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ABSTRACT

The aim of this paper is to prove some common fixed point theorems for the class of compatible
maps to larger class of occasionally weakly compatible maps without appeal to continuity in
Menger spaces and we also give a set of alternative conditions in place of completeness of the
space. We improve and extend the results of Dedeic & Sarapa [3] and Rashwan & Hedar [17].
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INTRODUCTION

A common fixed point theorem for commuting mapsegatfizing the Banach'’s fixed point theorem was pbby
Jungck [7]. Banach fixed point theorem has mangliegtions but suffers from one drawback, the d#fin
requires continuity of the function. There then #éxésting literature contains papers involving caative definition
that do not require the continuity of the functidris result was further generalized and extendedhrious ways
by many authors. Sessa [21] defined weak committatand proved common fixed point theorem for wegakl
commuting mappings. Further, Jungck [8] introducedre generalized commutativity, so called compkittyhi
which is more general than that of weak commutgtivsince then various fixed point theorems for patible
mappings satisfying contractive type conditions asduming continuity of at least one of the mappiirgthe
compatible pair, have been obtained by many autimdifferent spaces. It has been known from thpep of
Kannan [10] that there exists maps that have adiswity in the domain but which has a fixed poMbreover the
maps involved in every case were continuous afixied point.

In 1998, Jungck & Rhoades [9] introduced the notbmeakly compatible maps and showed that comigatitaps

are weakly compatible but converse need not be Raeeently, Singh & Mishra [22] and Chugh & Kumaj [
proved some interesting results in metric spaceswieakly compatible maps without assuming any magppi
continuous.

The notion of probabilistic metric spaces, whiclg@neralization of metric space, was introducedienger [11]

and the study of these spaces was expanded rapiitythe pioneering work of Schweizer & Sklar [18)]. The

theory of probabilistic metric spaces is of fundataéimportance in probabilistic functional analsThe existence
of fixed points for compatible mappings on probishid metric spaces is shown by Mishra [12]. Rélgemany

authors including Pathak, Kang & Baek [14], Stojgkd23, 24, 25], Hadzic [4, 5], Dedeic & Sarapd, [Rashwan

& Hedar [17], Mishra [12], Radu [15, 16], SehgalBharucha-Reid [20] and Cho, Murthy & Stojakovic Hjve

proved fixed point theorems in Menger spaces.
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In this paper, we prove some common fixed poinbtems for occasionally weakly compatible mappings i
Menger spaces without using the condition of caritin We also give a set of alternative conditiomgplace of
completeness of the space. We improve results déidek Sarapa [3] and Rashwan & Hedar [17].

MATERIALSAND METHODS

2. Preliminaries.

Definition 2.1.[11] A mapping¥: R — R* is called adistribution if it is non-decreasing left continuous with
inf{ #F(t) |[tOR}=0 and sup F(t) |t0 R} =1.

We shall denote by L the set of all distributiomdtions while H will always denote the specific tdtsution
function defined by

0, t<0
H(t) = .
1, t>0

Definition 2.2. [6] A mapping t :[0, 1] x [0, 1]» [0, 1] is called a-norm if it satisfies the following conditions :
(t-1) t(a, 1) =a, t(0,0)=0;

(t-2) t(a, b) = t(b,a);

(t-3) t(c, d)= t(a, b); for @ a, d= b,

(t-4) t(t(a, b), c) = t(a, t(b, c)) for alll, c, dd [0, 1].

Definition 2.3. [6] A probabilistic metric space (PM-space) is an ordered pair (XF) consisting of a non empty set
X and a functionF: X x X - L, where L is the collection of all distributionrictions and the value a@fat (u, v)O
X x Xis represented by f,, The function [ ,, assumed to satisfy the following conditions:

(PM-1) Fu,v(x) =1, forallx>0,ifand only if u=v;
(PM-2) Fu,v (0) =0;

(PM-3) Fu,v(x) = Fv,u(x);

(PM-4) If Fu,v(x) =1and G w (y) = 1 then E,W(x +y)=1,

for all u,v,wld X and x, y > 0.

Definition 2.4. [6] A Menger space is a triplet (X, F, t) where (X,F) is a PM-space and t is a t-norm such that the
inequality

(PM-5) Ry (x + V)2 t{F, (X, R, )} forallu, v, wO X, x,y20.

Definition 2.5. [18] A sequence {x} in a Menger space (X, t) is said to beonvergent andconverges to a point x
in X if and only if for each

€ >0 and\ > 0, there is an integer B|(A\) such that

Fxn, x (€) > 1 -A for all n= M(g, A).
Further the sequence {kis said to beCauchy sequence if for

€>0andA > 0, there is an integer BJ(A) such that

Fxn, Xm(e) >1-A for all m, n= M(g, A).

A Menger PM-space (X, t) is said to beomplete if every Cauchy sequence in X converges to a poiXt
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A complete metric space can be treated as a cosndlehger space in the following way :
Proposition 2.1. [12] If (X, d) is a metric space then the metrimduces mappings

F: X x X - L, defined by lF:J q(x) = H(x - d(p, q)), p, d X, where

H(k) =0, fork«0 and H(k)=1, fork>0.

Further if, t:[0,1] x [0,1]- [0,1] is defined by t(a,b) = min {a, b}.
Then

(X, F t) is a Menger space. Itis complete if (X, slzomplete.

The space (X, t) so obtained is called theduced Menger space.

Definition 2.6. [6] Self mappings A and S of a Menger space €X{) are said to be weak compatible if they
commute at their coincidence points i.e. Ax = $or x 0 X implies ASx = SAX.

Definition 2.7. [12] Self mappings A and S of a Menger space#X) are said to beompatible if FAan SAxn(X)
- lforall x>0, whenever { is a sequence in X such that ;AxSx, — u for some uin X, as p c.

Definition 2.8. [6] Self maps A and S of a Menger space €X}) are said to be occasionally weakly compatible
(owc) if and only if there is a point x in X whiés coincidence point of A and S at which A and $ouwute.

Remark 2.1. [6] The concept of occasionally weakly compatibt@ps is more general than that of compatible
maps.

RESULTSAND DISCUSSION

Theorem 3.1. Let A, B, S and T be self mappings on a MengecsgX, ¥ t) where t is continuous and t(x, X)x
for all x 0]0,1], satisfying the conditions:

(3.1) A(X) O T(X) and B(X)O S(X),

(3.2 There exists kI (0,1) such that

Fau, kX)) 2 t(Fau suX),t(Fay, T(X), t(Fau, 7(aX), Fay, sd2X - 0X))))
for allu,vOX, x>0 anda O0(0,2).
If

(3.3) one of A(X), B(X), S(X) and T(X) is a cotepe subspace of X,
then

(i) A and S have a coincidence point, and

(i) B and T have a coincidence point. Further if

(3.4) the pairs {A, S} and {B, T} are occasionallyeakly compatible, then A, B, S and T have a uaifixed point
in X.

We need the following lemma proved by Mishra [1@] dur first result.

Lemma3.1. [12] Let A, B, S and T be self mappings of theriger space (XF,t), where t is continuous and t(x, X)
> x for all xO [0,1], satisfying the conditions (3.1) and (3.2hen the sequence {lydefined by condition (3.4) is a
Cauchy sequence in X.

Proof of Theorem 3.1. Since A(X) O T(X), for any x 0O X, there exists a point
x; O X such that Ay=Tx;. Since B(X)O S(X), for this point x we can choose a poing Kl X such that Bx= Sx
and so on. Inductively, we can define a sequengeifyX such that

(35) Von = AXon = TXon+1 and Yon+1— BXoni1= S¥n+2, forn=1,2, ....
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Let {y.} be the sequence in X defined above. By using Lan3m, {y} is a Cauchy sequence in X.

Now suppose that S(X) is complete. Note that thesequence {4.4} is contained in S(X) and has a limit z in S(X).
LetpdS*z. Then Sp = z.

We shall use the fact that the subsequengg &so converges to z. By (3.2), we have

Fap, 3, (K 2 t(Fap s (P, L, 72 (90 HFap, Ty, (0X), Fis, , 542X - 0X)))).

Taking n— o anda - 1, we have

Fap(kX) 2 t(Fap, AX), t(Fz, 4X),t(Fap, AX).Fz, 4x))))

= Fap, AX),

which means that Ap = z. Hence Ap = Sp = z, ipés, a coincidence point of A and S. This provs (i
Since A(X)O T(X), Ap = z implies that Z1 T(X). Let 0 T*z. Then Tq = z.

It can easily verified by using similar argumentshe previous part of the proof that Bq = z. Tiisves (ii).

If we assume that T(X) is complete, then argumeatagous to the previous completeness argumertilissias (i)
and (ii).

The remaining two cases pertain essentially toptleeious cases. Indeed, if B(X) is complete, thgrcbndition
(3.1), zO B(X) O S(X). Similarly if A(X) is complete the Z1 A(X) O T(X). Thus (i) and (ii) are completely
established.

Now, we assume that condition (3.4) holds. Sineepiir {A, S} is occasionally weakly compatible tafore A and
S commute at the coincidence point. i. e., ASp  8AAz = Sz. Similarly BTq=TBqor Bz =Tz.

Now, we prove that Az = z. By (3.2), we have

Faz, By, (K¢) 2 (Fag, st (Fe sy, 7o (X0, 1z, T (OX), Finy,, 542X - aX)))).

Taking n— o anda - 1, we have

Faz AkX) 2 t(Faz, £X), 4R, £%),t(Faz, £X), Fz, aX)))) 2 Faz, AX).

Therefore, Az =z. Hence Az =z = Sz.

Similarly, we have Bz = z = Tz. This means thad a2 common fixed point of mappings A, B, S and T.
For uniqueness of common fixed point lettvz be another fixed point of mappings A, B, Sand T
Then by condition (3.2) and takirmg - 1, we have

Fu w(kx) = t(F, {X),t(Fy, w(X), t(Fy, wW(X), Fw, AX)))) = F2, wW(X)

which means that z = w. This completes the proof.

Remark 3.1. We note that Theorem 3.1 is still true if we regldhe condition (3.2) by the following condition:
(3.6) there exists Kl (0, 1) such that

Fau, u(kX) = min{Fa, sdX),Fay, 7(X), Fau, 7(0X), Fay, sU2X - ax)}

for all u, v X, x > 0 anda 0 (0,2).
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Theorem 3.2. Let A, B, S and T be self mappings on a MengecsfX, F, t), where t is continuous and t(x, XX
for all x 0 [0,1], satisfying the conditions (3.1), (3.3),4Band (3.7) there existsk(0,1) such that

Fau,su(kX) = min{Fay sdX), Fav, 7(X), Fsu, X)},
for all u, vOX, x > 0. Then all the conclusions of Theorem 34 taue.

Proof. If the condition (3.7) is satisfied, then for amy] (0,2), we have on the lines of Dedeic and Sarapa [

Faugv(kx) 2 min{FaysX), Fav,1v(X), Fsu(X)}, = min{Fay sdX), Fev.1u(X), Fauu(X), Fav,sU2X - 0X)}.
Then using the Remark 3.1, the Theorem 3.2 istai#.
The metric version of Theorem 3.1 is as follows:

Theorem 3.3. Let A, B, S and T be self mappings on a metricef, d) satisfying the following conditions:
(3.8) A(X) O T(X) and B(X)O S(X),
(3.9) d(Ax, By)< max {d(Ax, Sx), d(By, Ty), d(Sx, Ty), Y2[d(Ax, Ty} d(Sy, By)]}

forall x, yO X.
If

(3.10) One of A(X), B(X), S(X) or T(X) is a compéesubspace of X, then
(i) Aand S have a coincidence point, and

(i) B and T have a coincidence point. Further if

(3.11) the pairs {A,S} and {B,T} are occasionaikeakly compatible,
then A, B, S and T have a unique fixed point in X.

CONCLUSION

Theorem 3.1 improves result of Rashwan & Hedar @ theorem 3.2 improves and extends the mairit refsu
Dedeic & Sarapa [3].
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