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ABSTRACT  
 
Inverted pendulum control is one of the fundamental problems in the field of control theory 
especially in the control of a walking robot. This paper describes the steps to design various 
controllers for a rotary motion inverted pendulum which was operated by a rotary servo plant, 
SRV 02 Series. The paper then compares the classical and modern control techniques used to 
design the control systems. Firstly, the most popular system, Single Input Single Output (SISO) 
system, was applied where 2DOF Proportional-Integral-Derivative (PID) compensator design 
was included. In this paper the common Root Locus Method is described step by step to design 
the two compensators of PID controller. Designing the control system using 2DOF PID is quiet 
challenging task for the rotary inverted pendulum because of its highly nonlinear and open-loop 
unstable characteristics. Secondly, the paper describes the two Modern Control techniques that 
include Full State Feedback (FSF) and Linear Quadratic Regulator (LQR). For the experiment, 
FSF and LQR control systems were tested both for the Upright and Swing-Up mode of the 
Pendulum. Finally, experimental and MATLAB based simulation results are described and 
compared based on the three control strategy which were designed to control the Rotary 
Inverted Pendulum. Both the simulated and experimental results show that the LQR controller 
presents better performance over the other two controllers. 
 
Keywords : 2DOF PID, FSF, LQR, Inverted pendulum control. 
______________________________________________________________________________ 
 

INTRODUCTION 
 
A modern control theory can be verified by the inverted pendulum control which can be 
considered as a very good example in control engineering. It is an excellent model for the plasma 
impact force sensor [1], attitude control of a space booster rocket and a satellite [2], an automatic 
aircraft landing system [2], aircraft stabilization in the turbulent air-flow [2], stabilization of a 
cabin in a ship [2]. This model also can be an initial step in stabilizing androids. The inverted 
pendulum is highly nonlinear and open-loop unstable system that makes control more 
challenging. It is an intriguing subject from the control point of view due to its intrinsic 
nonlinearity. Common control approaches such as 2DOF PID controller, FSF control and LQR 
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requires a good knowledge of the system and accurate tuning in order to obtain desired 
performances. However, an accurate mathematical model of the process is often extremely 
complex to describe using differential equations. Moreover, application of these control 
techniques to a humanoid platform, which has more than one stage system, may result a very 
critical design of control parameters and difficult stabilization. 
 
PID controller is a common control loop feedback mechanism which is generally used in 
industrial control system. It depends on three separate parameters, Proportional, Integral and 
Derivative, values where the Proportional indicates the response of the current error, the Integral 
value determines the response based on the sum of the recent errors and the Derivative value 
determines the response based on the rate of the changing errors. Finally the weighted sum of the 
three parameters is used to control the process or plant. Because of the simple structure, it is not 
an easy task to tune the PID controller to achieve the expected overshoot, settling time, steady 
state error etc. of the system behavior. Based on this issue several PID control techniques such as 
I-PD control system [3] [4], 2DOF PID control system [3] [4] are introduced. The number of 
closed-loop transfer functions determines the degree of freedom of a control system where the 
transfer functions can be adjusted independently. 
 
The analysis and design of feedback control system are carried out using transfer functions along 
with various tools such as root-locus plots, Bode plots, Niquist plots, Nichol’s chart etc. These 
are the techniques in classical control theory where the classical design methods suffer from 
certain limitations because; the transfer function model is applicable only for linear time-
invariant system and generally restricted to SISO system [8]. The transfer function technique 
reveals only the system output for a given input and it does not provide any information of 
internal behavior of the system. These limitations of the classical method have led to the 
development of state variable approach, direct time domain approach, which provides a basis of 
modern control theory. It is a powerful technique for the analysis and design of linear and 
nonlinear, time-invariant or time-varying multi-input, multi-output (MIMO) system. 
 

 
 

Figure 1: Rotary inverted pendulum model SRV-02. 
 
FSF control also known as Pole Placement, is a method which is employed in state feedback 
control theory to place the closed-loop pools of a plant in pre-determined locations in the s-plan. 
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Placing pools is desirable because the location of the pools determines the eigenvalues of the 
system, which controls the characteristics of the system response. The FSF algorithm is actually 
an automated technique to find an appropriate state-feedback controller. Another alternative 
technique, LQR is also a powerful method to find a controller over the use of the FSF algorithm. 
 
The rotary motion inverted pendulum, which is shown in Figure 1, is driven by a rotary servo 
motor system (SRV-02). The servo motor drives an independent output gear whose angular 
position is measured by an encoder. The rotary pendulum arm is mounted on the output gear. 
The pendulum is attached to a hinge instrumented with another encoder at the end of the 
pendulum arm. This second encoder measures the angular position of the pendulum. The system 
is interfaced by means of a data acquisition card and driven by Matlab / Simulink based real time 
software. The pendulum has two equilibrium points, stable and unstable. At the stable 
equilibrium point the rod is vertical and pointing down while an unstable equilibrium at the point 
where the rod is vertical and pointing up. In this paper the three methods, 2DOF PID, FSF and 
LQR, are applied to design the controller of the rotary inverted pendulum. 
 
In the section 2 of the paper presents the mathematical analysis and state space representation of 
the rotary inverted pendulum system. Various control strategies including the 2DOF PID, FSF 
and LQR are designed and demonstrated in the section 3. Section 4 of the paper delineates the 
comparative assessment of the various results based on the simulation and practical 
experimentation of the designed controllers. Finally the section 5 draws the abridgement of the 
writings. 
 
Mathematical modeling of rotary motion inverted pendulum 
Figure 2 (a) shows the rotational direction of rotary inverted pendulum arm. Figure 2 (b) depicts 
the pendulum as a lump mass at half of the pendulum length. The pendulum is displaced with an 
angle α while the direction of θ is in the x-direction of this illustration. So, mathematical model 
can be derived by examining the velocity of the pendulum center of mass. The pendulum is 
considered as stable while the value of the pendulum angle is equal to zero or nearer to zero. 
This condition is maintained by controlling the velocity and direction of the arm’s movement. 
 

                
 

(a) Rotational direction of pendulum arm.                       (b) Pendulum lump mass 
 

 Figure 2: Pendulum motion and lump mass. 
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The following assumptions are made in modeling of the system: 
 
• The system starts in a state of equilibrium meaning that the initial conditions are therefore 
assumed to be zero. 
• The pendulum does not move more than a few degrees away from the vertical to satisfy a 
linear model. 
• A small disturbance can be applied on the pendulum. 
 
As the requirements of the design, the settling time, Ts, is to be less than 0.5 seconds, i.e. Ts < 
0.5secs. The system overshoot value is to be at most 10%, i.e. %OP = 10. The following table is 
the list of the terminology used in the derivations of system model. 
 

Table 1: Symbols to describe equation parameters 
 

Symbol Description 
L Length to Pendulum's Center of Mass 
m Mass of Pendulum Arm 
r Rotating Arm Length Vx Velocity 
θ Servo load gear angle (radians) 

α Pendulum Arm Deflection (radians) 
h Distance of Pendulum Center of mass from ground 
Jcm Pendulum Inertia about its center of mass 
Vx Velocity of Pendulum Center of mass in the x-direction 
Vy Velocity of Pendulum Center of mass in the y-direction 

 
There are two components for the velocity of the Pendulum lumped mass. So, � ���.  �����	 
� ��� � ����� ���� ��� � ���� ���� ���                          (1) 
 
The pendulum arm also moves with the rotating arm at a rate of: � 	� �  ���                                 (2) 
 
The equations (1) and (2) can solve the x and y velocity components as, � � �  ���  � ���� ���� �          (3) � � �  ����� ���� �                 (4) 
 
1.1 Deriving the system dynamic equations 
Having the velocities of the pendulum, the system dynamic equations can be obtained using the 
Euler-Lagrange formulation. 
 
1.1.1 Potential Energy 
        The only potential energy in the system is gravity. So, 
 
            � �   . !.���"#$#� �  %& ' �  %& ���� �                                                            (5) 
 
1.1.2 Kinetic Energy 
The Kinetic Energies in the system arise from the moving hub, the velocity of the point mass in 
the x-direction, the velocity of the point mass in the y-direction and the rotating pendulum about 
its center of mass. 
 
            ( � ). !.*#+ , ). !.-. , ). !.-/ , ). !.���"#$#�                                           (6) 
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Since the modeling of the pendulum as a point at its center of mass, the total kinetic energy of 
the pendulum is the kinetic energy of the point mass plus the kinetic energy of the pendulum 
rotating about its center of mass. The moment of inertia of a rod about its center of mass is, 
 

            0�� �  1 2234 563                                                                                         (7) 

 
Since L is defined as the half of the pendulum length, R in this case would be equal to 2L. 
Therefore the moment of inertia of the pendulum about its center of mass is, 
 

            0�� � 1 2234 563 � 1 2234 5�2��3 � 1284 5�3                                                   (8) 

 
        So, the complete kinetic energy, T, can be written as, 
 ( �  1234 0�9 �� 3 , 1234 % 1 ��� � ���� ���� �43 , 1234 %:����� ���� �;3 ,  1234 0�� �� 3 (9) 

 
        After expanding the equation and collecting terms, the Lagrangian can be formulated as, 
 

         � � ( � � � 1234 0�9 �� 3 , 1384 %�3�� 3 � %�� cos ���� �:��; , 1234 %�3�� 3– %&���� �  (10) 

 
        The two generalized co-ordinates are θ and α. So, another two equations are, 
 

            
@@� 1@A@B� 4 � @A@B �  (
#�C#� � D�9��                                                                               (11) 

 

            
@@� 1@A@E� 4 � @A@E �  0                                                                                                   (12) 

 
        Solving the equations and linearizing about α = 0, equations become, 
 
            :0�9 , %�3;�G � %���G � (
#�C#� � D�9��                                                                (13) 
 

            
H8 %�3�G � %���G � %&�� � 0                                                                                (14) 

 
        The output Torque of the motor which act on the load is defined as, 
 

            (
#�C#� � IJIKLMLK�-JNLOLJB� �PJ                                                                                (15) 

 
Finally, by combining the above equations, the following state-space representation of the 
complete system is obtained. 
 

Q����G�G
� R �

STT
TU0 0 1 00 0 0 10 +"W N�XW 00 9"W N+XW 0YZZ

Z[ Q������ R ,
ST
TT
U 00� IJIKLMLKPJW\ IJIKLMLKPJW YZ

ZZ
[ ��                                                      (16) 
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 Here, ] � 0�9 , %�3 , \ � %�� , � � 4/3%�3 , a � %&� , ! � ]� � \3 ,  b � IJIKLMLJLKcNdefPJ�PJ . The following table shows the typical configuration of the system. 

 
Table 2: Typical configuration of the system 

 
Symbol Description Value 
Kt Motor Torque Constant 0.00767 
Km Back EMF Constant 00767 

Rm Armature Resistance 2.6 
Kg SRV02 system gear ratio (motor->load) 14 (14x1) 
ηm Motor efficiency 0.69 
ηg Gearbox efficiency 0.9 
Beq Equivalent viscous damping coefficient 1.5 e-3 
Jeq Equivalent moment of inertia at the load 9.31 e-4 

 
Based on the typical configuration of the SRV02 & the Pendulum system, the above state space 
representation of the system is, 
 

            Q����G�G
� R � Q0 0 1 00 0 0 10 39.32 �14.52 00 81.78 �13.98 0R Q������ R , Q 0025.5424.59R ��                                                   

 (17) 
 

            k � l1 0 0 00 1 0 0m l��m , l00m ��                                            (18) 

 
 
2. Controller Design 
 
2.1 Design of a 2DOF PID controller 
Based on the above state space equation it is possible to derive the following two transfer 
functions. 
 

            
Bn-J � 3o.oH �c N H.o8p�Nq2H � N 2233rs t 2H.o3 ru N v2.pv rc N w8v r                                (19) 

             

            
Bn-J � 3o.oH �c N H.o8p�Nq2H � N 2233rs t 2H.o3 ru N v2.pv rc N w8v r                                       (20) 

 
        From these two transfer functions it is easy to derive another new transfer function which 
describes the behavior of α depending on the behavior of θ. 
 

            
EnBn � 3H.ox � t q.qq3823o.oH �cN H.o8p�Nq2H � N 2233                                        (21) 
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Figure 3: Plant model of SRV-02 series. 

 
Figure 3 shows the rotary inverted pendulum plant model where the pendulum arm position theta, 
θ, is regulated by the input voltage V. The main target is to maintain pendulum angle alpha, α, as 
zero so that the inverted pendulum remains stable. Here the output theta has the responsibility to 
do this job. So it is necessary to design two PID compensators where one will maintain the speed 
and position of theta while the other controller will function based on the feedback of alpha, α. 
The overall controller block diagram becomes as follows where G(θ) and G(α) indicates the 
plant model of θ  and α output while C(θ) and C(α) are the two PID compensators respectively. 
 

 
 

Figure 4: 2DOF PID controller block diagram. 
 
 

 
 

Figure 5: Block diagram of 2DOF PID controller for rotary inverted pendulum model. 
 
2.1.1 Root Locus analysis 
From the design requirements, the settling time, Ts = 0.5 sec and the percentage of over 
shoot, %OP = 10. Based on the specification it is important to determine the dominant pole on 
the root locus plot. To determine the damping ration (ζ) and natural frequency (ω), the following 
equations are necessary. 
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            %z{ �  100. |��N}~�/√�2N~c ��                                                                            (22) 
 
            (�  �  4/��. ��                                                                                            (23) 
 

 
(a) Root locus plot for G(θ).                                  (b) Root locus plot for [G(θ) x C(θ)]. 

 
Figure 6: Root locus plot for G(θ) and open loop [G(θ) x C(θ)]. 

 
So, ζ  = 0.59116 and ω = 13.5328 rad/sec. To get settling time less than 0.5 sec, it needs to 
increase the value of ω. So, ω can be chosen as 15 rad/sec. Since it is already know the value of 
ω and ζ, so it can be determined the dominant pole by using equation below, 
 
            {2,3 � ��. � � �:�. �1 � �3;                                                                         (24) 
 
                   � �8.86733 , 12.0984i 
 
Based on the root locus design method, the desired pole is said on the root locus only and if only 
it fulfills the angle criterion which is determine by following equation, 
 
            ∑ ��|��� � ∑ � ��|� � 180
 , 360
�� � 1�                                                  (25) 
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Figure 6 (a) shows the root locus plot for G(θ) where it is clear that the dominant pole is not on 
the root locus. So, it needs to design a compensator, C(θ), so that the dominant pole comes on the 
root locus. Here C(θ) indicates the PID compensator for the transfer function, (θs/Vm). Figure 6 
(b) shows the root locus diagram after designing the first PID, [G(θ) x C(θ)] , where the dominant 
pole is on the root locus. 
 
The corresponding gains kp(θ), ki(θ) and kd(θ) are as 264.1355, 0.26413 and 3.7141 respectively. 
Basically it is a trial and error method where the values of damping ration, ζ, and frequency, ω, 
have to choose sometimes higher than the calculated one to meet the desired requirements. A 
small program is written based on the Root Locus algorithm where the program takes the values 
for ζ and ω to calculate the corresponding gains for both of the compensators. The calculated 
gains, kp(α), ki(α) and kd(α), are as 104.8795, 0.1049 and 0.4393 respectively for the second 
compensator C(α). 
 

 
Figure 7: Unit step response of alpha for 2DOF PID controller. 

 
Figure 8: Block diagram of FSF controller. 

 
2.2         Design of a FSF controller based on Ackerman’s formula 
In modern control system, state x is used as feedback instead of plant output y and k indicates the 
gain of the system. To design a FSF controller Ackerman’s formula is used which is an easy and 
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effective method in modern control theory to design a controller via pole placement technique. 
Figure 8 shows a basic block diagram of a FSF controller of a system. 
Ackerman’s formula is represented as, 
 
            ) � �0 � 0 1�5�N2�"���                                                                                        
 (26) 
 
            5� � �D   �D   �   ���N2�D�                                                                                  
 (27) 
 
Where MC indicates the controllability matrix and Φd(A) is the desired characteristic of the 
closed-loop poles which can be evaluated as s=A. The close loop transfer function is selected 
based on ITAE table, shown in figure 9, and the value of frequency is taken as 10 rad/s. 
 

 
Figure 9: ITAE characteristic equation table. 

 
As the denominator of the transfer function of θs/Vm is a fourth order polynomial, from the ITAE 
table the characteristics equation will be, 
 
            {H

+21{8
+340{3

+2700 S+10000 � 0                                                                  (28) 
 
The controller matrix gain can be calculated using the following MATLAB code, 
 
        A= [0 0 1 0;0 0 0 1;0 39.32 -14.52 0;0 81.78 -13.98 0]; 
        B = [0; 0; 25.54; 24.59]; 
        a = [1 21 340 2700 10000]; 
        P = roots(a); 
        K= ACKER(A, B, P); 
 
So the gain matrix becomes, 
 
            K � ��8.9144  26.4116  � 2.9755  3.3539�                                                          (29) 
 
Using this K and the control law, u = -Kx, the system is stabilized around the linearized point 
(pendulum upright). The state feedback optimal controller is only effective when the pendulum is 
near the upright position. In the plant model of the rotary inverted pendulum, the output theta (θ) 
is regulated by the input voltage (V). Here theta has the responsibility to keep the inverted 
pendulum vertically upright where alpha (α) will be zero. Figure 10 shows the controller block 
diagram to control the pendulum from the upright position. 
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Figure 10: Controller Block Diagram (Upright mode). 

 
Figure 11: Controller Block Diagram (swing-up mode). 

 
Figure 11 shows the block diagram of the controller for the swing up mode. The pendulum starts 
from down words position and whenever it comes to the upright mode the full state feedback 
controller will maintain the pendulum in that position and make it stable. 
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Figure 12: Step response of alpha in FSF controller. 

 
2.3 Controller design using LQR technique 
Linear Quadratic Regulator (LQR) is design using the linearized system. In a LQR design process, 
the gain matrix K, for a linear state feedback control law, u = -Kx, is found by minimizing a 
quadratic cost function of the form as, 
 
            � � � ���������� , ����� 6����a�∞q                                (30) 
 
Here Q and R are weighting parameters that penalize certain states or control inputs. In the 
design the weighting parameters of the optimal state feedback controller are chosen as, 
 

            � � �6 0 0 00 1 0 00 0 1 00 0 0 0�                                                        (31) 

 
            6 � 1                                                                                 (32) 
 
In this design, the controller gain matrix, K, of the linearized system is calculated using MATLAB 
function. Basically this method is another powerful technique to calculate the gain matrix which 
is applied in the same model using in FSF controller design. 
 
            ) � ��2.4495   27.5843   � 2.5505    3.9200�                                           (33) 
 
Here the selected diagonal matrix, Q is chosen where the values of q11, q22, q33 and q44 are 6, 1, 1 
and 0 respectively. The diagonal values are selected based on iterative method. It is found that 
the diagonal values for q11 and q22 are more sensitive than others. Output performances are tested 
based on four different values of the matrix Q. The test cases of Q matrix are shown in the table 
bellow, 
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Table 3: Test cases of the diagonal matrix, Q. 

Test case Diagonal matrix, Q 

1 �2 � �6 0 0 00 01 0 00 0 1 00 0 0 0� 

2 �3 � �1 0 0 00 01 0 00 0 1 00 0 0 1� 

3 �8 � �6 0 0 00 10 0 00 0 1 00 0 0 0� 

4 �H � �5 0 0 00 20 0 00 0 0 00 0 0 0� 

 
(a) Unit step response of theta   (b) Unit step response of alpha. 

Figure 13: Unit step response of theta and alpha for LQR controller. 
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Figure 13(a) and 13(b) show the simulated output of theta and alpha based on the Q1 matrix 
where diagonal values are 6, 1, 1 and 0 (test 1). From the results of other test cases, it is clearly 
identified that the settling time of theta for test Q1 is less. Though the alpha overshoot and 
settling time for test Q2 is smaller to test Q1, still the performance of the test Q1 is better than 
other because of the settling time. In practical case the test Q1 result also shows the better 
performance. 

 
3. COMPARATIVE ASSESSMENT AND ANALYSIS OF THE RESULTS  
Figure 14 shows the experimental result of theta and alpha while 2DOF PID controller tries to 
maintain the system stability. In the practical case the controller is capable to maintain the 
pendulum vertically up but it is not robust. The other two controllers (FSF and LQR) can be 
considered as robust. For both of the controllers, FSF and LQR, comparative simulated results of 
theta and alpha are shown in the figure 15 (a) and 15 (b) respectively. 

 
(a) Comparative results of theta. 

 
(b) Comparative results of alpha. 

 
Figure 15: Comparative results of theta and alpha for both FSF and LQR controllers. 

 
From the figure 15 it is clearly seen that for both of the outputs, theta and alpha, LQR controller 
shows the better result where rising time, settling time, overshoot and steady state error are more 
acceptable than FSF controller. Figure 16 shows the experimental result of LQR controller. 

FSF 

LQR 

LQR 

FSF 
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Figure 16: Experimental result of the pendulum based on LQR controller. 

 

 
(a) Experimental result of theta. 
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(b) Experimental result of alpha. 

 
Figure 17: Experimental results of the pendulum based on FSF controller. 

 
The experimental results of theta and alpha for FSF controller are presented in the Figure 17. By 
comparing the two experimental results shown in Figure 16 and Figure 17, it can be said that the 
stability of LQR controller is more than the FSF controller because the overshoot of alpha for 
LQR is smaller than the overshoot for FSF controller. LQR also tries to keep the value of 
pendulum angle as nearer as zero than the other. Based on the simulated results of unit step 
response of alpha for all the three controllers, 2DOF PID, FSF and LQR, a comparison table 
shown in the Table 4, can be drawn to represent the characteristics of output through which a 
better controller can be identified.  
 

Table 4: Comparison of unit step response for pendulum angle, alpha. 
 

 Rising time Settling time Overshoot range Steady-state error 
2DOF PID 0.1 0.23 0.15 to -0.13 0.02 
FSF 0.16 1.24 16.8 to -16.6 -0.004 
LQR 0.14 0.39 2.5 to 0.86 -0.0003 

 
CONCLUSION  

 
Based on the result, shown in Table 4, the classical control method, 2DOF PID, is capable to 
control the nonlinear system especially the rotary inverted pendulum. The simulated unit 
response characteristics of 2DOF PID controller are satisfactory but in practical it is not robust. 
The performance of 2DOF PID can be improved by tuning the controller parameters. Simulation 
and experimental studies determine the efficiency, reliability and accuracy of other two 
controllers, FSF and LQR. The controllers are not only meet the design requirements but also 
robust to the parameter variations. The LQR controller is more robust and reliable than the FSF 
controller in successfully swinging the pendulum to the upright position. As the data indicates, 
the LQR controller is also faster than the FSF controller. Overall, it is seen that the LQR 
controller is more convenient to swing up the pendulum to its upright mode and maintain 
stability on the unstable equilibrium point. From the experimental results it is considered, 
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however, that both controllers (FSF and LQR) can be effective in maintaining the rotary inverted 
pendulum stable. 
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