
Available online at www.pelagiaresearchlibrary.com

Pelagia Research Library

Advances in Applied Science Research, 2014, 5(3):280-285

ISSN: 0976-8610
CODEN (USA): AASRFC

280
Pelagia Research Library

Comparative analysis of heuristics for multiprocessor task scheduling
problem with homogeneous processors

Sunita Dhingra1*, Satinder Bal Gupta2 and Ranjit Biswas3

1Department of Computer science & Engineering, University Institute of Engineering & Technology, Maharshi
Dayanand University Rohtak, Haryana, India

2Department of Computer Science, Vaish College of Engineering, Rohtak, Haryana, India
3Department of Computer Science & Engineering, Jamia Hamdard University, New Delhi, India

ABSTRACT

Scheduling of a task on a multiprocessor system represented by a directed acyclic graph for minimizing the different
performance measures is a prominent problem in parallel processing. As judgment of an optimal schedule for
multiprocessor task scheduling problem is a NP hard problem and different researchers have resorted for devising
efficient heuristics. List scheduling heuristics belong to one of the categories used for multiprocessor task
scheduling problem. Present work considers the comparative analysis of five commonly used list scheduling
heuristics based on makespan and total completion time of the schedule for homogeneous multiprocessors. A
defined Performance Index (PI) is used for the comparative analysis of different heuristics and it has been proved
that the Insertion Scheduling Heuristic (ISH) Algorithm and Earliest Time First (ETF) Algorithm provides the best
results for trade-off between the makespan and total completion time of the schedule.

Keywords: Multiprocessor task scheduling, Makespan, Total completion time, Heuristics

INTRODUCTION

Proficient scheduling of computationally intensive programs is the most important and complicated matter of subject
for achieving higher performance in a parallel computing. A program can be decomposed into a set of smaller tasks
having dependency and precedence requirements. The aim is to assign tasks among available processors in such a
way that the precedence requirements between tasks can be satisfied along with optimisation of different
performance measures. The performance measures can be the minimisation of the overall length of time required for
executing the entire program i.e. the schedule length (makespan), the total completion time and so on.

Finding an optimal solution for the multiprocessor task scheduling problem is a NP-hard [1] and numbers of
heuristics, randomized and exact methods have been developed by several researchers for solving these NP hard
problems. It has been established that finding optimality to NP hard problems is not a viable option as large amount
of computational time is required for judgment of such solutions. In reality, a good initial solution can be obtained
by a heuristic in a reasonable computational time. Heuristics used for multiprocessor task scheduling problem are
normally divided into three categories i.e. list scheduling, clustering based heuristics and duplication based
heuristics.

List scheduling techniques are generally used for task scheduling problems that allot a priority to the tasks. As a
processor becomes available, the highest priority task in the task list is allocated to the processor and removed from
the list. Selection of candidate tasks can be random or based on some rule if more than one task has the same
priority. Generally, characteristics those are employed for assigning priority are the b-level (bottom level), t-level
(top level), static level (sl) and ALAP (As-Late-As-Possible) start-time.

Sunita Dhingra et al Adv. Appl. Sci. Res., 2014, 5(3):280-285

281
Pelagia Research Library

Adam et al. [2] proposed Highest Level First with Estimated Times (HLFET) Algorithm which is the simplest list
scheduling algorithm that uses static b-level as node priority. It assigns the task to the processor according to
minimum start time. HLFET uses no-insertion approach i.e. an idle time slot is not utilized, which affects the
performance. The Insertion Scheduling Heuristic (ISH) algorithm, proposed by Kruatrachue and Lewis [3],
improves the HLFET algorithm by utilizing the idle time slots in the scheduling. Initially, it uses the same approach
as HLFET to make a ready list based on static b-level and schedule the first node in the ready list using the non-
insertion approach. The difference is that, once the scheduling of this node creates an idle slot, ISH checks if any
task in the ready list can be inserted into the idle slot but cannot be scheduled earlier on the other processors. The
algorithm schedules such tasks as many as possible into the idle slot [4].

Hwang et al. [5] proposed the ETF (Earliest Time First) algorithm and computes the earliest start-times at each step
for all ready nodes and chooses the one with the smallest start-time. The earliest start time of a node can be
computed by examining the start-time of the node on all processors exhaustively. When two nodes have the same
value in the earliest start-times, the ETF algorithm breaks the tie by scheduling the one with the higher static
priority. Wu and Gajski [6] developed Modified Critical Path (MCP) algorithm that uses the ALAP of a node as the
scheduling priority. The MCP algorithm first computes the ALAPs of all the nodes and then constructs a list of
nodes in an ascending order of ALAP times. Ties are broken by considering the ALAP times of the children of a
node. The MCP algorithm schedules the nodes on the list (one by one) such that a node is scheduled to a processor
that allows the earliest start time using the insertion approach. Sih and Lee [7] proposed the DLS algorithm that used
an attribute called dynamic level (DL), which is the difference between the static b-level of a node and its earliest
start-time on a processor. At each scheduling step, the algorithm computes the DL for every node in the ready pool
on all the processors. The node-processor pair which provides the largest value of DL is selected for the scheduling.

Kwok and Ahmad [8] presented a comprehensive review and classification of deterministic static scheduling
algorithms and compared different scheduling algorithms for a nine-task problem. Davidovic et al. [9] focused on
the comparison of list scheduling approaches and proposed a single pass deterministic algorithm, chaining, based on
list scheduling techniques.

In the present work, comparative analysis of the commonly used list scheduling heuristics has been done for
makespan and total completion time criteria. The steps of different heuristics considered in the present work are
described in table 1.

The standard multiprocessor task scheduling problems with communication cost have been considered for the
comparative analysis. Finally, the analysis of scheduling heuristics for the makespan and total completion time
criteria with variation in number of processors has been done. The next sections consider the materials and methods,
results and discussion followed by conclusion.

Table 1: Steps of HLFET, ISH, ETF, MCP and DLS heuristics

Highest Level First

with Estimated
Times (HLFET)

Insertion Scheduling
Heuristic (ISH) Earliest Time First (ETF)

Modified Critical Path
(MCP)

Dynamic Level
Scheduling(DLS)

1. Calculate the static
b-level (i.e., SL or
static level) of each
node.
2. Make a ready list in
a descending order of
static b-level. Initially,
the ready list contains
only the entry nodes.
Ties are broken
randomly.
Repeat
3. Schedule the first
node in the ready list
to a processor that
allows the earliest start
time, using the non
insertion approach.
4. Update the ready
list by inserting the
nodes that are now
ready
until all nodes are
scheduled.

1. Calculate the static b-level
of each node.
2. Make a ready list in a
descending order of static b-
level. Initially, the ready list
contains only the entry
nodes. Ties are broken
randomly.
Repeat
3. Schedule the first node in
the ready list to the
processor that allows the
earliest start time, using the
non insertion algorithm.
4. If scheduling of this node
causes an idle time slot, then
find as many nodes as
possible from the ready list
that can be scheduled to the
idle time slot but cannot be
scheduled earlier on other
processor.
5. Update the ready list by
inserting the nodes that are
now ready
until all nodes are
scheduled.

1. Compute the static b-level of each
node.
2. Initially, the pool of ready nodes
includes only the entry nodes.
Repeat
3. Calculate the earliest start-time on
each processor for each node in the
ready pool. Pick the node-processor
pair that gives the earliest time using
the non-insertion approach. Ties are
broken by selecting the node with a
higher static b-level. Schedule the node
to the corresponding processor.
4. Add the newly ready nodes to the
ready node pool
until all nodes are scheduled.

1. Compute the ALAP
time of each node.
2. For each node, create
a list which consists of
the ALAP times of the
node itself and all its
children in a descending
order.
3. Sort these lists in an
ascending
lexicographical order.
Create a node list
according to this order.
Repeat
4. Schedule the first
node in the node list to a
processor that allows the
earliest execution, using
the insertion approach.
5. Remove the node
from the node list
until the node list is
empty.

1. Calculate the b-level of each
node.
2. Initially, the ready node pool
includes only the entry nodes.
Repeat
3. Calculate the earliest start-time
for every ready node on each
processor. Compute the DL of
every node-processor pair by
subtracting the earliest start-time
from the node’s static b-level.
4. Select the node-processor pair
that gives the largest DL.
Schedule the node to the
corresponding processor.
5. Add the newly ready nodes to
the ready pool
until all nodes are scheduled.

Sunita Dhingra et al Adv. Appl. Sci. Res., 2014, 5(3):280-285

282
Pelagia Research Library

MATERIALS AND METHODS

Multiprocessor task scheduling problem has been considered in which some task are dependent on other tasks &
cannot be started until the predecessors have been processed. After a task is processed, its successor task may be
processed only after a predefined time called as communication cost [10]. Input is considered in terms of Directed
acyclic Graph (DAG) for this dependency. In a DAG, G = (V, E), V the set of vertices represent the tasks & E is the
set of directed edges for demonstrating the dependency between tasks. The computation weight of each vertex show
the number of CPU cycles required by a task & the computation weight on each directed edge shows the
communication cost.

The present work is based on the deterministic model, i.e. the number of processors, the execution time of tasks, the
relationship among tasks and precedence constraints etc. are known in advance. In addition, the communication cost
between two tasks has been considered and the tasks are non-preemptive, i.e. the current task completes before the
execution of new task. The multiprocessor system consists of a set of homogeneous processors. Heuristic
comparison is based on makespan and total completion time.

 The Makespan of a schedule is the time at which the last task completes for a particular schedule i.e. Cmax. Total
completion time of a schedule is calculated as ∑ ���

��� where Ci is the completion time of ith task of a schedule.
Minimising both the makespan and total completion time is required for effective utilisation of processors and
proper load balancing. Load balancing is used for optimizing the resource use, maximize throughput, minimize
response time and avoid overload of any one of the resources.

RESULTS AND DISCUSSION

In this study, five list scheduling heuristics i.e. HLFET, ISH, MCP, ETF and DLS have been compared for different
multiprocessor task scheduling problems on homogeneous processors. The algorithm of the heuristics has been
coded in MATLAB environment. Makespan and total completion time are the two performance measures which
have been considered for the comparative analysis. The evaluation of all the heuristics is carried out using the
standard problems of multiprocessor task scheduling as shown in table 2.

Table 2: Task Scheduling Problems used for Comparative Analysis

Problems No. of
Tasks

No. of processors
considered

Communication
cost

Reference Remarks

T9 9 2,3,4 Variable Bonyadi and Moghaddam [10]
T14_1 14 2,3,4 Fixed(20) Tsuchiya et al.[11] LU decomposition
T14_2 14 2,3,4 Fixed(80) Tsuchiya et al.[11] LU decomposition
T16_1 16 2,3,4 Fixed(40) Wu and Gajski[6] Laplace equation solver
T16_2 16 2,3,4 Fixed(160) Wu and Gajski[6] Laplace equation solver
T18 18 2,3,4 Variable Bonyadi and Moghaddam [10] Gaussian Elimination

The comparative analysis has been done by defined Performance Index (PI) which can be computed as:-

Performance Index (PI) =
Sol

solsol

Best

BestHeuristic −
−1

Where Heuristicsol is the solution obtained by a given heuristic and Bestsol is the best solution obtained among all the
heuristics for a particular problem considered irrespective to number of processors. PI nearer to unity provides the
best results.

From table 3 and 4, it has been found that, the solution quality of heuristics is dependent on number of tasks and
processors. It has been known the makespan and total completion time of the schedule should be minimum for
achieving maximum efficiency, effective utilisation of processors, maximum throughput and proper load balancing.
There should be trade-off between the solution provided by the heuristics for makespan and total completion time.
After comparing the different heuristics, the ISH heuristic provides the best average PI for makespan of 0.943 and
ETF heuristic for total completion time with PI of 0.974. Therefore for trade-off between the two performance
measures, ISH and ETF heuristics provides the best results, especially for larger and complex multiprocessor
scheduling problems.

Sunita Dhingra et al Adv. Appl. Sci. Res., 2014, 5(3):280-285

283
Pelagia Research Library

Table 3: Performance Index (PI) for Makespan

Problem Processors HLFET MCP DLS ISH ETF

T9
2 1 0.79 1 0.92 1
3 0.96 0.79 0.79 0.96 0.79
4 0.96 0.79 0.79 0.96 0.79

T14_1
2 0.96 0.90 0.96 0.96 0.96
3 1 1 1 1 1
4 1 1 1 1 1

T14_2
2 1 0.93 0.93 1 1
3 0.98 0.93 0.93 0.93 0.91
4 0.98 0.93 0.93 0.93 0.91

T16_1
2 0.89 0.89 0.89 0.89 0.89
3 1 1 1 1 0.96
4 1 1 1 1 0.96

T16_2
2 0.92 1 1 1 1
3 0.88 1 1 1 1
4 0.88 1 1 1 1

T18
2 0.81 0.89 0.81 0.81 1
3 0.81 0.81 0.81 0.81 0.89
4 0.81 0.81 0.81 0.81 0.89

Average

0.936 0.914 0.925 0.943 0.942
Ranking 3 5 4 1 2

Table 4: Performance Index (PI) for Total Completion Time

Problem Processors HLFET MCP DLS ISH ETF

T9
2 0.97 0.93 0.96 0.97 0.96
3 1 0.96 0.96 1 0.96
4 1 0.96 0.96 1 0.96

T14_1
2 0.90 0.90 0.90 0.90 0.90
3 0.97 0.97 0.97 0.97 0.97
4 1 1 1 1 1

T14_2
2 0.98 0.98 0.98 0.98 0.98
3 0.95 1 1 1 1
4 1 1 1 1 1

T16_1
2 0.90 0.90 0.90 0.90 0.90
3 1 1 1 1 0.98
4 1 1 1 1 0.98

T16_2
2 0.93 1 1 1 1
3 0.94 1 1 1 1
4 0.94 1 1 1 1

T18
2 0.82 0.85 0.87 0.85 1
3 0.86 0.87 0.90 0.88 0.96
4 0.89 0.91 0.90 0.91 0.98

Average 0.947 0.957 0.961 0.964 0.974
Ranking 5 4 3 2 1

Figure 1 and 2 shows the analysis of Performance Index (PI) with 2, 3 and 4 processors for different considered
multiprocessor task scheduling problems for makespan and total completion time respectively. It can be seen that the
ETF for 2 processors shows superiority over others for all the considered problems with makespan and total
completion time respectively. The solution quality of the heuristics depend on number of task for 3 and 4 processors,
as ISH for 9 and 14 tasks, HLFET and ISH for 16 task problems and ETF for increased task size problems provides
the compromise results.

Sunita Dhingra et al Adv. Appl. Sci. Res., 2014, 5(3):280-285

284
Pelagia Research Library

Figure 1: Comparison of different heuristics for task scheduling problems for Makespan

(a) Two Processor (b) Three Processor (c) Four Processor

Figure 2: Comparison of different heuristics for task scheduling problems for Total Completion Time (a) Two Processor (b) Three

Processor (c) Four Processor

Therefore, ISH and ETF heuristics provide the best trade-off results and can be effectively used for minimised
makespan and total completion time for the multiprocessor task scheduling problems.

CONCLUSION

Present work considers the comparison of five commonly used list scheduling heuristics (HLFET, MCP, DLS, ISH
and ETF) for multiprocessor tasks for the makespan and total completion time performance measures. Makespan

Sunita Dhingra et al Adv. Appl. Sci. Res., 2014, 5(3):280-285

285
Pelagia Research Library

and total completion time are the performance measures that show the effective system utilisation and proper load
balancing. There should be trade-off between the heuristics for providing the best solution in terms of two
performance measures. The comparative analysis has been made by the defined Performance Index (PI) on standard
problems upto 18 tasks and 4 processors with communication cost on homogeneous processors and shows that the
ISH and ETF provides the best results as compared to others. Also for minimum number of processors required,
ETF provides the best trade-off results for most of the task scheduling problems.

REFERENCES

[1] Hou E S, Ansari N, Ren H, IEEE Transactions on Parallel and Distributed Systems, 1994, 5(2), 113 – 120.
[2] Adam T L, Candy K M, Dickson J, Communication ACM, 1974, 17(12), 685-690.
[3] Kruatrachue B, Lewis T G, Technical Report, 1987, 87-60-3, Oregon State Univ.
[4] Jin S, Schiavone G, Turgut G, Journal of Supercomputing, 2008, 43, 77–97.
[5] Hwang J J, Chow Y C, Anger F D, Lee C Y, SIAM Journal of Computing, 1989, 18(2), 244–257.
[6] Wu M Y, Gajski D D, IEEE Transactions on Parallel and Distributed Systems, 1990, 1(3), 330–343.
[7] Sih G C, Lee E A, IEEE Transactions on Parallel and Distributed Systems, 1993, 4(2), 75–87.
[8] Kwok Y, Ahmad I, ACM Computing Surveys, 1999, 31 (4), 407–471.
[9] Davidovic T, Crainic T, Computer and Operation Research, 2006, 33, 2155–2177.
[10] Bonyadi M, Moghaddam M., International Journal of Parallel Programming, 2009, 37 (5), 462-487.
[11] Tsuchiya T, Osada T, Kikuno T, Journal of Microprocessors and Microsystems, 1998, 22(3–4), 197–207

