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ABSTRACT

The analysis of the nature of flow structure inlawdy varying channel is presented. The solutioncedure,
proposed and implemented, is valid for any smoabnetry. The expansion of the stream function rimgeof
A = Ré&, R the Reynolds number afidhe slope (small) parameter is considered. Théficients generated in the
expansion are universal (valid for any smooth gaoyheThis is accomplished using novel semi nuraéschemes
based on combinatorial concepts, as well as Matligaalhe converging Pade’ sums of the seriessiificiently
largeA , gives analytic continuation of the series salntof non-linear partial differential equation farvariety of
slowly varying geometries and shed useful lighflow structure. Comparison of predicted values loder stress
based on numerical and experimental findings avewgiand in the present analysis these are validrfoch larger
values of/ .

Keywords: Analytic continuation; Channel flow; Laminar boungdayer flow; Computer-extended-series; Pade’
approximants.

INTRODUCTION

Viscous fluid flows in nonparallel channels congtt one of the important sections in Fluid mechawiage to its
relevance to a variety of engineering applicatidr®e detailed analysis of such problems giving ragetstanding of
velocity and shear distribution can be performedaupny degree of accuracy especially at small Bielfgnnumber.
The study at large and moderately large Reynoldwbau requires careful consideration of the mathimalat
equations describing such flows. A large classl@f/$ can be considered by taking different georestsuch as
non-parallel channel walls, constricted / dilat@rannels, exponential channels, etc. Flows inpemadlel channels
require solution of non-linear partial differentiafjuations wherein the geometry of the channebigpled with
relevant equations. There are large number of #tieat studies notably by Fraenkel [1-2], Blottfig}, Eagles and
Smith [4], Pedley [5], Daniels & Eagles [6] wherxisus attempts are made in understanding flovctra in non-
parallel channels using approximate and numeridadimes. In channel flows at moderately large Relsmoumber,
normally the perturbation expansion of stream fiemcwith £ =1/Renables one to solve partial differential
equations in each approximation where in the &pgiroximation corresponds to the solution of Pigtdbundary
layer equations with suitable boundary conditiovan Dyke [7-8] gives an analysis of various proteof slow
variations in continuum mechanics. Patterson [9-ftde systematic experimental investigation of #oim
exponentially diverging channel flows. In the metspaper one shed the light on these studies wsinguter
extended series analysis which in favorable caselslsy useful information about flows such as sejpama
reattachment, etc. normally much beyond the regioaages of pure numerical studies. Recently, Badiarayana
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et al. [11] investigated the the oscillatory floWXeffrey fluid in an elastic tube. Sreenadh efl2] developed a
mathematical model to study the steady flow of Gadkiid through an inclined tube of non-unifornoss section
with multiple stenosis. Krishna Kumari et al [18ldied the peristaltic pumping of a Casson fluican inclined
channel under the effect of magnetic field

We develop two new schemes for the solution of gung non-linear partial differential equationsiernature of
terms appearing in lower order solutions of a pedtion expansion of stream function enables ongrépose a
universal expansion scheme for the generation lodesguent higher order terms in the expansion. ddmisalso be
accomplished both using MATHEMATICA or novel semimerical schemes based on combinatorial conceplts an
the algebra associated with partitionsmf{Gupta [14]). Once a large number of universalcoefficients are
generated, a variety of special techniques cannijgoyed to sum the series for moderately large eslof the
Reynolds number by confirming to specific geomstrieln these types of studies Bujurke et al [15-d@fe
successful in accomplishing such an analysis based¢omputer-extended series solutions resulting their
analytic continuation much beyond the region ofvegence. Bujurke et al [18] have also studiedralyais of the
flow structure in a channel of variable cross settiA large class of problems in chemical engimegeand fluid
mechanics, the channel of variable cross-sectian dyanmetry with respect to the axis. In the prestatly
symmetric channel flow (of variable cross-sectismonsidered.

This paper is outlined as follows. A comprehensiwalysis pertaining to the usefulness of the coemextended
series analysis in the study of non-parallel charloevs to predict possible separation and reattaeft at
moderately higher Reynolds numbers is given. Itice2 we present the relevant nonlinear partiffiecéntial
equations and boundary conditions of the problengémeral smooth geometrielX). In section 3 we find lower-
order terms manually, which show a definite pattéon obtaining higher order terms using a compufero
methods for the generation of computer-extendei@seplution for arbitrary but smooth geometries explained
in section 4. Later in section 5 we study speafometries and generate a sufficiently large (usalecoefficients
valid for any smooth geometries (15 effective te)rmumber of terms in the series expansion. Inicedd we
present discussion and conclusions based on theatien given in earlier sections and indicate diiens for
further investigations.

2. FORMULATION OF THE PROBLEM

The steady laminar flow at moderately high Reynamenber through a channel of slowly-varying shape i
considered. Far upstream the channel walls ar@lelrThe fluid is viscous and incompressible &dupstream
the velocity is described by Poiseuille flow. bety be dimensionless rectangular Cartesian coordinateke

streamwise and transverse directions, respectiegly,let the walls of the channel be given ¥y= +H (X) as
shown in Fig.1 (Eagles and Smith (1980)), whefe= X& and £ <<1 is slope parameter araH is the channel
width. Also,J, (u, v) andp are the stream function, velocity vector and thé& fpressure, respectively. These are
made dimensionless with respectMp M/a and (,OM Z/az) respectively, wher@M, a and O are the volumetric

flow rate per unit width of the oncoming Poiseuiflew, the undistributed channel width, and theidldensity,
respectively. The oncoming flow is (Eagles and 8r#{)

¢ - 3y-4y’, u- 3127 v= 0, %_,—2—; ,aS X —00 (1)

Let Rbe the Reynolds number defined as

R:MA 2)

where V is the kinematic viscosity.The equations governjfigu, vandp are the Navier-Stokes equations, and the
boundary conditions are the no-slip conditionshatwalls and downstream conditions of boundedagsg — oo.
Equations are non-dimensionalized so as to eng#re £1 on the upper and lower walls respectively. Let

A =Re thenford <<1,(¢ - 0, R — ) steady flow may be taken for which Poiseuille fliams the first
approximation and it i©(1). Supposel to be chosen a constant and is independet af the limit & — Oand
R — oo. The stream functiord// =l//(X, y)is the first approximation and satisfies nonlinbaundary layer
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equation, so that, the steady flow deviates noatigefrom Poiseuille flow and which includes thepaeation and
reattachment of the flow. Ley be a function oK andy. The asymptotic expansion of the solution is (Eagnd

Smith [4])

w=y(X,y)+0(e) 3)(

and the associated velocities and pressure are

u=U(X,y)+0(¢?) ()
v=eV(X, y)+ de) )

+o{e’) ®)
The lowest order streamwise momentum equation esdtecboundary layer equation

-0, = B ‘”A "

The relevant boundary conditions are
d ;
(-0, y)=3y-4y’, ¢, (-,y)=3- 12 , E’Z(—oo) =-24171 @)

w=-1, ¢,=0at y= H Q(}

_ _ _ ©)
¢=1 ¢,=0a y=HK)

Also, symmetric conditions on the channel centegjir O are{/ =0 :l//yy. Upon introducing,

n:%(x) and ¢ =F(Xp) (10)
the governing equations and boundary conditionsraresformed to (Eagles and Smith [4])
F,m+)|[ (F)pF— F)Fpu) + 3:'( } AH33')3(— (12)
F(X,#1)=+1, F (X#})=( (2)
(=c0,77) =§/7 -—;/73
0 B (13)
&(—00) =-24)
Differentiating equation (11) with respectp once, we obtain
WHZ/‘(;H FF, +AH (X)(F,,F.—FF,,)=0. (14)

3. SOLUTION OF THE PROBLEM
For small A, a solution of (14) is considered in the form

F =R+ A"F.(X,n) (15)
n=1
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Substituting (15) in the equation (14) and equatikg powers of/) on both sides, we get equations of various
orders whose solutions are

3 1
o(1% ==pn-=nt
(1% 0 =10
satisfying boundary conditions

F(X,21)=%1, F, Xt1= 0
Forn =1, 2, 2he solutions satisfying the boundarnddions (16)
F,(X,£)=0 , F, &+ 1F Ofornxzlare
O() : R=L@HX)
1
L F—=- 15— 3g°+ 28— /8

280

O(A%) : K =L(7)(H (X)*+ L@)H(X)H'(X)

= M5, AL o 57 5 5L, 3, 1.
SO = 10487 " 215608 T 2800 aodb T 1130 adbo

1213 3279 , 3.5 69, 1., 1.
43120000 4312000 a0b = 19600 1120 1232

Ly(7) =~

O%) : K=L@)H (X)) + Le)HX)H (X)H (X)+ L (7)(H(X)Y H'(X)

_ 33897 439093 , 16493 , 184599 , 31

L,(n) = n- n"+ n’ - n'+ n
39239200 156956800 4312000 60368000 19600
603 ., 127 ., 1

- n-+ n- - n
1232000 1601600 208000

9

L )=~ 67279 - 49559 , 28529, 68609 , 167,
4 71344000 17836000 8624000 30184000 156k
3 11 23 13 1 15
+ - +
9625/ 457600 = 320320
_ 58859 341483 1 . 19449 | 11 ,
Ls(7) = - (A + 8o~ 7'+ 1
39232000° 78478400 2000 6036800 7840 a7

—_ ,7 + 813 _ 815
1724800 16016 22422400
Higher order terms can be obtained which involvigthy / tedious algebra.

4. COMPUTER-EXTENDED SERIES

The higher order termd=, involve more functions oK and an increasing number of terms of powers/jof
Enumerating the functions ofis possible since for each n, different functiomsolve all the possible combination
of n functions H and its derivatives multiplied together (eg. F, involves

HH" H'?: F, involvesH H"H H'H" and H'3: F, involves
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HPHY,H?H'H", H’H"?,H H'?H" andH'*). Therefore, the functions &fin F_ span all the members
of the sethj (X) —H*H&2H"®2 -————— HMa (18)

where alla, are non negative integers satisfying the diophargiquations

n n
> a,=> mg=n (19)
m=0 n=1

Thus, the number of such combinations satisfyir),(s p(n) and the integeirin (18) runs from 1 t@(n), where
p(n) is the number of partitions af For anyn partitions can be generated systematically inreetsaof ways but the
algorithm given by Gupta [14] is the most systemalihus we propose an elegant series expansiomschéth

polynomial coefficients, which we find useful anffi@ent in the calculation of higher approximatitgrms of the

series. We considel, as a finite double sum of known functionsxoénd 7,
P(n)

asF, (X,) = 3, Gy (X)2 13 ()

which can also be written as

2n
F.(X.n) = (=m0 g0 (X) (20)
k=1

where g, ,(X) can in principle be expressed as sumsGf(X) . Equation (20) automatically satisfies the
boundary conditions af =% 1. Substituting (20) into (14) and equating coeffits of various of power off on
both sides, a recurrence relation can be obtaimdgéneratin@nyk(X). The algebra associated with the

calculations of universal functiongn’k(X) ,k=2,3,...2n. =1, 2, 3,.. .p(n)can be ordered if this is associated
with the algebra of matrices formed with each rmsresponding to partitions of a given number. Tiian elegant
algorithm in the collection and positioning of ctarés appearing in terms in the produdts €., F, . F.,F F,
etc) which enables one to proceed from mto n = m+1, in the perturbation analysis, for=1, 2, 3, ... .. The
coefficients estimated using this algorithm comareurately with ones obtained using MATHEMATICA.

5. SPECIFIC GEOMETRIES AND UNIVERSAL COEFFICIENTS
We have calculated 15 effective terms. To this ortfe numbers of universal coefficients calculate

15
42 mp, =33956 which are valid for any smooth geometfx). Forn=1,  ¢,,(X)= a(1, 1,]) H' (X),

m=1

_ , 15 __ 3
0.,(X)=a(1,1,2 H (X)where a(1,1,1F 2ac a(1,1,2F= 580"
For n=2, 9,,(X)=a(2,1,) H? (X)+ d 2,1,2 H (X)H (X]
Ga(X) =823 H* (X)+d 23 PHXH (X), g, XF @241H Xy @ 242HKH ¢
where a(2,11)= 1> a21,2)=-—213 4221)=-30  40.22=_853
17248 431200 53900 431200
a2,31)= 0 a2.32)=-—2 a@4l=-———,  a2,42)=—~_
61600 12320 4400 12320

Similarly for n=3, we have terms of the type
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05,(X) = aBLOH?*( X)+ a@B,L,2H( X) H( X H( R+ a@B.L3IH( X H( ¥
0s,(X) = 3,2 DH?( X)+ a3,2,2H( X) H( X H( X+ a@,2,3H( X H( ¥

Us6(X) = a3,6,DH*( X)+ a(3,6,2H( X) H( X H( X+ a@3,6,3H( ¥ H( N

Universal coefficientsg(n, k ,j), j =L, p(n) ), k=1,. . .2) can be generated by ordering the algebra of riopdi
coefficients in the products of terms in equatidd)(after substituting (20) into this equation.idtan excellent
algorithm wherein this algebra is associated withdlgebra of matrices (which are formed with thdifion of m)
and proceed from = mto n = m+1 in the expansion. The skin friction at the chanmalls is represented by the
series

0

H %7, (X) :(g—;](at y=+H(X))=F (atp=+1)= :( By + O A" E,,,,J(am:ﬂ) (21)

n=1

and the velocity profiles are given by

HU =F,=F, +Y A"F, (22)
n=1
For application of results, the specific channelssidered one those of (Eagles and Smith [4] atiRBan [9-10])
Hl(X):1+%tani(X) (23)
and
H,(X)=1+8¢, f=04. (24)

DISCUSSION AND CONCLUSION

Computer extended series solution and other teabsigre applied for the analysis of moderately iRglynolds
number incompressible flows in plane channels wheisih varies slowly in the streamwise directiorheTmain
objective of this semi- analytical method is to #eepossibility of enhancing the domain of validiff the series. In
the low Reynolds number perturbation expansionargel number of coefficients are generated. The &mp
expressions involving elementary functions appeastccessive terms of the series and as suchpitssible to
calculate these up to 15 terms. To this order theee33956 non-zero coefficients. These coeffisiemtturn give

universal polynomialsl, (/7) which determineF, (X, /7)(n:O, 1, 2,. . ., 15). The series solution enables the
prediction of skin friction Fm7 (at n= —1) for different A and these are shown in Fig. 3 for a specific gegme

The velocity profiles represented bl}” for different values ofX are shown in Figs. 4 to 6. The analytic
continuation of the region and validity of ser@s be achieved by taking various Pade’ approxisn@ppendix
1). The coefficients of the series (21), represgnskin friction Fm7 (at 7= -1) are decreasing in magnitude but

have no regular sign pattern of sign pattern. TlenB-Sykes [20] plot (Fig. 2) after extrapolatiomnfirms the
radius of convergence of the series tode2.28601, 5.85754 and 6.09068 X = 0, 3and5 respectively. The
direct sum of the series for skin friction is vatidly up to the radius of convergence. We use Papgfoximants
for summing the series which give a converging $amsufficiently large A (up to A =30) whereas Eagles and
Smith [4] could analyze the problem only upAo=15.5. The flow described in this manner experiersegmration

from the channel wall aX = 0.05 for A = 30. There is a critical poinP,, in the flow region where flows in its

neighborhood reverse anE{ is found to shift downstream for larger values Af The skin friction at/= -1
decreases through zero at a point of separatioteégrdconverging (reattachment) flow is observed.
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For the geometry given H'yll(X) , the coefficients of the series (23) representielpcity profiles are decreasing

in magnitude but again have no regular sign pati&em use Pade’ approximants for summing the sandshereby
the region of validity of the series is enhanced #ese are shown in Figs. 4 to 6.

For the exponential diverging channel geomdti)g(X) the calculated values of wall shear stress asetifin of
X (for different values ofl ) are shown in Fig 7. A direct sum converges onlyviery small values ol (and all

negative values oK) but Pade’ sums are found to converge for muchelad . There is a symmetric shear

distribution up to around] =3.2 for small X beyond which it is asymmetric and separated fisvobserved.
Patterson [9-10] has also observed similar flowcttre while conducting experiments of flows inexponentially
diverging channel.

Appendix 1:
Pade' approximants

The basic idea of Pade’ summation is a procesemifcing power serie’ Cnsn by a sequence of rational
fractions of the form

Ri(e) = f2— 0

Without loss of generality takeB, =1. We determine the remaining M<{N+1) coefficients
ALALA-——A,,B,,B,,B;,———,B,, so that first 1+N+1) terms in Taylor series expansion B(T (é‘)

match with first I+N+ 1) terms of the power serieE Cné‘" . The resulting rational functiowll_-’MN (8) is called

Pade' approximant. For constructing Pade' appraoxsntne full power series representation of a foncts not
necessary, only just the firgti¢-N+ 1) terms are sufficient. The Pade’ approximantsqrerfan analytic continuation
of the series outside its radius of convergenceh\Wianch points it extracts a single-valued fuorctby inserting
branch cuts which it simulates by lines of alteintpoles and zeros. Pade’ approximant has beeicydarly
successful in analysing series. Baker [21] has guothat diagonal Pade’ approximants, [N (PNN (8)) are

invariant under group of Euler transformations.

The Pade’ approximant®[ M| with M = P converge uniformly tof (é‘) asN — oo everywhere inside the
circle of meromarphy (the circle meromarphy is keest circle such that all non regular pointshimitit are at
most poles or multiple poles of (5)) except at the points within a small circle on th@es. Throughout this

region the rate of convergence is extremely rafiomerical experiments on various known functionsvstthat
convergence of the vicinity of the poles is stiéry fast even whe < P. There are many methods for the
construction of Pade’ approximants. One of thecedfit methods for constructing Pade’ approximadtagonal
PNN (6‘) and off diagonaIF’NN+l (8) in the Pade’ table) is recasting of the series @aintinued fraction form and the
truncating at various values of n to get requiredié® / rational approximant.A continued fractionais infinite

sequence of fractions whod¢H1) member offN (E) has the form (Bender and Orszag [22])
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fo(e)= (ii)

Dy.€
1+D,¢
The coefficientsD,, are determined by expanding the terminated coetirftactions fN (5) in a Taylor series and
comparing the coefficients with those of the poweries to be summed. An efficient procedure focudating the

coefficients DN of the continued fraction may be derived from éhgebraic identities of Bender & Orszag (1987),

(8.4.2a) to (8.4.2¢)). In contrast to representetiby power series, continued fraction represeamtatiay converge
in regions that contain isolated singularities fed function to be represented, and in additioncthrevergence is

accelerated. Based on theBg\‘ , We get terminated continued fractions of variougers (Bender & Orszag [22],
(8.4.7),(8.4.8a),(8.4.8b)). The truncation of tlemtinued fraction in (ii) yields the successive rbens of the Pade’

1 0 1 1 2 . .
sequenceP,, P, P, P, P ...... . This Pade sequence has some remarkable coneergevperties when all
the continued fraction coefficients are nonnegatingyeneral

im Pl (e)< £(e) Im P e)

or lim P, (e) = lim Py () (i)

v

Fig. 1. Channel geometrH,(x) and non-dimensional co-ordinates.
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Fig. 2 Domb-Sykes plot for  F ,, at g =-1for H;(X)

Fig. 3 Dimensionless wall shear magnitude ( F ,, at 77 =-1) as a function of X for H, (X)
(converging Pade’ sums) for various values of A
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Fig. 4 Velocity Profiles for HU ( =F , Wconverging Pade’ sums) versus
for Hy(X) for different values of A at X=0
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Fig. 5 Velocity Profiles HU( =F ,)(converging Pade’ sums) versus g for
H,(X) for different values of A at X=1.488
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Fig. 6 Velocity Profiles for HU ( =F ;) (converging Pade’ sums) versus  #
for Hy(X) for different values of A at X=-1.512

Fig.7 Dimensionless wall shear magnitude as a funct  ion of X for H,(X)
(converging Pade’ ums) for the various values of ~ @dotted lines
correspond to 7 =1 and solid lines correspondto g =-1
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