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INTRODUCTION

Cheminformatics is the mixing of

ABSTRACT

Objective: A Cheminformatics based 3D-QSAR study was
performed to test and validate the reliability of SOMFA tool for
Drug Design.

Methods: For development of a statistically reliable model and
validation of SOMFA tool, 27 molecules belonging to
triarylimidaozle scaffold were taken from the reported studies and
processed through SOMFA.

Results: During SOMFA investigation, best model obtained using
atom based alignment showed good cross-validated correlation
coefficient r’ey (q°) (0.6911), non cross-validated correlation
coefficient r* values (0.7197), low standard estimation of
estimation S (0.5541) and high F-test value (51.3441), showing
good statistical correlation.

Conclusion: The models thus obtained were accepted by various
statistical parameters and thus validate the robustness and
reliability of SOMFA tool for drug design.

Keywords: Cheminformatics, Computational Sciences, Drug
Design, 3D-QSAR, SOMFA.

and drug design for storing, retrieving,

information resources to transform data into
information and transformation of
information for the decision making in the
area of drug design and devlopement.'
Cheminformatics involving application of
computational and information tools for a
range of problems in the field of drug design.”
It is a interconnection of computer science
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searching of information along with data.’> A
wide variety of computational tools are
available for studying behavior of molecules
which has been proved to be meaningful for
designing  novel  molecules.!  Three-
dimensional quantitative structure-activity
relations (3D-QSAR), is emerged as a
powerful Cheminformatics technique which
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changed the area of drug discovery. QSAR
studies helpful in providing structural features
in the form of molecular descriptor that can
be useful for optimizing drug molecules.

A validated statistically significant
correlation between structural feature and
corresponding activity obtained using QSAR
studies.”® The approach is based on the
assumption that changes in measured or
computed molecular features can be
correlated with variations in biological
activity. A reliable, robust statistically
validated QSAR model helped in studying the
structure activity relationships of any class of
molecules, but also provides insight at
molecular level about the lead molecules for
further developments.” Thus, 3D-QSAR
analysis provides a useful framework which is
used as a reliable approach in drug design.*"'

A novel three 3D-QSAR technique
known as Self-organizing molecular field
analysis (SOMFA) developed by Robinson et
al. having similarity in concept with both
molecular similarity studies and comparative
molecular field analysis (CoMFA)."* B 1tis a
new technique based on molecular properties
such as electrostatic and steric potential. It has
been developed to tackle the alignment
problem from which all 3D-QSAR
methodologies suffers. This technique allows
the possibility of aligning the training
molecules as an integral part of the model
derivation process and of aligning prediction
molecules to optimize their predicted
activities."

Recently, there are various studies in
the literature involving use of SOMFA
software for 3D-QSAR studies for the
purpose of refinement of molecular
architecture  for  different classes of
molecules.”®  In present study, it was
considered of interest to carry out a
Cheminformatics based 3D-QSAR study to
test and validate the reliability of SOMFA
tool for Drug Design.

Validation Procedure

Data Set

For development of a statistically
reliable model and validation of SOMFA tool,
27 molecules belonging to triarylimidaozle
scaffold were used from the reported studies
and processed through SOMFA. " Due to
presence of variety of chemical structure and
potency profile, 3D-QSAR was performed on
this series. Data set was rationally divided
into training and test set. The training data set
consists of 22 molecules which are used in
model deriving process. The tests set consist
of remaining 5 molecules having evenly
distributed  activities for testing the
predictability of the developed models. Table
1 depicted the representation of all the
molecules (training and test set). The criteria
for selection of test data set have been based
on structural similarity of the molecules with
the training set.

Biological Activities

The activity used for developing
QSAR model has been used by taking -log of
the measured ICsy (M) against glucagon
receptor as plCso, which arranges the data in a
linear manner.

Computational Modeling and Alignment

Data set of the triarylimidaozle
derivatives were framed using Chemdraw
running and were initially subjected to
molecular mechanics (MM?2) algorithm for
energy minimization and minimized until the
root mean square (RMS) gradient value
reaches a value.””" The local minima
structure of the most active molecule is used
as the reference structure.”’ The alignment
was done using local minima structure of the
most potent compound”” used as the reference
compound by atom based alignment
technique where centroid of atoms were used
for alignment shown in Fig. 1. The structures
were superimposed on a template structure of
low energy depicted in Fig. 2).
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SOMFA Models

A 40x40x40 A grid model instigated
at (-20,-20,-20) with a resolution of 0.5 A,
was framed around the united molecules.””
*The statistical analysis was carried out using
PLS algorithm in conjugation with leave one
out (LOO) cross-validation to develop the
final model. Results of PLS analysis
generated using optimum  components
produces the final models without cross-
validation for measuring the statistical
importance of the model. The result from a
cross-validation analysis was expressed as r’c,
(q°) value. The r’y (q°) can take up values in
the range from 1, suggesting a perfect model,
< 0 where errors of prediction are greater than
the error from assigning each compound
mean potency of the model.”

Fischer Statistics (F-Test), another
useful statistical measure used to check
reliability of the developed 3D-QSAR model.
Higher value of F indicated higher statistical
significant model.** %’

RESULTS AND DISCUSSION

SOMFA tool was evaluated using a
training data set comprises of 22
triarylimidazole derivatives to correlate with
corresponding biological potential using PLS
statistical technique in Microsoft excel.
SOMFA calculation was done to develop the
descriptors in the form of shape and
electrostatic models. The involvement of
shape and electrostatic model to QSAR
equation is 52% and 48%, respectively which
indicated that the electrostatic contribution
is of a slightly lower importance than
shape contribution (52%) (Table 3). The
SOMFA 3D-QSAR electrostatic potential and
shape model has been presented in the form
of 3D-Grids.It was earlier reported in the
literature that 0.5 A grid spacing produced a
good correlation equal to 1.0 A grids. Further
increase in resolution has produced small
increase in model quality but not enough to
warrant the extra computational time.

Therefore, in present SOMFA investigation,
grid spacing of 0.5 A was investigated to
develop final 3D-QSAR model. The best 3D-
QSAR model obtained using atom based
alignment  showed  good  correlation
coefficient cross-validated r’ey (q°) (0.6911),
non cross-validated correlation coefficient 1’
values (0.7197), low standard estimation of
estimation S (0.5541) and high F-test value
(51.3441), showing  good  statistical
correlation.

Table 2 showed the predicted and
observed activities of the training data set
molecules using SOMFA model. The
predicted and observed activities of molecules
in the dataset showed a good linear
correlation and moderate difference Fig. (3,
5).

The SOMFA model of the test dataset
of 5 molecules also described in Table 2.
The predictive efficiency was also confirmed
using good non cross-validated prediction
correlation coefficient (test set) * values
(0.6731). Almost all test dataset molecules
set showed good correlation between
predicted and observed activities Fig. (4,5).

The SOMFA shape and electrostatic
potential have been generated in the form of
3D- grids (Fig. 6, 7) using resolution of 0.5
A. The master grid maps were used to display
the contribution of shape and electrostatic
potential. The master grid maps gave a
direct visual indication regarding structural
features responsible to differentiate the
activities of molecules in the training set
under study.

CONCLUSION

A good predictive statistical reliable
SOMFA 3D-QSAR models for
triarylimidazole having flexibility in structure
and potency profile against glucagon receptor
inhibitors have been developed successfully
evidenced by statistical measures. The
SOMFA steric potential map showed some
important features including a high density of
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red points around ‘Rjand Rj; ° of imidazole
skeleton indicated presence of a encouraging
steric feature while few blue points around
‘Ry’ indicated adverse steric feature for
optimal activity. The SOMFA electrostatic
potential map also showed some important
features such as few red points around the
substituent ‘R and Ry’ indicated
electropositive substituent’s are favorable for
optimal inhibitory activity while some blue
points around ‘R’ indicated presence of
electronegative  substituent’s for  good
inhibitory activity. SOMFA master grids
indicated significant electrostatic and shape
potential contributions. The models thus
obtained were accepted by various statistical
parameters and thus validate the robustness
and reliability of SOMFA tool for drug
design.
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Table 1. Structure of triarylimidazole derivatives

R2
/ N
R
3 N R1
H
Compound
Number Ry Ra Rs
1. (4-Br)Ph (4-F)Ph 4-pyridyl
2. (3-Br)Ph (4-F)Ph 4-pyridyl
3. (4-Cl)Ph (4-F)Ph 4-pyridyl
4. (4-F)Ph (4-F)Ph 4-pyridyl
5. (4-1)Ph (4-F)Ph 4-pyridyl
6. (4-Me)Ph (4-F)Ph 4-pyridyl
7. (4-iPrPh (4-F)Ph 4-pyridyl
8. (4-Ph)Ph (4-F)Ph 4-pyridyl
9. (4-NH,)Ph (4-F)Ph 4-pyridyl
10. (4-OMe)Ph (4-F)Ph 4-pyridyl
11. (4-CNPh (4-F)Ph 4-pyridyl
12. (4-COOMe)Ph (4-F)Ph 4-pyridyl
13. (4-SMe)Ph (4-F)Ph 4-pyridyl
14. (4-Br)Ph Ph 4-pyridyl
15. (4-Cl)Ph (4-F)Ph 3-Me(4-pyridyl)
16. (4-Cl)Ph (4-Cl)Ph 4-pyridyl
17. (4-Cl)Ph (4-1)Ph 4-pyridyl
18. (4-Cl)Ph (4-Ph)Ph 4-pyridyl
19 (4-Cl)Ph (4-t-Bu)Ph 4-pyridyl
20. (4-Cl)Ph (4-n-Bu)Ph 4-pyridyl
21 (4-Cl)Ph (3-Ph)Ph 4-pyridyl
22 (4-Cl)Ph (2-OPh)Ph 4-pyridyl
23 (4-Cl)Ph (3-OPh)Ph 4-pyridyl
24 (4-Cl)Ph (4-OPh)Ph 4-pyridyl
25 (4-Cl)Ph (20-n-Bu)Ph 4-pyridyl
26 (4-Cl)Ph (2,4-(0-n-Pr),)Ph 4-pyridyl
27 (4-Cl)Ph (2,4-(0-n-Bu),)Ph 4-pyridyl
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Table 2. Actual and Predicted activities for Training and Test set molecules from SOMFA
model
Compound Actu(:lch;t)lwty Predicted Activity l:eci':’:zl

1 6.568 6.050 0.491
2' 5.853 6.045 -0.156
3 6.398 6.067 0.282
4 5.699 6.042 -0.371
57 6.292 6.050 0.197
6 5.886 6.016 -0.187
7 6.155 5.944 0.216
8 5.000 5.901 -0.946
9 5.699 6.077 -0.361
10" 4.886 5.953 -1.094
11 5.097 5.949 -0.914
12 5.06 5.724 -0.758
13 6.31 5.907 0.352
14 6.107 6.420 -0.027
157 5.959 6.181 -0.489
16 6.721 6.126 0.464
17 6.886 6.277 0.644
18 6.854 6.588 0.236
19 6.886 6.716 0.292
20" 7.131 6.665 0.605
21 7.215 6.735 0.551
22 8.187 8.242 -0.065
23 7.886 7.391 0.22

24 7.569 7.428 0.072
25 8.071 7.183 1.107
26 7.886 8.684 -0.700
27 8.187 8.861 -0.718

T-Test Set Molecules
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Table 3: Statistical results of 3D-QSAR studies

Parameter Resolution (0.5 A)
q 0.6911
r? 0.7197
S 0.5541
F 51.3441
Fpred 0.6731
S Shape 52 %
Contributions Electrostatic 48%

q*: cross-validated correlation coefficient by leave one out method;

*: conventional correlation coefficient; S: standard error of estimate; F: Fisher Test value;
rzpred: Correlation coefficient f or prediction (test) set

4 N

3

N
N H

/\/N\l

Figure 1. Alignment of atoms used for developing
3D-QSAR model
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Figure 2. Superimposition of all structures on the most
potent compound®?

Predicted Activity
N

Actual Activity

Figure 3. Plot of actual vs. predicted activities of training set molecules
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Figure 4. Plot of actual vs. predicted activities of test set molecules

Residual Vaue
o

1 3 5 7 9 1 13 15 17 19 21 23 26 27

Compounds

Figure 5. Histogram of SOMFA residual value for all the compounds

AJCSES[4][3][2016] 056-066



Papreja et al

Figure 6. SOMFA derived Shape grids displaying most active compound
background at 0.5 A resolution

Figure 7. SOMFA derived Electrostatic grids displaying most active compound™ in the
background at 0.5 A resolution
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