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Abstract
The GGE stands for genotype main effect (G) added to
genotype by environment (GE) interaction. GGE-biplot a
graphical tool was applied to study adaptation of 18
sorghum genotypes to the six environments using data from
a multi-environment trials (MET) conducted in randomized
complete block designs at two locations during 2009-2012
in Sudan. Analysis of variance was used to test the
significance of GE interactions, estimates of variance
components and predicted means were obtained using
restricted maximum likelihood REML method. A number of
priors for the variance components of the model were
considered for Bayesian analysis using R2WinBUGS
software. The best set of priors was selected using the
deviance information criterion (DIC). Thus, the predicted
estimates of GE means using REML method for frequentist
approach and posterior estimates for the Bayesian
approach were used for the graphical presentation of the
genotypes and the environments. In frequentist approach,
the first two principal components accounted for 64% of
variation in total GGE interactions where the individual two
principal components accounted for PC1=43% and PC2=23%
respectively. The Bayesian approach accounted for 89%
variation in the total GGE interaction with PC1=58% and
PC2=31% respectively. The Bayesian GGE biplot analysis
explained much larger proportion of variation in GGE
interaction in comparison with frequentist approach, and
thus resulted in a more powerful inference on the
adaptation of genotypes to the environments considered.

Keywords: GGE biplot; Multi-environment trials; Bayesian
approach

Introduction
Multi-environment trials (MET) are used to identify superior

crop genotypes for a target environment in plant breeding
programs [1,2]. Selecting the best genotypes, with stable and
high yield across a number of environments presents statistical
issues in the presence of significant genotype x environment

interaction (GEI) due to changes in the magnitude of the
genotypic response across the environments [3]. GGE biplot has
been shown to be very useful for analyzing MET datasets and
identifying adaptable genotypes with high yield performance in
several studies [4-6]. The GGE biplot analysis exhibits the
aspects of genotype stability and adaptability, when a high
proportion of the sum of squares of G+GEI could be retained in
first two principal components [7]. The polygon view of the
biplot is the sound way to visualize the interaction patterns
between genotypes and environments [8]. Yan and Kang (2003)
have shown the presence or absence of crossover GE interaction
which is helpful in identifying different mega environments.
Recently, the extensive usefulness of GGE-biplot has been
elucidated for analyzing data from multi-environment trials in
wheat [9]. These aspects make GGE biplot a most
comprehensive tool in plant breeding. GGE biplot is for: 1)
carrying out mega-environment analysis (see example, [10-12]:
2) genotypes evaluation (the mean performance and stability)
and 3) environments’ evaluation (the power to discriminate
among genotypes in target environment). A two-way table of GE
data may be analyzed through the joint use of analysis of
variance (ANOVA) and singular value decomposition (SVD) in
term of principal component analysis (PCA) [13].

In an ongoing crop improvement program, priors information
is available for distribution of variance components, for example,
for genotypes and genotype x environment integration. These
can be used to improve the results on the predication of GE
means. The commonly used frequentist approaches also not
make use of such information. The analysis of multi-
environment trials with a view to estimate genotypes stability
can be carried out using a Bayesian approach. Edwards and [14]
modeled heterogeneity using exponential of an additive model
followed by assigning suitable priors to the variance components
of the effects terms of the model. Crossa et al. have studied
some practical and theoretical aspect of Bayesian stability in the
context of additive main effects and multiplicative interaction
(AMMI) and posterior means for genotype × environment
interaction component using Gibbs sampler and applied to data
on maize [15]. Applications of the Bayesian approach to the
AMMI model and GGE have been presented by Josse et al. [16]
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and da Silva et al. [17]. Using Bayesian analysis, Omer et al.
conducted a similar study on genotype × environment
interactions and the GGE-biplot assessment of balanced
classifications with missing values [18]. Bayesian analysis of GGE
biplot models and its implications for the interpretation of the
biplots have been discussed in de Oliveira et al. [19]. The
purpose of this study is to compare Bayesian and frequentist
approaches for GGE biplot of sorghum genotypes yields in six
environments in Sudan. The first section presents a frequentist
approach, the commonly used GGE biplots. The second section
is Bayesian GGE biplot analysis obtained from posterior
estimates of genotype × environment interaction of predicted
means of grain yield.

Materials and Methods

Experimental data set
Eighteen genotypes of sorghum were evaluated in

randomized complete block design (RCBD) during three growing
seasons, 2009/10 to 2011/12, at two different locations (North
Gedarif and South Gedarif) in Sudan. Data on grain yield in kg/ha
was recorded for analysis.

Statistical analysis
Analysis of variance (ANOVA) and REML methods were

applied on the combined data using Genstat software [20] to
obtain the frequentist estimates of variance components and
predicted means while R2WinBUGS was used to obtain posterior
means under Bayesian approach. GGE biplot graphs were drawn
based on predicted means of under frequentist and Bayesian
approach. Therefore, the Bayesian posterior means of GE two
ways table based on priors for the SDCs, priors were obtained by
using data on sorghum yield (kg ha-1) from three similar
experiments conducted to evaluate 18 genotypes in RCBDs with
four replications during 2006/07- 2008/09 at Rahd station in
Sudan. A priors information and the WinBUGS and R codes are
available [21], the number of iterations was set at one 50,000,
the number of chains was set at three, and the last 5,000
simulated values of the parameters were taken for evaluating
the posterior distributions.

The Bayesian approach uses prior information which was
considered in terms of distributions for variance or standard
deviation components for effects of blocks within environments,
genotypes, environments and GEI and experimental error
variances σe

2, assumed to be homogeneous across
environments. The a priori distributions of the variance
components in terms of the scale parameters, in the GEI model
in the application were taken from past data for half-normal
distributions. The prior of half- normal distribution was used for
the various standard deviation components of the data model.
Using the best a priori distributions, the a posteriori expected
values of predicted GE means were obtained (details are aimed
for presentation in a separate publication and are not included
here). Details of the deviance information criterion (DIC), a
Bayesian counterpart of the Akaike information criterion (AIC)

for model selection, and selection of the best priors data see
[22,23].

The Bi-plots model
Yan and Kang (2003) observed phenotypic variation (P) of

genotypes across environments is made up of environment
variation (E), genotype variation (G) and genotype-by-
environment (GE) interaction variation Yan [24,25]. This can be
written as P-E=G+GE, usually E is the dominant source of
variation separate for genotype, so environmental means are
removed and analysis concentrates on the genotype variation
and genotype-by-environment interaction [26]. The sum of
these two terms can be approximated as first two principal
components to obtain GGE bi-plot using Genstat software. The
basic model for a GGE bi-plot is given as

Yij=μ+bj +αi+dij (1)

Where Yij=the estimated yield of genotype i in environment j,
μ=the grand mean of all observations, αi=the main effect of
genotype i, bj=the main effect of environment j and dij=the
interaction between genotype i and environment j. Instead of
trying to separate G and GEI, a GGE biplot model accounts G and
GEI together and expresses their joint contribution G+GEI into
two multiplicative terms [27]. Thus, the GGE bi-plot model can
be rewritten as

Yij=μ+ bj+γ1Pi1δj1+γ2Pi2δj2+εij (2)

where γ1 and γ2 are the singular values (SV) for the first and
second principal component (PC1 and PC2), respectively, Pi1 and
Pi2 are elements of eigenvectors of genotype i for PC1 and PC2,
respectively, δj1 and δj2 are elements of eigen vectors of
environment j for PCl and PC2, respectively, εij is the residual
associated with genotype i in environment j. PC1 and PC2
eigenvectors cannot be plotted to uniquely construct a
meaningful bi-plot before the singular values are partitioned
into the genotype and environment eigenvectors. Singular-value
partitioning is implemented by,��� =   ���1��� and ��� =   ��1− �1��� 3

Where, I=1,2 and f1 is the partition factor for PC1.
Theoretically, f1 can be a value between 0 and 1, f1=1 is most
commonly used and is interpreted as environment focused. To
generate the GGE bi-plot, the equation [1] is presented as:

Yij=μ+ bj+θi1ϑ1j+θi2ϑ2j+εij (4)

In a bi-plot, genotype i is displayed as a point defined by all θiI
values (i=1,2) on PC1 (x-axis) and PC2 (y-axis), and environment j
is displayed as a point defined by all ϑIj values [28].

Bayesian approach for evaluating genotype and
environment interaction

From Bayesian perspective, model in equation (1) can be re-
written as

Yij|θi,ϑi,bj,αi,σe
2~N(μ+βj+Rkj+Gi+GEij,σe

2)
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The variance components of various effects and interactions
in equation (1) will be assumed to be random variables having
distributions, called the a the priori distribution, with known
parameters. The Bayesian methodology for evaluating genotype
and environment interaction (GEI) was presented by Omer at al.
on an unbalanced dataset of sorgum yields. In this context,
frequentist and Bayesian GEI data model will be used for
investigating GGE bi-plot analysis when the dataset is balanced
for genotypes and environment classifications.

Results and Discussion
The estimates of variance component, Table 1 indicated that

the GEI was significant (P<0.01) under both the approaches.
Variation due to G was significant under Bayesian and
frequentist approach. Bayesian approach, compared with the
frequentist approach, gave the better differentiation of
genotypes as assessed in term of variance component and
standard error.

Table 1: Summary of the estimates of variance components
from combined analysis of grain yield in the evaluation of 18
sorghum genotypes in 6 environments under frequentist and
Bayesian approach.

Source of
variation

Degree
s of
freedo
m

Frequentist
approach Bayesian approach

Compon
ent of
variance

Standa
rd
error

Component
of variance

Standa
rd error

Env(Rep) 1152 848

Genotype
s 17 1169** 2095 779.7** 151.7

Environm
ent 5 149318** 95586 2237** 214.7

GE
interaction 85 21342** 4249 2291** 272.6

Error 306 24659** 1994 11010** 471.3

Env(Rep)=Replications within the environments

**The results of ANOVA showed that the genotypes and GE interaction
manages significant (p<0.01), which obtained from ANOVA table suing Genstat
software.

Predicted values of the genotype and environment
interaction

The a posteriori means of the GE predicted values is shown in
Table 2 (Bayesian approach). Table 3 gives the predicted means
of GE under frequentist (REML method). Genotypes are denoted
as G1, G2,…, G18 and environment as E1, E2,…,E6. Table 2 shows
that G10 was the best genotype in environments E1, E4 and E5
with yields 227.3, 572.5 and 307.3 kg/ha respectively. While G13
was the best genotype in environment E2 (yield=491.8 kg/ha),

G18 was best in E3 (yield=1010 kg/ha) and G15 in E6
(yield=1636 kg/ha).

Table 2: Bayesian mean predicted of grain yield (kg/ha) of 18
sorghum genotypes (G1 to G18) across the sex environments E1
to E6 comprising two locations and three years.

Genoty
pe

Environments Mean

E1 E2 E3 E4 E5 E6

G1 128 257 596 341 193 871 398

G2 173 326 559 585 172 1216 505

G3 155 246 754 334 215 928 439

G4 173 186 714 415 144 851 414

G5 146 166 637 451 199 1184 464

G6 130 187 393 221 166 1182 380

G7 74 232 849 508 175 1159 500

G8 133 433 715 437 157 1233 518

G9 212 404 765 395 149 1299 537

G10 260 251 727 613 352 1253 576

G11 182 356 717 598 222 1033 518

G12 148 439 568 343 174 1327 500

G13 138 564 792 576 321 1209 600

G14 105 309 593 409 191 1611 536

G15 56 394 642 469 200 1699 577

G16 170 278 612 362 140 946 418

G17 60 300 402 826 207 1311 518

G18 176 262 1021 666 82 993 533

AvSE 57.72 57.91 58.13 58.20 57.67 64.19 58.97

Means
145.4 310.4 669.9 475.0 192.1

1183.
6 496.1

AvSE=average standard error, E1=North-Gedarif (2009), E2=South-
Gedarif(2009), E3=North-Gedarif (2010), E4=South-Gedarif(2010), E5=North-
Gedarif (2011), E6=South-Gedarif(2011).

Table 3: Frequentist mean predicted of grain yield (kg/ha) of 18
sorghum genotypes (G1 to G18) across the six environments E1
to E6 comprising two locations and three years.

Genoty
pe

Environments Mean

E1 E2 E3 E4 E5 E6

G1 129 253 596 330 191 908 401

G2 175 327 550 603 167 1211 506

G3 154 231 771 315 212 961 441

G4 173 165 727 407 133 891 416

G5 153 150 647 459 203 1178 465

G6 155 194 388 214 186 1166 384
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G7 62 216 877 513 167 1161 500

G8 130 446 726 433 146 1226 518

G9 218 413 783 383 135 1284 536

G10 260 227 727 622 357 1252 574

G11 172 346 716 605 208 1058 517

G12 155 463 568 336 175 1303 500

G13 114 575 796 571 314 1217 598

G14 113 323 604 420 204 1546 535

G15 55 416 656 484 211 1626 575

G16 175 274 615 351 134 972 420

G17 50 299 372 881 208 1292 517

G18 170 274 951 629 106 1036 528

AvSE 70.03 70.03 70.03 70.03 70.03 70.03 30.04

Means 145.0
9

310.7 670.7
5

475.3
5

192.1
4

1182.
64

496.11

AvSE=average standard error, E1=North-Gedarif (2009), E2=South-Gedarif
(2009), E3=North-Gedarif (2010), E4=South-Gedarif(2010), E5=North-Gedarif
(2011), E6=South-Gedarif (2011).

Table 3 shows that the G10 yielded highest in environments
E1, E4 and E5 with 259, 622.1 and 356.3 kg/ha, respectively.
G13 was the best genotype in environment E2 (yield=574.4 kg/
ha), G18 in environment E3 (yield=951.4 kg/ha) and G15 in
environment E6 (yield=1627.5 kg/ha). Genotypes G10, G13, G15
and G18 gave the highest yield under both the approaches in an
environment were found best. The posterior means were
estimated with a higher precision compared to the frequentist
approach (Tables 2 and 3). For instance, average standard error
a genotype in environment E1, mean in 38.66 kg/ha under
Bayesian approach and 70.03 kg/ha under frequentist approach.

GGE bi-plot analysis
The partitioning of GGE interaction under Bayesian approach

(Table 2) in two principal components showed that PC1 and PC2
accounted for 67.80% and 13.84% respectively, and thus
explaining a total of 81.64% variation. While for the Frequentist
estimates, the corresponding values were 47.29% for (PC1) and
24.62% for (PC2) and 71.84% for total variation. The total
percentage variance explained by the two component
representation was more effective in Bayesian case compared to
frequentist approach. Thus the predicted values of GE means
under Bayesian method assemble a clearer pattern between
genotypes and environment in smaller number of components,
compared to frequentist approach. The bi-plots have been
shown by polygon views in Figure 1 (Bayesian approach) and
Figure 2 (Frequentist approach). The comparison views of
biplots have been shown in Figure 3 (Bayesian approach).

Figure 1: The GGE scatter biplot based on the 18 sorghum
genotypes (1,…18) of yield performance trial for 6
environments (E1 to E6). Where, E1=North-Gedarif (2009),
E2=South-Gedarif (2009), E3=North-Gedarif (2010),
E4=South-Gedarif (2010), E5=North-Gedarif (2011),
E6=South-Gedarif (2011). Polygon view of the GGE bi-plot of
18 genotypes based on predicted means under Frequentists
(A) and Bayesian (B) approach.

Figure 2: Comparison plots based on the 18 sorghum
genotypes (1,…18) of yield performance trial for 6
environments environments (E1 to E6). Where, E1=North-
Gedarif (2009), E2=South-Gedarif (2009), E3=North-Gedarif
(2010), E4=South-Gedarif (2010), E5=North-Gedarif (2011),
E6=South-Gedarif (201). Polygon view of the GGE bi-plot
based on of 18 genotypes based on predicted means
Frequentists (A) and Bayesian (B) approach.

It has been pointed out that PC1 of a GGE bi-plot
approximates the genotype main effects (mean performance)
and PC2 approximate the GEI effects associated with each
genotype, which is a measure of instability. In frequentist, the
genotypes with the best response to particular environments to
identify specifically adapted genotypes, we grouped G14 and
G15 had the highest yielding performance in environments E6,
and the G17 and G18 performed well in the environments E4
and E3 whereas G2, G5, G8 and G9 were poor in E1, E2 and E5
environments. For instance, the G15 had the highest yielding
performance in environments E6 and G18 well performed in the
environments E3, whereas G2, G5, G8 and G9 were poor in E1,
E2 and E5 environments with low yield performance.
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Figure 3: Ranking plots based on the 18 sorghum genotypes
(1,…, 18) of yield performance trial for 6 environments (E1 to
E6). Where, E1=North-Gedarif (2009), E2=South-Gedarif
(2009), E3=North-Gedarif (2010), E4=South-Gedarif (2010),
E5=North-Gedarif (2011), E6=South-Gedarif (2011). Polygon
view of the GGE bi-plot based on of 18 genotypes based on
predicted means Frequentists (A) and Bayesian (B) approach.

Comparison GGE bi-plot is used to evaluate the genotypes
relative to an ideal genotype. This genotype has large PC1 scores
(high mean yield) and small (absolute) PC2 scores (high
stability). In Bayesian approach, genotypes G13, G15 and
following to G10 and G17 were more desirable than other
durum genotypes Polygon view (Figure 1). A genotype is more
favorable if it is closer to the ideal genotype position. Therefore,
in frequentist approach, genotypes G17 and following to G10,
G13, G2 and G15 were more desirable than other genotypes
using Polygon view (Figure 2). Using the comparison plot,
Bayesian approach highlighted that genotype G15 and following
to G14, G17 and G12 were more desirable than the other
genotypes. While poor genotypes were G4, G3, G1 and G16
ordinarily (Figure 3). In frequentist approach, genotypes G15
and following to G14, G17 and G12 were more desirable than
other genotypes and poor genotypes were G4, G3 and G1,
ordinarily (Figure 4). In this way one can compare the two
approaches for GGE biplot analysis because it allows visual
interpretation of GE interaction. In both approaches, it seems
that GGE bi-plot methodology is a proper tool for identifying
high yielding genotypes as the most stable ones. Bayesian GGE
bi-plots can be used as a new approach for visualizing GGE bi-
plot on the statistical model of principal component analysis
(PCA). The difference between the two approaches in GGE bi-
plot analysis is based on differences in the predicted GE means.
The Bayesian approach of GGE bi-plot showed higher variability
accounted for by the total PCA compared to the frequentist
approach. GGE bi-plot analysis way be used for quick visual
evaluation and comparison based on the two approaches. These
issues are critical because they are inherently related to the
validity and scope of the functionalities and capabilities claimed
by proponents of GGE bi-plot analysis. The Bayesian codes can
be obtained from the first author.

Conclusion
GGE bi-plot methodology, as has been shown to be useful in

the analysis of MET dataset, with a view to have a graphical
assessment of relationships among genotypes and test
environments for a combined response in terms of GEI and

genotypic performance (GGEI). The Bayesian approach
integrates the prior information available from already
conducted trials with that of the current dataset and provides a
more realistic and wider coverage for statistical inference.
Predicted GE means were obtained using Bayesian and
frequentist approaches. Bayesian GGE bi-plot analysis can be
easily used to draw conclusions and make right decisions.
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