlled double rephasing (CDR) 
echoes. The ensemble phase control via control Rabi flopping between the excited state and an auxiliary third state 
was analyzed and discussed for the coherence inversion of a photon echo system in order to solve the problem 
of absorptive echoes in the double rephasing photon echo protocol. Several modified photon echo protocols such 
as controlled reversible inhomogeneous broadening, atomic frequency comb echoes, and dc/ac Stark echoes were 
reviewed to demonstrate the fundamental mechanisms (Table 1). Some critical misunderstandings such as absorptive 
coherence on the echo were discussed. The experimental echo observations in these wrong schemes are, however, due 
to both the Gaussian shape of control or rephrasing pulses in a transverse spatial mode as well as Beer’s law-dependent 
absorption strength in the axial mode. To solve the inherent absorptive echo problem in the double rephasing scheme, 
a Rabi pulse set was added for collective atom phase control of the ensemble solid via Raman coherence transfer. 
As a result, the CDR echo protocol gives near perfect, inversion-free, emissive, and storage time-extended photon 
echoes for quantum memory applications. Moreover, the backward CDR echo scheme offers a great benefit of spatial 
multiplexing for multimode spatial quantum interfaces in the future quantum networks. To avoid coherence leakage 
in an actual apparatus, firstly, the spatial transverse mode of the optical control pulses should be made uniform, and 
secondly, the Beer’s law-dependent absorption strength should be flattened (will be discussed elsewhere). Eventually 
CDR echoes will pave the road to not only quantum memories applicable to quantum repeaters for long distance 
quantum communications, but also to scalable qubits for fault-tolerant quantum computing, where the storage time 
can be extended up to the spin population decay time in the order of minutes in a rare-earth Pr3+ doped YSO crystal
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