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ABSTRACT 
 
The analysis of the nature of flow structure in a slowly varying channel is presented. The solution procedure, 
proposed and implemented, is valid for any smooth geometry. The expansion of the stream function in terms of 

ελ R= , R the Reynolds number andε  the slope (small) parameter is considered. The coefficients generated in the 
expansion are universal (valid for any smooth geometry). This is accomplished using novel semi numerical schemes 
based on combinatorial concepts, as well as Mathematica. The converging Pade’ sums of the series, for sufficiently 
largeλ ,  gives analytic continuation of the series solution of  non-linear partial differential equation for a variety of 
slowly varying geometries and shed useful light on flow structure. Comparison of predicted values of shear stress 
based on numerical and experimental findings are given and in the present analysis these are valid for much larger 
values of λ . 
 
Keywords: Analytic continuation; Channel flow; Laminar boundary layer flow; Computer-extended-series; Pade’ 
approximants. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

Viscous fluid flows in nonparallel channels constitute one of the important sections in Fluid mechanics due to its 
relevance to a variety of engineering applications. The detailed analysis of such problems giving an understanding of 
velocity and shear distribution can be performed up to any degree of accuracy especially at small Reynolds number. 
The study at large and moderately large Reynolds number requires careful consideration of the mathematical 
equations describing such flows. A large class of flows can be considered by taking different geometries such as 
non-parallel channel walls, constricted / dilation channels, exponential channels, etc.  Flows in non-parallel channels 
require solution of non-linear partial differential equations wherein the geometry of the channel is coupled with 
relevant equations. There are large number of theoretical studies notably by Fraenkel [1-2], Blottner [3], Eagles and 
Smith [4], Pedley [5], Daniels & Eagles [6] where serious attempts are made in understanding flow structure in  non-
parallel channels using approximate and numerical schemes. In channel flows at moderately large Reynolds number, 
normally the perturbation expansion of stream function with 1/ Rε = enables one to solve partial differential 
equations in each approximation where in the first approximation corresponds to the solution of Prandtl’s boundary 
layer equations with suitable boundary conditions.  Van Dyke [7-8] gives an analysis of various problems of slow 
variations in continuum mechanics. Patterson [9-10] made systematic experimental investigation of flows in 
exponentially diverging channel flows.  In the present paper one shed the light on these studies using computer 
extended series analysis which in favorable cases yields useful information about flows such as separation, 
reattachment, etc. normally much beyond the regions / ranges of pure numerical studies. Recently, Badari Narayana 



Vishwanath B. Awati et al                                           Adv. Appl. Sci. Res., 2012, 3(4):2413-2423     
 _____________________________________________________________________________ 

2414 
Pelagia Research Library 

et al. [11] investigated the the oscillatory flow of Jeffrey fluid in an elastic tube.  Sreenadh et al [12] developed a 
mathematical model to study the steady flow of Casson fluid through an inclined tube of non-uniform cross section 
with multiple stenosis. Krishna Kumari  et al [13] studied the peristaltic pumping of a Casson fluid in an inclined 
channel under the effect of magnetic field 
 
We develop two new schemes for the solution of governing  non-linear partial differential equations. The nature of 
terms appearing in lower order solutions of a perturbation expansion of stream function enables one to propose a 
universal expansion scheme for the generation of subsequent higher order terms in the expansion. This can also be 
accomplished both using MATHEMATICA or novel semi numerical schemes based on combinatorial concepts and 
the algebra associated with partitions of n (Gupta [14]). Once a large number of universal    coefficients are 
generated, a variety of special techniques can be employed to sum the series for moderately large values of the 
Reynolds number by confirming to specific geometries.  In these types of studies Bujurke et al [15-19] were 
successful in accomplishing such an analysis based on computer-extended series solutions resulting into their 
analytic continuation much beyond the region of convergence. Bujurke et al [18] have also studied an analysis of the 
flow structure in a channel of variable cross section. A large class of problems in chemical engineering and fluid 
mechanics, the channel of variable cross-section has symmetry with respect to the axis. In the present study 
symmetric channel flow (of variable cross-section) is considered.   
 
This paper is outlined as follows. A comprehensive analysis pertaining to the usefulness of the computer extended 
series analysis in the study of non-parallel channel flows to predict possible separation and reattachment at 
moderately higher Reynolds numbers is given. In section 2 we present the relevant nonlinear partial differential 
equations and boundary conditions of the problem for general smooth geometries H(X). In section 3 we find lower-
order terms manually, which show a definite pattern for obtaining higher order terms using a computer. Two 
methods for the generation of computer-extended series solution for arbitrary but smooth geometries are explained 
in section 4. Later in section 5 we study specific geometries and generate a sufficiently large (universal coefficients 
valid for any smooth geometries (15 effective terms)) number of terms in the series expansion. In section 6 we 
present discussion and conclusions based on the derivation given in earlier sections and indicate directions for 
further investigations.           
 
2.     FORMULATION OF THE PROBLEM 
The steady laminar flow at moderately high Reynolds number through a channel of slowly-varying shape is 
considered.  Far upstream the channel walls are parallel. The fluid is viscous and incompressible and far upstream 
the velocity is described by Poiseuille flow. Let x, y be dimensionless rectangular Cartesian coordinates in the 

streamwise and transverse directions, respectively, and let the walls of the channel be given by ( )XHy ±=  as 

shown in Fig.1 (Eagles and Smith (1980)), where εxX =  and 1<<ε  is slope parameter and 2H is the channel 
width. Also,ψ , (u, v) and p are the stream function, velocity vector and the fluid pressure, respectively. These are 

made dimensionless with respect to M, M/a and ( )2 2M aρ  respectively, where 2M, a and ρ  are the volumetric 

flow rate per unit width of the oncoming Poiseuille flow, the undistributed channel width, and the fluid density, 
respectively. The oncoming flow is (Eagles and Smith [4]) 
 

 3 2 24
3 4 ,     3 12 , 0,    ,   

p
y y u y v as x

x R
ψ ∂→ − → − = → − → −∞

∂
                                              (1) 

Let R be the Reynolds number defined as 

MR ν=                                                                                                                                (2) 

where  v  is the kinematic viscosity.The equations governing ψ , u, v and p are the Navier-Stokes equations, and the 

boundary conditions are the no-slip conditions at the walls and downstream conditions of  boundedness as x → ∞ . 

Equations are non-dimensionalized so as to ensure 1ψ = ±  on the upper and lower walls respectively. Let 

ελ  R=  then for 1<<λ , ( 0,  )Rε → → ∞  steady flow may be taken for which Poiseuille flow forms the first 

approximation and it is O(1). Suppose λ  to be chosen a constant and is independent of ε  in the limit 0ε → and 

R→ ∞ . The stream function ( ),X yψ ψ= is the first approximation and satisfies nonlinear boundary layer 
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equation, so that, the steady flow deviates nonlinearly from Poiseuille flow and which includes the separation and 
reattachment of the flow. Let ψ  be a function of X and y.  The asymptotic expansion of the solution is (Eagles and 

Smith [4]) 
 

( ) ( )2,X y Oψ ψ ε= +                                                                                                      (3) 

and the associated velocities and pressure are 

( ) ( )2,  u U X y O ε= +                                                                            (4) 

( ) ( )3,  v V X y Oε ε= +                                                                     (5) 

( ) ( )2  p P X O ε= +                                                                                                           (6)  

 
The lowest order streamwise momentum equation reduces to boundary layer equation    

yyy
y xy x yy

dp

dx

ψ
ψ ψ ψ ψ

λ
− = − +                                                           (7) 

 
The relevant boundary conditions are  

( ) ( )3 2, 3 4 ,     , 3 12 ,    yy y y y yψ ψ−∞ = − −∞ = − ( ) 124
dp

dx
λ −−∞ = −                                       (8)                                                        

1,      0       - ( )

1,      0          ( )  
y

y

at y H X

at y H X

ψ ψ
ψ ψ

= − = = 
= = = 

                             (9)        

                                                  

Also, symmetric conditions on the channel centreline y = 0 are 0 yyψ ψ= = . Upon introducing, 

( ) ( )         ,y and F X
H X

η ψ η= =                                                                          (10) 

 
the governing equations and boundary conditions are transformed to (Eagles and Smith [4])  

( ) 2 3 0x x

dH dp
F H F F F F F H

dX dxηηη ηη η η ηλ λ + − + − =  
                                     (11) 

( ) ( ), 1 1,        , 1 0F X F Xη± = ± ± =                                                                 (12) 

( )

( )

3

1

3 1
,

2 2

24

F

dp

dx

η η η

λ −

−∞ = − 

−∞ = −


                                                               (13) 

 
Differentiating equation (11) with respect to η  once, we obtain 

( )( )2 0x x

dH
F F F H X F F F F

dXηηηη η ηη ηηη η ηηλ λ+ + − = .                                                          (14) 

 
3.    SOLUTION OF THE PROBLEM 
For small λ , a solution of (14) is considered in the form  

0
1

( ) ( , )n
n

n

F F F Xη λ η
∞

=

= +∑                                                                                       (15)  
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Substituting (15) in the equation (14) and equating like powers of η  on both sides, we get equations of various 

orders whose solutions are 

0 3
0

3 1
( )  :               

2 2
O Fλ η η= −            

satisfying boundary conditions  

               

0 0( , 1) 1,       ( , 1) 0   

For  1,  2,  3    

( , 1) 0   ,       ( , 1) 0   

the solutions satisfying the boundary conditions
for 1 aren n

F X F X

n

F X F X n

η

η η

± = ± ± = 
= 
± = ± = ≥

         (16)             

                        

1 0

3 5 7
0

( ) :       ( ) ( )

1
               ( ) (15 33 21 3 )

280

O F L H X

L

λ η

η η µ η η

′=

= − + −
    

2 2
2 1 1

3 5 7 9 11
1

3 5 7 9 11
2

( )  :  ( )( ( )) ( ) ( ) ( )

115 4111 57 51 3 1
( )

17248 215600 2800 4900 1120 4400
1213 3279 3 69 1 1

( )
4312000 4312000 400 19600 1120 12320

O F L H X L H X H X

L

L

λ η η

η η η η η η η

η η η η η η η

′ ′′= +

= − + − + −

= − + − + − +

   

 

 3 3 2
3 3 4 5( )  :   ( )( ( )) ( ) ( ) ( ) ( ) ( )( ( )) ( )O F L H X L H X H X H X L H X H Xλ η η η′ ′ ′′ ′′′= + +      

           

   
208000

1

1601600

127

1232000

603
          

19600

31

60368000

184599

4312000

16493

156956800

439093

39239200

33897
)(L

151311

9753
3

η−η+η−

η+η−η+η−η=η

 
3 5 7 9

4

11 13 15

67279 49559 28529 68609 167
 ( )

71344000 17836000 8624000 30184000 156800
3 23 1

              
9625 457600 320320

           

L η η η η η η

η η η

= − + − + −

+ − +  

3 5 7 9
5

11 13 15

58859 341483 1 19449 11
( )

39232000 784784000 2000 6036800 78400
67 1 9

            
1724800 160160 22422400

L η η η η η η

η η η

= − + − +

− + −
                                    (17) 

Higher order terms can be obtained which involve lengthy / tedious algebra. 
 
4.    COMPUTER-EXTENDED SERIES 
The higher order terms nF  involve more functions of X and an increasing number of terms of powers of η . 

Enumerating the functions of X is possible since for each n, different functions involve all the possible combination 

of n functions H  and its derivatives multiplied together (e.g., 2F  involves 
2,HH H′′ ′ ; 3  F involves 2 3,    ;H H H H H and H′′′ ′ ′′ ′  4F  involves 
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3 2 , ,ivH H H H H′ ′′′ 2 2 2,   H H H H H′′ ′ ′′ and 4H ′ ).   Therefore, the functions of X in nF  span all the members 

of the set ( ) ( )0 1 2 nn aa a a
njG X H H H H′ ′′= − − − − − −                                                      (18) 

 

where all ma  are non negative integers satisfying the diophantine equations 

0 1

n n

m m
m m

a ma n
= =

= =∑ ∑                                                                             (19)    

 
Thus, the number of such combinations satisfying (19), is p(n) and the integer j in (18) runs from 1 to p(n), where 
p(n) is the number of partitions of n. For any n partitions can be generated systematically in a variety of ways but the 
algorithm given by Gupta [14] is the most systematic. Thus we propose an elegant series expansion scheme with 
polynomial coefficients, which we find useful and efficient in the calculation of higher approximating terms of the 

series. We consider nF  as a finite double sum of known functions of X and η ,  

as
( )

1

( , ) ( ) ( )
P n

n nj njk
j k

F X G X tη η
=

= ∑ ∑  

which can also be written as  
2

2 2 2 1
( , )

1

( , ) (1 ) ( )
n

k
n n k

k

F X g Xη η η −

=

= −∑                                      (20)  

 

where  , ( )n kg X  can in principle be expressed as sums of ( )njG X . Equation (20) automatically satisfies the 

boundary conditions at η = 1± . Substituting (20) into (14) and equating coefficients of various of power of η  on 

both sides, a recurrence relation can be obtained for generating , ( )n kg X . The algebra associated with the 

calculations of universal functions , ( )n kg X , k= 2, 3, . . . 2n. j=1, 2, 3, . . .p(n) can be ordered if this is associated 

with the algebra of matrices formed with each row corresponding to partitions of a given number. This is an elegant 

algorithm in the collection and positioning of constants appearing in terms in the products ( , ,x xF F F F F Fη ηη ηηη η ηη  

etc) which enables one to proceed from n = m to n = m+1, in the perturbation analysis, for m= 1, 2, 3, . . . . .  The 
coefficients estimated using this algorithm compare accurately with ones obtained  using MATHEMATICA. 
 
5. SPECIFIC GEOMETRIES AND UNIVERSAL COEFFICIENTS  
We have calculated 15 effective terms. To this order the numbers of universal coefficients calculated are 

15

1

4 m
m

mp
=

=∑ 33956 which are valid for any smooth geometry H(X). For n=1,    ( )1,1( ) 1,1,1 ( )g X a H X′= ,      

( )1,2( ) 1,1,2 ( )g X a H X′=  where  
280

15
a(1,1,1)= 3

a(1,1,2)
280

= − . 

 

For n=2,  ( ) ( )2
2,1( ) 2,1,1 ( ) 2,1,2 ( ) ( )g X a H X a H X H X′ ′′= +  

( ) ( ) ( ) ( )2 2
2,3 2,4( ) 2,3,1 ( ) 2,3,2 ( ) ( ), ( ) 2,4,1 ( )  2,4,2 ( ) ( )g X a H X a H X H X g X a H X a H X H X′ ′′ ′ ′′= + = +

where  
115

(2,1,1)
17248

a = ,  
1213

(2,1,2)
431200

a = − , 
309

(2,2,1)
53900

a = − ,  
853

(2,2,2)
431200

a = , 

137
(2,3,1)

61600
a = − , 

9
(2,3,2)

12320
a = − , 

1 
(2,4,1)

4400
a = − ,  

1 
(2,4,2)

12320
a = . 

 
Similarly for n=3, we have terms of the type 
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( ) ( ) ( ) ( ) ( ) ( )3 2
3,1( ) (3,1,1) (3,1,2) (3,1,3)g X a H X a H X H X H X a H X H X′ ′ ′′ ′′′= + +  

( ) ( ) ( ) ( ) ( ) ( )3 2
3,2( ) (3,2,1) (3,2,2) (3,2,3)g X a H X a H X H X H X a H X H X′ ′ ′′ ′′′= + +  

- - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - -- - - 

( ) ( ) ( ) ( ) ( ) ( )3 2
3,6( ) (3,6,1) (3,6,2) (3,6,3)g X a H X a H X H X H X a H X H X′ ′ ′′ ′′′= + + . 

 
Universal coefficients (a(n, k ,j), j =1, p(n) ), k=1,. . .2n) can be generated by ordering the algebra of finding 
coefficients in the products of terms in equation (14) after substituting (20) into this equation. It is an excellent 
algorithm wherein this algebra is associated with the algebra of matrices (which are formed with the partition of m) 
and proceed from n = m to n = m+1 in the expansion. The skin friction at the channel walls is represented by the 
series 

( ) ( )2
0 0  

1

(  ) (  1) (  1)n
n

n

u
H X at y H X F at F F at

y ηη ηη ηητ η λ η
∞

=

 ∂  = = ± = = ± = = + = ±   ∂   
∑        (21) 

                   
and the velocity profiles are given by  

0
1

n
n

n

HU F F Fη η ηλ
∞

=

= = +∑                                                                                  (22)     

    
For application of results, the specific channels considered one those of (Eagles and Smith [4] and Patterson [9-10]) 

( ) ( )1

1
1 tanh

2
H X X= +                                                                                             (23) 

and       

( )2 1  XH X eβ= + , 4.0=β .                               (24) 

 
 

 DISCUSSION AND CONCLUSION 
 
Computer extended series solution and other techniques are applied for the analysis of moderately high Reynolds 
number incompressible flows in plane channels whose width varies slowly in the streamwise direction. The main 
objective of this semi- analytical method is to see the possibility of enhancing the domain of validity of the series. In 
the low Reynolds number perturbation expansion, a large number of coefficients are generated. The complex 
expressions involving elementary functions appear in successive terms of the series and as such it is possible to 
calculate these up to 15 terms. To this order there are 33956 non-zero coefficients. These coefficients in turn give 

universal polynomials ( )nL η  which determine ( ),  nF X η (n=0, 1, 2,. . ., 15). The series solution enables the 

prediction of skin friction ( ) 1F atηη η = −  for different λ  and these are shown in Fig. 3 for a specific geometry. 

The velocity profiles represented by Fη  for different values of X are shown in Figs. 4 to 6. The analytic 

continuation of  the region and validity of series can be achieved by taking various Pade’ approximants (Appendix 

1). The coefficients of the series (21), representing skin friction Fηη (at η = -1) are decreasing in magnitude but 

have no regular sign pattern of sign pattern. The Domb-Sykes [20] plot (Fig. 2) after extrapolation, confirms the 
radius of convergence of the series to be λ =2.28601, 5.85754 and 6.09069 for X = 0, 3 and 5 respectively.  The 
direct sum of the series for skin friction is valid only up to the radius of convergence. We use Pade’ approximants 
for summing the series which give a converging sum for sufficiently large λ  (up to λ =30) whereas Eagles and 

Smith [4] could analyze the problem only up to λ =15.5. The flow described in this manner experiences separation 

from the channel wall at X = 0.05 for λ  = 30. There is a critical point cP , in the flow region where flows in its 

neighborhood reverse and cP  is found to shift downstream for larger values of λ . The skin friction at η = -1 

decreases through zero at a point of separation and later converging (reattachment) flow is observed. 
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For the geometry given by1( )H X , the coefficients of the series (23) representing velocity profiles are decreasing 

in magnitude but again have no regular sign pattern. We use Pade’ approximants for summing the series and thereby 
the region of validity of the series is enhanced and these are shown in Figs. 4 to 6. 
 

For the exponential diverging channel geometry 2( )H X  the calculated values of wall shear stress as a function of 

X (for different values of λ ) are shown in Fig 7. A direct sum converges only for very small values of λ (and all 

negative values of X) but Pade’ sums are found to converge for much larger λ . There is a symmetric shear 

distribution up to around λ =3.2 for small X  beyond  which it is asymmetric and separated flow is observed. 
Patterson [9-10] has also observed similar flow structure while conducting experiments of flows in an exponentially 
diverging channel.  
 
Appendix 1: 
Pade' approximants 

The basic idea of Pade’ summation is a process of replacing power series 
n

nC ε∑  by a sequence of rational 

fractions of the form 

( )
∑

∑

=

==
M

n

n
n

N

n

n
n

N
M

B

A
P

0

0

ε

ε
ε                                                                               (i) 

 
Without loss of generality take B0 =1. We determine the remaining  (M+N+1) coefficients 

MN BBBBAAAA ,,,,,,,,, 321210 −−−−−−  so that first (M+N+1) terms in Taylor series expansion of ( )εN
MP  

match with first (M+N+ 1) terms of the power series n
nC ε∑ . The resulting rational function ( )εN

MP   is called 

Pade' approximant. For constructing Pade' approximants the full power series representation of a function is not 
necessary, only just the first (M+N+1) terms are sufficient.The Pade’ approximants perform an analytic continuation 
of the series outside its radius of convergence. With branch points it extracts a single-valued function by inserting 
branch cuts which it simulates by lines of alternating poles and zeros. Pade’ approximant has been particularly 

successful in analysing series. Baker [21] has proved that diagonal Pade’ approximants [N, N] ( )( )εN
NP  are 

invariant under group of Euler transformations. 
 

The Pade’ approximants [N, M] with PM ≥  converge uniformly to ( )εf  as ∞→N  everywhere inside the 

circle of meromarphy (the circle meromarphy is the largest circle such that all non regular points within it are at 

most poles or multiple poles of ( )εf ) except at the points within a small circle on the poles. Throughout this 

region the rate of convergence is extremely rapid. Numerical experiments on various known functions show that 
convergence of the vicinity of the poles is still very fast even when M < P.  There are many methods for the 
construction of Pade’ approximants. One of the efficient methods for constructing Pade’ approximants (diagonal 

( )εN
NP  and off diagonal ( )εN

NP 1+  in the Pade’ table) is recasting of the series into continued fraction form and the 

truncating at various values of n to get required Pade’ / rational approximant.A continued fraction is an infinite 

sequence of fractions whose (N+1) member of ( )εNf  has the form (Bender and Orszag [22]) 
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( )

ε
ε

ε
εε

N

N

D

D
D

D
f

+

+
+

=

1

D
             

------    

1
1

1-N

2

1

0                                                                      (ii) 

The coefficients ND  are determined by expanding the terminated continued fractions ( )εNf  in a Taylor series and 

comparing the coefficients with those of the power series to be summed. An efficient procedure for calculating the 

coefficients ND  of the continued fraction may be derived from the algebraic identities of Bender & Orszag (1987), 

(8.4.2a) to (8.4.2c)). In contrast to representations by power series, continued fraction representations may converge 
in regions that contain isolated singularities of the function to be represented, and in addition the convergence is 

accelerated. Based on these ND , we get terminated continued fractions of various orders (Bender & Orszag [22], 

(8.4.7),(8.4.8a),(8.4.8b)). The truncation of the continued fraction in (ii) yields the successive members of the Pade’ 

sequence ......,,,, 2
2

1
2

1
1

0
1

1
0 PPPPP  . This Pade sequence has some remarkable convergence properties when all 

the continued fraction coefficients are nonnegative. In general 
 

 ( ) ( ) ( )εεε N
N

N

N
N

N
PfP

∞→+∞→
≤≤ limlim 1   

or        ( ) ( )εε N
N

N

N
N

N
PP

∞→+∞→
= limlim 1                                                                            (iii) 

 
 

 
 

Fig. 1. Channel geometry H1(x) and non-dimensional co-ordinates. 
 
 
 
 
 

 
 
 
 
 
 



Vishwanath B. Awati et al                                           Adv. Appl. Sci. Res., 2012, 3(4):2413-2423     
 _____________________________________________________________________________ 

2421 
Pelagia Research Library 

Fig. 2 Domb-Sykes plot for F ηηηηηηηη  at η η η η =-1 for H 1 (X)
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Fig. 3 Dimensionless wall shear magnitude ( F ηηηηηηηη  at η η η η = -1) as a function of X  for H 1 (X) 
(converging Pade' sums) for various values of λλλλ
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Fig. 4  Velocity Profiles for HU ( =F ηηηη ) (converging Pade' sums) versus η η η η 
for H 1 (X)  for different values of     λλλλ  at X =0
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Fig. 5 Velocity Profiles HU( =F ηηηη )(converging Pade' sums) versus ηηηη  for
H 1 (X)  for different values of     λλλλ  at X =1.488
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Fig. 6 Velocity Profiles for HU ( =F ηηηη ) (converging Pade' sums) versus η η η η 
for H 1 (X) for different values of λλλλ  at X =-1.512
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Fig.7 Dimensionless wall shear magnitude as a funct ion of X  for H 2 (X) 
(converging Pade' ums) for the various values of ���� dotted lines 

correspond to     η η η η =1 and solid lines correspond to η η η η =-1 
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