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A B S T R A C T 
 

 

Over the past several decades advanced mathematics has implied itself 

into many facets of our day-to-day life. Mathematics is at the heart of all 

technologies. Arguably no technology has had a more positive and 

profound effect on our lives than medical imaging, and in no technology 

is the role of mathematics more pronounced or less appreciated. 

Biomedical imaging is very important for life sciences and health care. 

Many of the innovations in biomedical imaging are fundamentally related 

to the mathematical sciences. There are various imaging techniques 

which have simply transformed the practise of medicine and enabled a 

non-invasive diagnosis and surgical planning to guide surgery, biopsy 

and radiation therapy.  

This paper presents an overview on the development of various 

mathematical models, algorithms which are beneficial in imaging 

techniques such as Ultrasound, Computed Tomography (CT), Magnetic 

Resonance Imaging (MRI), Positron Emission Tomography (PET) and 

Single Photon Emission Computed Tomography (SPECT). A number of 

reconstruction algorithms have been studied with the help of various 

numerical techniques to serve the purpose. The paper presents an 

insightful observation into the emerging topics in this important inter-

disciplinary field.  
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INTRODUCTION

Biomedical imaging is very important 
for life sciences and health care. Many of the 
innovations in biomedical imaging are 
fundamentally related to the mathematical 
sciences (Jain, 2013). All algorithms developed 
for imaging techniques are based on rigorous 
mathematical formulations, methods and 
models. Mathematical analysis guarantees that 
the constructed algorithm serves the purpose. 

Software based on these techniques support the 
effective guidance for several image procedures 
such as biopsy, non-invasive surgery planning 
and radiation therapy. Researchers in image 
processing are regularly developing new tools in 
order to improve these techniques to make them 
more accurate so as to reduce the cost and 
negative health effect. In their study, Shepp & 
Kruskal (1978) compared different 
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reconstruction algorithms in imaging techniques 
with the use of ‘mathematical phantom’ which 
involves simulating a body section that can be 
mathematically described by a function. Smith 
(1985) derived new results on derivation of 
reconstruction formulas in his study. Further, 
Natterer (1999) studied the filtered back-
projection algorithm, Fourier reconstruction and 
found these as useful tools in image 
reconstruction. Even, Tabbone & Wendling 
(2002) developed a new utilization of the Radon 
transform and given other algorithm which 
differs from previous applications of 2D Radon 
transforms.  

In today’s era, medical science is 
incomplete without these imaging techniques. 
Biomedical imaging techniques help a physician 
to detect damaged tissues or growth of tumour in 
any part of the body non-invasively. This paper 
attempts to study the development of various 
mathematical models, algorithms which are 
beneficial in imaging techniques such as 
Ultrasound, Computed Tomography (CT), 
Magnetic Resonance Imaging (MRI), Positron 
Emission Tomography (PET) and Single Photon 
Emission Computed Tomography (SPECT). 
Broadly, the paper consists of two parts. The 
first part consists of brief history of different 
imaging techniques and the second part poses a 
survey of relevant methods and research efforts 
made in these imaging techniques. This paper is 
not only a study, but a detailed look into 
mathematics behind the various imaging 
techniques.  
 
ANTECEDENTS OF BIOMEDICAL 
IMAGING TECHNIQUES 

Imaging techniques are based on 
different physical principles and these 
techniques suit more or less to the particular 
organ of species under study. X-ray imaging, 
ultrasonography, Computed Tomography (CT), 
Magnetic Resonance Imaging (MRI), Single 
Photon Emission Computed Tomography 
(SPECT) and Positron Emission Tomography 
(PET) are some of the widely used imaging 
techniques now-a-days. Angenent et al. (2006) 
explained these techniques separately as detailed 
below: 
 

X-Ray Imaging   

X–ray imaging relies on the principle 
that an object will absorb or scatter X-rays of a 
particular energy quantified by attenuation 
coefficient (µ). The intensity changes because of 
the attenuation coefficient of the object. This 
depends on the electron density of the substance.  

 
Ultrasonography 

In this technique sound waves with high 
frequency are sent into the body with transmitter 
and they produce distinct echoes for different 
tissues and organs. These echoes are received by 
a receiver and sent to the computer which 
converts them into an image on a screen. 
Ultrasound supports to differentiate among soft 
and fluid filled tissues and is mainly useful in 
imaging the abdomen.  
 
Computed Tomography (CT) 

It is based on transmission of X-ray 
photons that are recorded on a computer by 
rotation from different angles around the body of 
the patient. This technique is boom to the 
imaging techniques. CT provides a picture of 
single thin slice through the body and it becomes 
possible with the help of Radon transform which 
re-constructs 3-D image from 2-D projections. It 
is beneficial in contrast among soft tissues and 
bones to augment the good quality image. 
Initially CT was developed for parallel beam, 
afterwards fan beam came into existence. Later 
on the cone beam CT was introduced. In this 
technique detector is placed on a complete 
circular ring and x-ray source is rotated around 
the object. Most of the time, spiral or helical CT 
technology is used by the medical professionals. 
 

Magnetic Resonance Imaging (MRI) 

Earlier, name of this technique was 
Nuclear Magnetic Resonance (NMR). It is 
beneficial for discovery of neural activities and 
it measures the flow of water molecules as white 
matter in the brain. In MRI soft tissue contrast is 
much better than X-ray. It is useful especially in 
Brain and spinal cord scanning. 
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Positron Emission Tomography (PET) 

Now-a-days PET scanner is also used 
for diagnosing the abnormality in the patient. 
This technique supports in attaining the 
radioisotopes with different rates of intake for 
different tissues as compared to MRI and CT 
and is also helpful in better soft tissue contrast 
such as change of blood flow in the body.  

Single Photon Emission Computed Tomography 
(SPECT)     

It is a nuclear medicine tomographic 
imaging technique using Gamma rays. It is also 
useful to present across sectional slices through 
the patient and provide 2-D view of a 3-D 
structure.  
Besides these techniques, Multi- model imaging 
scanners such as PET-CT, PET–MR, or SPECT-
CT are also used for reconstruction of better 
quality imaging. 
 
MATHEMATICAL MODELS IN IMAGING 
TECHNIQUES 

Mathematical models/methods are base 
for the construction of all imaging techniques. In 
CT and MRI imaging, Radon transform helps in 
reconstruction of function in the plane from its 
line integral or plane integral. Reconstruction 
algorithm such as Filtered Back Projection 
(FBP) is a technique based on Fourier slice 
theorem. It is a method for reconstruction from 
projection and is used in CT, PET and SPECT. 
In addition, Exponential radon transform is 
helpful in SPECT. Statistical techniques and 
algorithm such as maximum likelihood estimator 
are widely used in PET, SPECT and in X-ray 
CT. 

The Radon transform 

J. Radon, an Austrian mathematician 
introduced the theory of transform and integral 
operator. The Radon transform is widely 
applicable to tomography. In CT one deals with 
the problem of finding a function f(x) i.e. the 
tissue density at the internal point x is denoted 
by f(x) that provides a picture (tomogram) with 
which the physician can look the internal 
structure of the patient. The approximation of 

the measurement of internal structure of an 
object is called 2-dimentional. The Radon 
transform takes the function on the plane and is 
obtained by integral over all lines L is given by: 

  

one can determine line integral of the attenuation 
coefficient µ through the object by calculating 
level of its density. After making these 
calculations for the full rotation, it is possible to 
reconstruct the 2D slice of the object and 
compilation of multiple slices which allows 3D 
reconstruction of the object (Toft, 1996; 
Freeman, 2010).  

In the circular geometry of CT scans, it is 
suitable to parameterize lines ax+by=c in R2 to a 
set of oriented lines with radical parameters l t,θ 
in R2.  

Let the vector w = < cos θ , sin θ > 
perpendicular to the line ax+by=c and the vector               
ŵ = < - sin θ, cos θ > be parallel to this line. We 
get a vector equation in terms of t and θ for the 
line   l t,θ = tw+s ŵ  = < tcos θ , tsin θ > +s < -sin 
θ, cos θ >  

The line is same as ax+by=c with the parameters 
t and θ. 

Definition: Let f be some function in R2, 
parameterized over the lines l t,θ. The Radon 
transform Rf (t,θ) is defined as: 

 




 sststfdstRf
L

dcossin,sincosf),( 

This definition describes the Radon transform 
for an angle θ. It accurately models the data 
acquired from the cross-sectional scans of an 
object from a large set of angles, as in CT 
scanning its inverse can be used to reconstruct 
an object from CT data. The 3D Radon 
Transform based on Grangeat’s inversion 
formula is favourable for Cone beam CT (Clack 
& Defrise, 1994; Hiriyannaiah, 1997; Natterer & 
Ritman, 2002; Katsevich, 2003; Quinto, 2006). 

Unfiltered back-projection 

Let f be some function in R2, 
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parameterized over the lines l t,θ. The unfiltered 
back-projection B [f(t,θ)] is defined as 

B [f(t,θ)]= θ)dθ 

Unfiltered back-projection is a simple 
and logical computation, but is not a faithful 
representation of f. Unfiltered back-projection is 
not much effective for medical imaging 
applications because it portrays a blurry image. 
For inverting the Radon Transform, other 
method known as filtered back-projection is 
greatly applicable in medical imaging (Epstein, 
2008).  

Fourier transform 

The Radon transform is closely related 
to the Fourier transform, a method for which 
inverse is well-described by the Central Slice 
Theorem. In order to work in two-dimensional 
CT geometry, it is useful to include an extension 
of the Fourier transform into two dimensions 
(Natterer,1999).  
Definition: Let f(x; y) be an absolutely 
integrable function. Then the two-dimensional 
Fourier transform  is defined as: 
 f 

(r,w)=  

The Central Slice Theorem  

According to Epstein(2008), this 
theorem connects both of the two transforms i.e. 
Radon and Fourier. 
Theorem: Let f be an absolutely integrable 
function in this domain. For any real number r 
and unit vector w=(cosθ , sinθ)    
 we have the identity 

  f  (r,w)=  

From this theorem, we can see that the 2-
dimensional Fourier transform f (r,w)is 
equivalent to 1-dimensional Fourier transform of 

Radon transform . 

Filtered back-projection 

It is a technique of inversion of Radon 

transform and is most useful reconstruction 
algorithm used in CT. In this technique, X-Ray 
tube runs on a circle of radius r and is called fan 
beam scanning. This technique avoids the 
blurring artifact and lack of clarity as compared 
to unfiltered back-projections. Mathematically, 
this method can be used to reduce the level of 
radiation exposure required to achieve the same 
level of diagnostic accuracy (Natterer and 
Ritman, 2002). 
There are several methods for inverting the 
Radon transform, some of which use Fourier 
transforms, the Central Slice Theorem, and 
functional analysis (Nievergelt, 1986).  
      

 Circular Radon Transform 

This technique is used in two 
dimensional cases with unit circle 
(Ambartsoumian and Kuchment, 2005) 
The circular Radon transform of a function f is 
defined as: 

Rf (p,ρ)=  

where dσ(y) is the surface area on the sphere |y 
− p| = ρ centered at p ∈ Rd. 

Exponential Radon Transform 

This technique is very much helpful in 
SPECT (Kuchment & Lvin, 2013) and is defined 
as: 

 = g( ,s) =   dt 

Here μ > 0 is the attenuation coefficient. 

 Radon Inversion from Plane Integral 

It is a measure of reconstruction from its 
plane integral and mainly useful in NMR 
(Shepp, 1980).  The formulae to approximate 
plane integral of density f(x,y,z) of hydrogen 
nuclli at each point of an object is given by 

f(x,y,z) =  

Where F(x ,y ,z) = F(Q) 
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=  

And   means that u runs over the unit 

sphere S of unit vector with  the local 

element of area on S and being the value of 
t for which P (t , u) is the 2 Dimensional 
projection of f contains the point Q=(x ,y ,z). 

Further, Shepp (1980) proved that reconstruction 
from plane integral is as appropriate and 
accurate as reconstruction from line integral.  

Attenuated Radon Transform  
 

According to Natterer (2001); Boman & 
Stromberg (2004), it is very beneficial 
reconstruction algorithm of FBP for SPECT and 
is defined as:  

 f(x) dx 

Where dx stands for the restriction of 
lebesgue measure in R2  to  x .θ = s and 

 θ = ( ) And   

Also Da (x, ) =  

Where x  

Expectation Maximization (EM) Algorithm 

This algorithm is having a decent 
application in emission tomography and is based 
on Maximum Likelihood Estimators. This 
technique is useful in displaying physical 
difference between transmission and emission 
techniques. It provides a better quality of 
reconstruction. Lange & Corsan (1984); Hudson 
& Larkin (1994) has described this algorithm for 
SPECT.  They examined that the sequential 
processing of ordered subsets is very natural in 
SPECT, as projection data is collected separately 
for each projection angle (as camera rotates 
around the patient in SPECT) counts a single 
projection. As photon recordings on gamma 
cameras are discarded to provide counts yt on 

detectors indexed by t and the expected number 
of photon emission from pixel j is denoted by xj. 
where the image is defined by x = { xj :  j = 
1….j} then detector counts are poisson 
distributed with expected values µ = Ey = Ax. 
Where, A is the projection matrix with elements 
atj represents the probability that an emission 
from pixel j is recoded at t. The poisson 
likelihood function for all counts data following 
sub-iteration i is given by:  

L(y,x i+1) = L(y,x i   

 

The final two terms of the right hand 
side provide the increase in likelihood function 

of the data subset { } resulting from 
sub-iteration i+1. 

Statistical Image Reconstruction Algorithm 

In multi model imaging system such as 
PET-MR, PET-CT or SPECT-CT this algorithm 
of reconstruction gives better quality images. 
Chun et.al, (2012) described this technique for 
improved quality of image in SPECT. He used 
poisson log likelihood function for this purpose. 
The SPECT image x can be reconstructed 
iteratively from 

 where y is a measured 
sinogram data and L denotes the negative 
poisson log-likelihood function:   

L(y/x) =  
Where yi is the ith element of the measurement y 

such that   and A 

denotes the system model and  is the scatter 
component for the ith measurement. Further, 
Elbakri & Fesseler (2002) introduced statistical 
iterative reconstruction algorithm for X-ray 
attenuation to establish its effectiveness for bone 
and soft tissue objects. 

Wang & Qi (2015) proposed kernel 
based image model in which coefficient are 
estimated by Maximum Likelihood (ML) or 
penalized likelihood image reconstruction and 
they proved that the kernel method is easier to 
implement and provides better image quality for 
low-count data in PET image reconstruction as 
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compared with other methods. PET projection 
data y is well modeled as independent poisson 
random variable with log likelihood function:  

L(y/x) =  
Where M is the total no. of lines of response and 

the expectation  is related to the unknown 

emission image x through   = Px + r  with 
P being the detection probability matrix and r 
the expectation of random and scattered event. 
The Maximum Likelihood (ML) estimate of the 
image x is found by maximizing the Poisson log 

likelihood is given by         
 

Markov Random Field 

Bai and Leahy (2013) have given a 
model which is useful in combined PET and MR 
technologies and shown that the method has 
produced significant improvement in 
reconstructed image quality as compared to the 
FBP. This is a probabilistic image model with 
property of joint distribution in terms of local 
‘potential’ that describes the interaction between 
neighbor groups of voxels. The joint density is 
the form of a Gibbs distribution: 

                      P(λ)=  

Where, Z is the normalizing constant  is the 
parameter that determines the degree of 

smoothness of the image and U(  is the Gibbs 
energy function of the form: 

                     U(  

Where  are a set of potential function 

defined on a clique c C (set of all clique) 
consisting of one or more voxels all of which are 
mutual neighbors of each other. 

CONCLUSION 

It is evident from above discussion that 
all the methods are having a significant impact 
on biomedical imaging and it has been felt that 
new algorithms developed from time to time has 

transformed medical imaging. From the above 
discussion, it is quite notable that EM algorithm 
offered improvement in imaging techniques for 
SPECT and has provided a more quantitative 
image reconstruction for emission and 
transmission tomography. Statistical techniques 
addressed the shortcoming of FBP and can 
model such phenomena leading to more 
accuracy in imaging. Fourier based inversion 
formulas are used for reconstruction of a 
function from its line integral as this method is 
having an ability to reconstruct only a portion of 
the field of view whereas all other algorithm 
techniques reconstruct the entire field. 
All mathematical algorithms discussed above are 
beneficial from different aspects. The list is 
necessarily incomplete, new imaging modalities 
are frequently coming up. These novel 
techniques present interesting and new 
perspectives on the medical imaging problems. 
The goal of this study is not to determine the 
overall best method but to present a study of 
some mathematical models and techniques used 
in improving biomedical imaging. I hope this 
paper may support mediation between the 
mathematical models and medical imaging 
reconstruction.  
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