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ABSTRACT  
 
The aim of this paper is to prove some common fixed point theorems for the class of compatible 
maps to larger class of occasionally weakly compatible maps without appeal to continuity in 
Menger spaces and we also give a set of alternative conditions in place of completeness of the 
space. We improve and extend the results of Dedeic & Sarapa [3]  and Rashwan & Hedar [17] . 
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INTRODUCTION 
 

A common fixed point theorem for commuting maps generalizing the Banach’s fixed point theorem was proved by 
Jungck [7].  Banach fixed point theorem has many applications but suffers from one drawback, the definition 
requires continuity of the function. There then the existing literature contains papers involving contractive definition 
that do not require the continuity of the function. This result was further generalized and extended in various ways 
by many authors. Sessa [21] defined weak commutativity and proved common fixed point theorem for weakly 
commuting mappings. Further, Jungck [8] introduced more generalized commutativity, so called compatibility, 
which is more general than that of weak commutativity. Since then various fixed point theorems for compatible 
mappings satisfying contractive type conditions and assuming continuity of at least one of the mappings in the 
compatible pair, have been obtained by many authors in different spaces.  It has been known from the paper of 
Kannan [10] that there exists maps that have a discontinuity in the domain but which has a fixed point. Moreover the 
maps involved in every case were continuous at the fixed point. 
 
In 1998, Jungck & Rhoades [9] introduced the notion of weakly compatible maps and showed that compatible maps 
are weakly compatible but converse need not be true. Recently, Singh & Mishra [22] and Chugh & Kumar [2] 
proved some interesting results in metric spaces for weakly compatible maps without assuming any mapping 
continuous. 
 
The notion of probabilistic metric spaces, which is generalization of metric space, was introduced by Menger [11] 
and the study of these spaces was expanded rapidly with the pioneering work of Schweizer & Sklar [18, 19]. The 
theory of probabilistic metric spaces is of fundamental importance in probabilistic functional analysis. The existence 
of fixed points for compatible mappings on probabilistic metric spaces is shown by Mishra [12].  Recently, many 
authors including Pathak, Kang & Baek [14], Stojakovic [23, 24, 25], Hadzic [4, 5], Dedeic & Sarapa [3], Rashwan 
& Hedar [17], Mishra [12], Radu [15, 16], Sehgal & Bharucha-Reid [20] and Cho, Murthy & Stojakovic [1] have 
proved fixed point theorems in Menger spaces. 
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In this paper, we prove some common fixed point theorems for occasionally weakly compatible mappings in 
Menger spaces without using the condition of continuity. We also give a set of alternative conditions in place of 
completeness of the space. We improve results of Dedeic & Sarapa [3] and Rashwan & Hedar [17]. 

 
MATERIALS AND METHODS 

 
2.  Preliminaries. 

Definition 2.1.[11]  A mapping F : R → R+ is called a  distribution if it is non-decreasing left continuous with  
 inf { F (t) | t ∈ R } = 0    and    sup { F (t) | t ∈  R} = 1. 
 
We shall denote by L the set of all distribution functions while H will always denote the specific distribution 
function defined by  
 

  
0 , t 0

H(t) .
1 , t 0

≤
=  >  

 
Definition 2.2. [6] A mapping t :[0, 1] × [0, 1] → [0, 1] is called a t-norm  if  it  satisfies the following conditions : 
(t-1)   t(a, 1) = a,       t(0, 0) = 0 ; 
(t-2)   t(a, b) =  t(b, a) ; 
(t-3)   t(c, d) ≥  t(a, b) ;     for c ≥ a, d ≥ b, 
(t-4)   t(t(a, b), c) =  t(a, t(b, c))  for all a, b, c, d ∈ [0, 1]. 
 
Definition 2.3. [6] A probabilistic metric space (PM-space) is an ordered pair (X, F) consisting of a non empty set 
X and a function F : X × X → L, where L is the collection of all distribution functions and the value of F at (u, v) ∈ 
X × X is represented by  Fu, v. The function Fu,v assumed to satisfy the following conditions: 

 
(PM-1 ) Fu,v(x) = 1, for all x > 0, if and only if  u = v; 

(PM-2) Fu,v (0) = 0; 

(PM-3) Fu,v(x) = Fv,u(x); 

(PM-4) If Fu,v (x) = 1 and Fv,w (y) = 1 then Fu,w (x + y) = 1, 

 
for all u,v,w ∈ X and x, y > 0. 
 
Definition 2.4. [6] A Menger space is a triplet (X, F, t) where (X, F) is a PM-space and t is a t-norm such that the 
inequality 
 
(PM-5) Fu,w (x + y) ≥ t {Fu, v (x), Fv, w(y) }, for all u, v, w ∈ X, x, y ≥ 0. 

 
Definition 2.5. [18] A sequence {xn} in a Menger space (X, F, t) is said to be convergent and converges to a point x 

in X if and only if for each 
  
ε > 0 and λ > 0, there is an integer M(ε, λ) such that   
 
Fxn, x (ε) > 1 - λ  for all n ≥ M(ε, λ). 

 
Further the sequence {xn} is said to be Cauchy sequence if for 

 
ε > 0 and  λ > 0, there is an integer M(ε, λ) such that  
 
Fxn, xm

(ε) > 1- λ  for all m, n ≥ M(ε, λ). 

 
A Menger PM-space (X, F, t) is said to be complete if every Cauchy sequence in X converges to a point in X. 
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A complete metric space can be treated as a complete Menger space in the following way : 
 
Proposition 2.1. [12] If (X, d) is a metric space then the metric d induces mappings 
  
F : X × X → L,  defined by Fp,q(x) = H(x - d(p, q)), p, q ∈ X, where  

 
H(k) = 0,    for k ≤ 0   and   H(k) = 1,   for k >0. 
 
Further if,  t : [0,1] × [0,1] → [0,1] is defined by t(a,b) = min {a, b}.   
 
Then   
 
(X, F, t) is a Menger space.  It is complete if (X, d) is complete. 
 
The space (X, F, t) so obtained is called the  induced Menger space. 
 
Definition 2.6. [6] Self mappings A and S of a Menger space (X, F, t) are said to be weak compatible if they 
commute at their coincidence points i.e. Ax = Sx   for x ∈ X  implies  ASx = SAx. 
 
Definition 2.7. [12] Self mappings A and S of a Menger space (X, F, t) are said to be compatible if  FASxn, SAxn

(x) 

→ 1 for all x > 0, whenever {xn} is a sequence in X such that Axn, Sxn → u for some u in X, as n → ∞. 

 
Definition 2.8. [6] Self maps A and S of a Menger space (X, F, t) are said to be  occasionally weakly compatible 
(owc) if and only if there is a point x in X which is coincidence point of A and S at which A and S commute. 
 
Remark 2.1. [6] The concept of occasionally weakly compatible maps is more general than that of compatible 
maps.   
 

RESULTS AND DISCUSSION 
 

Theorem 3.1. Let A, B, S and T be self mappings on a Menger space (X, F, t) where t is continuous and t(x, x) ≥ x 
for all x ∈[0,1], satisfying the conditions: 
(3.1)     A(X) ⊂ T(X) and B(X) ⊂ S(X), 
(3.2)     There exists k ∈ (0,1) such that 
 
FAu, Bv(kx)  ≥  t(FAu,Su(x),t(FBv, Tv(x), t(FAu, Tv(αx), FBv, Su(2x - αx)))) 
for  all u, v ∈ X ,  x > 0  and α ∈ (0,2). 
If 
 
(3.3)    one of A(X), B(X), S(X) and T(X) is a complete subspace of X, 
then  
 
(i) A and S have a coincidence point, and  
(ii)  B and T have a coincidence point. Further if 
(3.4)  the pairs {A, S} and {B, T} are occasionally weakly compatible, then A, B, S and T have a unique fixed point 
in X. 
 
We need the following lemma proved by Mishra [12] for our first result. 
 
Lemma 3.1.  [12] Let A, B, S and T be self mappings of the Menger space (X, F,t), where t is continuous and t(x, x) 
≥ x for all x ∈ [0,1], satisfying the conditions (3.1) and (3.2). Then the sequence {yn} defined by condition (3.4) is a 
Cauchy sequence              in X. 
 
Proof of Theorem 3.1. Since A(X) ⊂ T(X), for any x0 ∈ X, there exists a point  
x1 ∈ X such that Ax0 = Tx1.   Since B(X) ⊂ S(X), for this point x1 we can choose a point x2 ∈ X such that Bx1 = Sx2 
and so on. Inductively, we can define a sequence {yn} in X such that  
 
(3.5)  y2n = Ax2n = Tx2n+1  and y2n+1 = Bx2n+1 =  Sx2n+2, for n = 1,2, ... . 
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Let {yn} be the sequence in X defined above. By using Lemma 3.1, {yn} is a Cauchy sequence in X. 
 
Now suppose that S(X) is complete. Note that the subsequence {y2n+1} is contained in S(X) and has a limit z in S(X). 
Let p ∈ S-1z. Then Sp = z. 
 
We shall use the fact that the subsequence {y2n} also converges to z.  By (3.2), we have 
 
FAp, Bx2n+1

(kx)   ≥  t(FAp,Sp(x),t(FBx2n+1, T x2n+1
(x), t(FAp, T x2n+1

(αx), FB x2n+, Sp(2x - αx)))). 

 
Taking n → ∞ and α → 1, we have 
 
FAp,z(kx) ≥ t(FAp, z(x), t(Fz, z(x),t(FAp, z(x),Fz, z(x)))) 
 
≥ FAp, z(x), 
 
which means that Ap = z. Hence Ap = Sp = z, i. e., p is a coincidence point of A and S. This proves (i). 
 
Since A(X) ⊂ T(X),  Ap = z implies that z ∈ T(X). Let q ∈ T-1z. Then Tq = z. 
 
It can easily verified by using similar arguments of the previous part of the proof that Bq = z. This proves (ii). 
 
If we assume that T(X) is complete, then argument analogous to the previous completeness argument establishes (i) 
and (ii). 
 
The remaining two cases pertain essentially to the previous cases. Indeed, if B(X) is complete, then by condition 
(3.1), z ∈ B(X) ⊂ S(X). Similarly if A(X) is complete the z ∈ A(X) ⊂ T(X). Thus (i) and (ii) are completely 
established. 
 
Now, we assume that condition (3.4) holds. Since the pair {A, S} is occasionally weakly compatible therefore A and 
S commute at the coincidence point. i. e., ASp = SAp or Az = Sz. Similarly BTq = TBq or Bz = Tz. 
 
Now, we prove that Az = z. By (3.2), we have 
 
FAz, Bx2n+1

(kx)  ≥  t(FAz,Sz(x),t(FB x2n+1, T x2n+1
(x), t(FAz, T x2n+1

(αx), FB x2n+1, Sz(2x - αx)))). 

 
Taking n → ∞  and α → 1, we have 
 
FAz,z(kx) ≥ t(FAz, z(x),t(Fz, z(x),t(FAz, z(x), Fz, Az(x)))) ≥ FAz, z(x). 
 
Therefore,  Az = z. Hence Az = z = Sz. 
 
Similarly, we have Bz = z = Tz. This means that z is a common fixed point of mappings A, B, S and T. 
 
For uniqueness of common fixed point let w ≠ z be another fixed point of mappings A, B, S and T. 
 
Then by condition (3.2) and taking α → 1, we have 
 
Fz, w(kx)  ≥  t(Fz, z(x),t(Fw, w(x), t(Fz, w(x), Fw, z(x)))) ≥ Fz, w(x)     
 
which means that z = w. This completes the proof.  
 
Remark 3.1. We note that Theorem 3.1 is still true if we replace the condition (3.2) by the following condition: 
(3.6) there exists k ∈ (0, 1) such that 
 
FAu, Bv(kx) ≥ min{FAu,Su(x),FBv, Tv(x), FAu, Tv(αx), FBv, Su(2x - αx)} 
 
for all u, v ∈ X, x > 0 and α ∈ (0,2). 
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Theorem 3.2. Let A, B, S and T be self mappings on a Menger space (X, F, t), where t is continuous and t(x, x) ≥ x 
for all x ∈ [0,1], satisfying the conditions (3.1), (3.3), (3.4) and (3.7) there exists k ∈ (0,1) such that 
 
FAu,Bv(kx) ≥ min{FAu,Su(x), FBv, Tv(x), FSu, Tv(x)}, 
 
for all u, v ∈X, x > 0. Then all the conclusions of Theorem 3.1 are true. 
 
Proof. If the condition (3.7) is satisfied, then for any α ∈ (0,2), we have on the lines of Dedeic and Sarapa [3] 
 
FAu,Bv(kx) ≥ min{FAu,Su(x), FBv,Tv(x), FSu,Tv(x)}, ≥ min{FAu,Su(x), FBv,Tv(x), FAu,Tv(x), FBv,Su(2x - αx)}. 
 
Then using the Remark 3.1, the Theorem 3.2 is still true.  
 
The metric version of Theorem 3.1 is as follows: 
 
Theorem 3.3. Let A, B, S and T be self mappings on a metric space (X, d) satisfying the following conditions: 
(3.8)   A(X) ⊂ T(X) and B(X) ⊂ S(X), 
(3.9)   d(Ax, By) ≤ max {d(Ax, Sx), d(By, Ty), d(Sx, Ty), ½[d(Ax, Ty) + d(Sy, By)]} 
 
for all x, y ∈ X .  
 
If 
 
(3.10)  One of A(X), B(X), S(X) or T(X) is a complete subspace of X, then 
(i)   A and S have a coincidence point, and  
(ii)   B and T have a coincidence point. Further if 
(3.11)  the pairs {A,S} and {B,T} are occasionally weakly compatible, 
then A, B, S and T have a unique fixed point in X. 

 
CONCLUSION 

 
Theorem 3.1 improves result of Rashwan & Hedar [17] and theorem 3.2 improves and extends the main result of 
Dedeic & Sarapa [3]. 
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