Available online at www.pelagiaresearchlibrary.com

Pelagia Research Library

Advances in Applied Science Research, 2016, 7(2):132-137

Common fixed point theorem for compatible mappings of type (A-1) in complete fuzzy metric space

Vandana Gupta¹, V. H. Badshah² and Preeti Malviya³

¹Govt. Kalidas Girls College, Ujjain (M.P.), India ²School of Studies in Mathematics, Vikram University, Ujjain (M.P.), India ³Govt. New Science College, Dewas (M.P.), India

ABSTRACT

The purpose of this paper is to obtain common fixed point theorem for compatible maps of type (A-1) on complete fuzzy metric space .Our result improves the result of Khan M.S. [7].

Keywords: Common fixed point, Compatible Mappings, Compatible Mappings of type (A-1), Fuzzy Metric Space, Complete Fuzzy Metric Space **2010 AMS Subject Classification :** 47H10, 54H25.

INTRODUCTION

The concept of fuzzy sets was first given by Zadeh [14] in 1965. Then Kramosil and Michalek[8] introduced the concept of fuzzy metric space and George and Veeramani[4] modified the notion of fuzzy metric with help of continuous t-norms.

The improving commutativity in fixed point theorems by using weakly commuting maps in metric space was initiated by Sessa [10].Later on , this method was enlarged to compatible maps by Jungck[5]. Cho[2,3] introduced the concept of compatible maps of type (α) and compatible maps of type (β) in fuzzy metric space. Singhet.al.[12] proved fixed pointtheorems in a fuzzy metric space. Recently in 2012 Jain et.al.[6] proved various fixed point theorems using the concept of semi compatible mapping

The concept of type A-compatible and S-compatible was given by Pathak and Khan [7]. Pathak et.al. [9] renamed A-compatible and S- compatible as compatible mappings of type (A-1) and compatible mappings of type (A-2) respectively.

B.Singh et.al.[12] proved fixed point theorems in fuzzy metric space and Menger space using the concept of semicompatibility ,weak compatibility and compatibility of type (β) respectively. The idea of fuzzy 2- metric space and fuzzy 3- metric space were used by

Sushil Sharma [11] and obtained some fruitful results.

Preliminaries Definition 1.1 [13] Let X be any set . A Fuzzy set A in X is a function with domain X and Values in [0,1].

Definition 1.2[4] A Binary operation $* : [0,1] \times [0,1] \rightarrow [0,1]$ is called a continuous t-norms if an topological monoid with unit 1 such that $a*b \le c*d$ whenever $a \le c$ and $b \le d$, for all a,b,c,d in [0,1].

Definition 1.3[4] The triplet (X,M, *) is said to be a Fuzzy metric space if, X is an arbitrary set, * is a continuous t-norm and M is a fuzzy set on $X^2 \times (0,\infty)$ satisfying the following conditions; for all x,y,z in X and s,t > 0, (i) M(x,y,0) = 0, M(x,y,t) > 0, (ii) M(x,y,t) = 1, for all t > 0 if and only if x=y, (iii) M(x,y,t) = M(y,x,t),

 $(iv) \ M(x,y,t) \ ^{*} M(\ y,z,s) \leq \ M(\ x,z,\ t+s),$

(v) $M(x,y,t) : [0,\infty) \rightarrow [0,1]$ is left continuous.

Definition 1.4 [4] A sequence $\{x_n\}$ in a fuzzy metric space (X,M,*) is called a Cauchy Sequence if , $\lim_{n\to\infty} M(X_{n+p},X_n,t) = 1$ for every t.>0 and for each p>0. A fuzzy metric space(X, M,*) is Complete if ,every Cauchy sequence in X converges in X.

Definition 1.5 [4] A sequence $\{X_n\}$ in a fuzzy metric space (X,M,*) is said to be Convergent to x in X if , $\lim_{n\to\infty} M(X_n,X,t) = 1$, for each t>0.

Definition 1.6 [4] Two self mappings P and Q of a fuzzy metric space (X,M,*) are said to be Compatible , if $\lim_{n\to\infty} M(PQx_n,QPx_n,t) = 1$ whenever $\{x_n\}$ is a sequence such that $\lim_{n\to\infty} Px_n = \lim_{n\to\infty} Qx_n = z$, for some z in X.

Definition 1.7 [1] Self mappings P and Q of a fuzzy metric space (X, M, *) are said to be Compatible of type (A) if $\lim_{n\to\infty} M (PQx_n, QQx, t) = \lim_{n\to\infty} (QPx_n, PPx_n, t) = 1$ for all t>0, whenever $\{x_n\}$ is a sequence such that $\lim_{n\to\infty} Px_n = \lim_{n\to\infty} Qx_n = z$, for some z in X.

Definition 1.8 [5] Self mappings P and Q of a fuzzy metric space are said to be compatible of type (A-1), if $\lim_{n\to\infty} (QPx_n, PPx_n, t) = 1$ for all t>0, whenever $\{x_n\}$ is a sequence such that $\lim_{n\to\infty} Px_n = \lim_{n\to\infty} Qx_n = z$, for some z in X.

Lemma 1.10 [2] If for two points x, y in X and a positive number k < 1 M(x,y,kt) \ge M(x,y,t), then x = y. Next we give some properties of compatible mappings of type (A-1) which will be used in our main theorem.

Proposition 1.11[7] Let S and T be self maps of an FM- space X. If the pair (S,T) are Compatible of type (A-1) and Sz = Tz for some z in X then STz = TTz.

Proposition 1.12[7] Let S and T be self maps of an FM –space X with t*t >t for all t in [0,1]. If the pair (S,T) are compatible of type (A-1) and $Sx_n,Tx_n \rightarrow z$ for some z in X and a sequence $\{x_n\}$ in X then $TTx_n \rightarrow Sz$ if S is continuous at z.

Proposition 1.13 [7] Let S and T be self maps of an FM- space X. If the pair (S,T) are Compatible of type (A-1) and Sz = Tz for some z in X then TSz = SSz.

Main Result

We prove the following theorem.

Theorem 2.1 : Let A ,B, S and T be self maps on a complete fuzzy metric space (X, M, *) where * is continuous tnorm defined by $a^*b = \min \{a,b\}$ satisfying the following conditions (i). $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$ (ii). S and T are continuous. (iii). For each x, y ϵX and t > 0,

 $M(Ax, By,t) \geq \phi[\min\{M(Sx, Ty,t) . M(By, Sx,t)\}, \frac{1}{2}\{M(Ax, Ty,t) + M(By, Ay, t)\}]$

Where $\phi : [0,1] \rightarrow [0,1]$ is a continuous function such that $\phi(1) = 1$, $\phi(0) = 0$

and $\phi(a) > a$, for each 0 < a < 1.

If (A,S) and (B,T) are compatible mappings of type (A-1), then A,B,S and T have a unique common fixed point in X.

Proof: Let $x_0 \in X$ be any arbitrary point. Then there exist x_1 and $x_2 \in X$ such that $Ax_0 = Tx_1$ and $Bx_1 = Sx_2$

Thus , we can construct a sequence a sequence $\{y_n\}$ and $\{x_n\}$ in X such that

 $y_{2n+1} = Ax_{2n} = Tx_{2n+1}$,

 $y_{2n+2} = Bx_{2n+1} = Sx_{2n+2}$, for n = 0, 1, 2, ...

Then, by (iii) , put $x = x_{2n}$ and $y = x_{2n+1}$ we get

 $M(Ax_{2n}, Bx_{2n+!}, t) \ge \emptyset \ [\min \{ M(Sx_{2n}, Tx_{2n+1}, t) . M(Bx_{2n}, Sx_{2n+1}, t) \},\$

 $\frac{1}{2} \{ M(Ax_{2n}, Tx_{2n+1}, t) + M(Bx_{2n+1}, Ax_{2n+1}, t) \}]$

 $M(y_{2n+1}, y_{2n+2}, t) \geq \emptyset \ [\ min \ \{M \ (\ y_{2n}, \ y_{2n+1}, t) \ . \ M(y_{2n+2}, \ y_{2n}, t) \ \},$

 $\frac{1}{2} \{ M(y_{2n+1}, y_{2n+1}, t) + M(y_{2n+2}, y_{2n+2}, t) \}]$

 $M(y_{2n+1}, y_{2n+2}, t) \ge \emptyset \ [\ min \ \{ \ M \ (\ y_{2n}, \ y_{2n+1}, t) \ . \ M(y_{2n+2}, \ y_{2n}, t) \ \}, 1 \ \}]$

Hence , by the definition of \emptyset , we get

 $M(y_{2n+1}, y_{2n+2}, t) \ge M(y_{2n}, y_{2n+1}, t)$

Similarly, we have

 $M(y_{2n+2}, y_{2n+3}, t) \geq M(y_{2n+1}, y_{2n+2}, t),$

In general

 $M(y_{n+1}, y_n, t) \ge M(y_n, y_{n-1}, t)$

Therefore, { $M(y_{n+1,}y_n\!,\!t)$ } is an increasing sequence of positive real numbers , in [0,1] and tends to limit $L\le 1$. If $L\!<\!l$ then

 $M(y_{n+1},y_n,t) \ge M(y_n, y_{n-1},t)$. On letting $n \rightarrow \infty$ we get

 $\lim_{n \to \infty} M(y_{n+1}, y_n, t) \geq \emptyset (\lim_{n \to \infty} M(y_n, y_{n-1}, t))$

 $L \ge \emptyset(L) = L$ (Since $\emptyset(a) > a$), a contradiction.

Now for any positive integer m,

 $M(y_n, y_{n+m}, t) \ge M(y_n, y_{n+1}, t/m) * M(y_{n+1}, y_{n+2}, t/m) * \dots * \dots * M(y_{n+m-1}, y_{n+m}, t/m)$

Letting $n \rightarrow \infty$, we have

 $\lim_{n\to\infty} M(y_n, y_{n+m}, t) = 1*1*1*...*1 = 1.$

Thus ,	
$lim_{n\to\infty}M(y_n,y_{n+m},t)=1$	
This shows that $\{y_n\}$ is a Cauchy sequence in X , which is complete .	
Therefore , $\{y_n\}$ converges to a point z_1 in X . Hence the subsequence $\{Ax_{2n}\}, \{Sx_{2n}\}, $	
${Tx_{2n+!}}$ and ${Bx_{2n+1}}$ also converges to z_1 .	
Since, (A,S) and (B,T) are Compatible mappings of type (A-1), and	
From proposition 1.12, we have	
$AAx_{2n} \rightarrow Sz_1.$	(1)
$BBx_{2n+1} \rightarrow Tz_1$	(2)
Now, by (iii),	
$ \begin{aligned} M(AAx_{2n}, BBx_{2n+1}, t) &\geq \ \emptyset \ [\ min \ \{M(SAx_{2n}, TBx_{2n+1}, t) \ . \ M(BBx_{2n}, SAx_{2n}, t) \ \}, \ \frac{1}{2} \ \{ \ M(AAx_{2n}, TABx_{2n+1}, t) \} \end{bmatrix} \end{aligned} $	$\mathbf{B}\mathbf{x}_{2n},\mathbf{t})+\mathbf{M}(\mathbf{B}\mathbf{B}\mathbf{x}_{2n+1},$
Now, letting $n \rightarrow \infty$ and using (1),(2) and proposition 1.11, we get	
$M(Sz_{1,}Tz_{1,}t) \ge \emptyset [\min\{M(Sz_{1,}Tz_{1,}t), M(Tz_{1,}Sz_{1,}t)\}, \frac{1}{2}\{M(Sz_{1,}Tz_{1,}t) + M(Tz_{1,}Sz_{1,}t)\}]$	
$M(Sz_{1,}Tz_{1,}t) \ge \emptyset \ [\ \min \ \{ \ M(Sz_{1,}Tz_{1,}t) \ , \ 1 \ \} \]$	
$M(Sz_1,Tz_1,t) \geq M(Sz_1,Tz_1,t)$	
It follows that $Sz_1 = Tz_1$	(3)
Now by (iii) putting $x = z_1$ and $y = Bx_{2n+1}$, we get	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Az_1, TBx_{2n+1}, t) + M($
Again taking limit as $n \rightarrow \infty$, using (1) and (2), we have	
$M(Az_{1},Tz_{1},t) \geq \emptyset \left[\min\{M(Sz_{1},Tz_{1},t) . M(Tz_{1},Sz_{1},t)\}, \frac{1}{2} \left\{ M(Az_{1},Tz_{1},t) + M(Tz_{1},Az_{1},t) \right\} \right]$	
$M(Az_{1,}Tz_{1},t) \geq M(Sz_{1},Tz_{1},t)$	
It follows that $Az_1 = Sz_1$	(4)
Now by (iii) putting $x = z_1$ and $y = z_1$, we get	
$M(Az_1, Bz_1, t) \ge \emptyset[\min\{M(Sz_1, Tz_1, t), M(Bz_1, Sz_1, t)\}, \frac{1}{2}\{M(Az_1, Tz_1, t) + M(Bz_1, Az_1, t)\}]$	
$M(Az_1, Bz_1, t) \ge \emptyset \ [\min\{M(Sz_1, Sz_1, t) \ . \ M(Bz_1 \ Az_1, t)\}, \frac{1}{2} \ \{M(Az_1, Tz_1, t) + M(Tz_1, \ Az_1, t)\}]$	
$M(Az_1, Bz_1, t) \ge \emptyset \ [\min \{ 1.M(Bz_1, Az_1, t) \}, 1 \}]$	
$M(Az_1,Bz_1,t) \geq M(Bz_1,Az_1,t)$	

Pelagia Research Library

135

It follows that $Az_1 = Bz_1$		(5)
Hence , from (3), (4) and (5) , we get		
$Az_1 = Bz_1 = Sz_1 = Tz_1$		(6)
Now , we have to show that $Bz_1 = z_1$		
From (iii) putting $x=x_{2n}$ and $y=z_1$, we get		
$M(Ax_{2n}, Bz_1, t) \ge \emptyset \text{ [min } M(Sx_{2n}, Tz_1, t).M(Bz_1, t)$	$Sx_{2n},t)$, $\frac{1}{2}$ { $M(Ax_{2n},Tz_1,t)+M(Bz_1,Az_1,t)$ }]	
Taking limit $n \rightarrow \infty$, and using (6), we get		
$M(z_1, Bz_1, t) \ge \emptyset \text{ [min{ M(z_1, Bz_1, t).M(Bz_1, z_1, t)}]}$	}, $\frac{1}{2} \{M(z_1, Bz_1, t) + M(Bz_1, Bz_1, t)\}]$	
$M(z_1,Bz,t) \geq M(z_1,Bz,t)$		
And , hence we get $z_1 = Bz_1$		
Thus we have $z_1 = Az_1 = Bz_1 = Sz_1 = Tz_1$.		
Hence z_1 is a common fixed point of A,B,S and	d T.	
Uniqueness – Let z_2 be another fixed point of A	A,B,S and T. Then	
$M(z_1,z_2,t)=M(Az_1,Bz_2,t)$		
$\geq \emptyset$ [min{ M(Sz ₁ ,Tz ₂ ,t) . M(Bz ₂ ,Sz ₁ ,t)}, ½ { M($(Az_1, Tz_2, t) + M(Bz_2, Az_2, t)\}]$	
$\geq \emptyset \; [\min \; \{ M(z_1, z_2, t) \; . M(z_2, z_1, t) \;$	}, ½ {M(z ₁ ,z ₂ ,t)+ M(z ₁ ,z ₂ ,t)}]	

 $\geq M(z_1, z_2, t)$

Therefore by lemma 1.10 ,we get $z_1 = z_2$.

Hence z₁ is the unique common fixed point of A,B ,S and T.

CONCLUSION

In this paper we introduce the concept of compatible mapping of type (A-1) in fuzzy metric space .

REFERENCES

[1] Balasubramaniam P., Murlishankar S. and Pant R.P., (2002). J. Fuzzy Math., 10,379.

[2] Cho. Y.J., Pathak H.K., kang S. M., (1998). Fuzzy sets and systems, 93 99-111.

- [3] Cho. Y.J., (1997). J. Fuzzy Math., 949-962.
- [4] George A. and Veeramani P., (1997). Fuzzy sets and systems, 365-368.
- [5] Jungck G., (1986). Int. J. Math.Sci.9(4), 771-779.
- [6] Jain A., Badshah V.H., and Prasad S.K., (2012). Int. J. 523-526.
- [7] Khan M.S., Pathak H.K. and George Reny, (2007). Int. Math. Forum2(11), 515-524.
- [8] Kramosil and J. Machalek, (1975). Kybernetika, 336-344.
- [9] Pathak H.K. and Khan M.S., April 1997. Indian J. pure appl. Math. 28(4), 477-485,
- [10] Sessa S., (**1982**).On a weak commutativity condition of mappings in a fixed point considerations, *Publ. Int. Math. Debre.*, 149-153.
- [11] Sharma S., (**2000**). *Fuzzy sets and system*, 115, 471.

- [12] Singh B. and Chauhan M.S., (2000) Fuzzy sets and system, 471-475.
- [13] Vasuki R. (1999). Indian J. Pure and Appl. Math., 419.
- [14] Zadeh L.A., (1965). Inform and control, 89, 338.