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ABSTRACT

The purpose of this paper is to obtain common fixed point theorem for compatible maps of type (A-1) on complete
fuzzy metric space .Our result improves the result of Khan M.S. [ 7].
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INTRODUCTION

The concept of fuzzy sets was first given by Zafj&H] in 1965. Then Kramosil and Michalek[8] inthaced the
concept of fuzzy metric space and George andareani[4] modified the notion of fuzzy metric wittelp of
continuous t-norms.

The improving commutativity in fixed point theorerby using weakly commuting maps in metric spaces wa
initiated by Sessa [10] .Later on , this method emlsirged to compatible maps by Jungck[5] . Ch¢[@toduced
the concept of compatible maps of typ@) énd compatible maps of typp) (in fuzzy metric space. Singhet.al.[12]
proved fixed pointtheorems in a fuzzy metric spaRecently in 2012 Jain et.al.[6] proved variouseéixpoint
theorems using the concept of semi compatible nmgppi

The concept of type A-compatible and S-compatibées given by Pathak and Khan [7]. Pathak et.alr¢@hmed
A-compatible and S- compatible as compatible magpiof type (A-1) and compatible mappings of type2(A
respectively.

B.Singh et.al.[12] proved fixed point theoremdumzy metric space and Menger space using theepbrod semi-
compatibility ,weak compatibility and compatibilibf type @) respectively. The idea of fuzzy 2- metric spand a
fuzzy 3- metric space were used by

Sushil Sharma [11] and obtained some fruitful ressul

Preliminaries
Definition 1.1 [13 ] Let X be any set . A Fuzzy set A in X is a funatiwith domain X and Values in [ 0,1].
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Definition 1.2[4] A Binary operation * : [0,1] x[0,1}»[0,1] is called a continuous t-norms if an topolmjimonoid
with unit 1 such that a%c*d whenever ac and kd , for all a,b,c,d in [0,1].

Definition 1.3[ 4] The triplet ( X,M, *) is said to be a Fuzzy metsigace if , X is an arbitrary set , * is a contingio
t- norm and M is a fuzzy set orf%{00) satisfying the following conditions; for all x,yia X and s,t > 0,

(i) M(x,y,0) =0, M(x,y,t)>0,

(i) M(x,y,t) =1 ,for all t > 0 if and only if x=y,

(i) M(x,y,t) = M(y.xt),

(iv) M(x,y,t) * M(y,z,8)< M(x,z, t+s),

(v) M(x,y,t) : [ 000 ) —[0,1] is left continuous.

Definition 1.4 [4] A sequence {§{ in a fuzzy metric space (X,M,*) is called a Cauch
Sequence if , lim_., M ( X;:pXn,t) = 1 for every t.>0 and for each p>0.
A fuzzy metric space(X, M,*) is Complete if ,eveDauchy sequence in X converges in X.

Definition 1.5 [4] A sequence {X} in a fuzzy metric space ( X,M,*) is said to @®nvergent to x in X if,
lim,_..M( X,,,X, t) =1, for each t>0.

Definition 1.6 [4] Two self mappings P and Q of a fuzzy metric spacd(*) are said to be Compatible , if
lim,_..M(PQx,, QPx,t) =1 whenever {)} is a sequence such that
liMm,_..Px, = lim,_, Qx,=2z,forsomezinX.

Definition 1.7 [1] Self mappings P and Q of a fuzzy metric spaceMX¥) are said to be Compatible of type (A) if
liMp_e M (PQX%, QOX, 1) =Ilim,_.(QPx, PPx,t) = 1 for all
t>0, whenever {3} is a sequence such that }imPx, = lim_., Qx, =z, for some z in X.

Definition 1.8 [ 5] Self mappings P and Q of a fuzzy metric space @itkte be compatible oftype (A-1) , if lim
n—a(QPX%, PPx,t) = 1 for all t>0, whenever {} is a sequence such that }imPx, = lim,_. Qx, =2z, for some z
in X.

Lemma 1.9[12 ] Let {y,} is a sequence in an FM- space . If there exigiesitive number k<1 such that My
Y+t KE) > M( Yns1, Voul) , >0, ne N, then {y}is a Cauchy sequence in X .

Lemma 1.10 [ 2] If for two points X, y in X and a positive numberKL M(x,y,kt)> M(x,y,t) , then x = y. Next we
give some properties of compatible mappings of {¥pé&) which will be used in our main theorem.

Proposition 1.11[7] Let S and T be self maps of an FM- space X . & ghir (S,T) are Compatible of type (A-1)
and Sz = Tz for some z in X then STz =TTz.

Proposition 1.12[7] Let S and T be self maps of an FM —space X wittkrt*for all t in [0,1] . If the pair (S,T) are
compatible of type (A-1) and S$Xx,—z for some z in Xand a sequence}{x X then TTx, —»Sz if S is
continuous at z.

Proposition 1.13 [7] Let S and T be self maps of an FM- space X . # ghir (S,T) are Compatible of type (A-1)
and Sz = Tz for some z in X then TSz = SSz .

Main Result
We prove the following theorem.

Theorem 2.1 :Let A ,B, S and T be self maps on a complete fumeyric space (X, M, *) where * is continuous t-
norm defined by a*b = min {a,b} satisfying thalbwing conditions

). AX) € T(X) and B(X)< S(X)

(i)). S and T are continuous.

(iii). For each x,y¢X andt >0,

M(AX ,By,t) > @[ min{M(Sx, Ty,t) . M(BYy, Sx,t) }, 2{M(AX,Ty,t ) +M(By, Ay ,t) }]
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Where ¢ : [0,1]-[0,1] is a continuous function such thiafl) = 1 ¢(0) =0
and ¢(a) > a, foreach O<a<l.

If (A,S) and (B,T) are compatible mappings ofay@-1) , then A,B ,S and T have a unique comnixedf point
in X.

Proof : Let x,e X be any arbitary point. Then there exist and % € X such that Ax=Tx and Bx = Sx
Thus , we can construct a sequence a sequepcar{g {x.} in X such that
Yon+1= AXon= TXan+1,

Von+2= BXons1= S¥ns2, for n=0,1,2,...

Then, by (iii) , put x = %, and y = %,.1 we get

M( AXzn , BXonss, 1) > @ [ min { M (Sxan, TXonea, £) - M (BXen, S¥neat) },

Y2 { M(AX2n, TXons+t) + M( BXons1, AXoneas 1) 3]

M(Yzn+1Y 2042, 1) = @ [ MIn{M (y2n, Yonst) - M(Yans2, Yont) },

Y2 { M( Yans1, Yonest) + M(Yanez \Yoneat)}]

M(Yzn1Y 2ne2, 1) = @ [MIn {M (Yzn, Yonest) - M(Yans2, Yonit) }, 1]

Hence , by the definition @ , we get

M(Yzn+1Y 2n+2, 1) 2 M (Yan, Yansst)

Similarly , we have

M(Yzn+2, Yons3 1) = M(Yan+1,Yansat),

In general

M(Yn+2Ynt) = M(Yn, Yo-1.)

Therefore, { M(%+1Yn}) } is an increasing sequence of positive real bera ,
in [0,1] and tends to limit I< 1 . If L <1 then

MY n+1Ynt) = MY, Vn-i,t) . On letting Aro we get

iMoo M(Yne1,Yn) = @ (limnos M (Yo, Yout)

L> ¢ (L) =L (Sincep(a) > a), a contradiction .

Now for any positive integer m

MY Yiems 1) > M( YiYien,t/ M) * M(Yna, Yosz £/M) * o *00% MY nem -1Ynem t/M)
Letting n—oo ,we have

My M(Yny Yoo 1) = 1¥1%1%,%1 =1,
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Thus,

iMoo MY, Yoem t) =1

This shows that {3} is a Cauchy sequence in X , which is complete .
Therefore , {y} converges to a pointzn X . Hence the subsequence §p{SX o},
{TX 2n+ @and {Bxzn+1} also converges to;z

Since , (A,S) and (B,T) are Compatible mappingty/pé (A-1) , and

From proposition 1.12 , we have

AAX— Sz. 1)
BBX2n+1—>T21 (2)
Now, by (iii),

M(AAX ony BBXon+1, t) >0 [mln {M(SAXZn, TBXon+1 t) . M(BBXZn,SAXZn,t) }, %3 { M(AAX 21 TBXZn,t) + M(BBX2n+1,
ABXZI’H‘!vt)}]

Now, letting r~o and using (1) ,(2) and proposition 1.11, we get

M (Sz, Tz3,t) > @ [ min{M(Sz, Tz;t). M(Tz, Sz t) }, Y2 {(M(Sz, Tz 1) + M(T2,,Sz,t) }]

M (Sz Tzit) =@ [min{M(Sz; Tz;1), 1}]

M(Sz Tz.t) > M(Sz Tz1})

It follows that Sz= Tz 3)
Now by (iii) putting x =z and y = Bx,.+1, We get

M(Azl, BBXon+1,t ) >0 [ min { M(Szl, TBX2n+1,t) . M(BBX2n+1, Sa,t) }, %3 { M(Azl,TBX2n+!,t) + M(
BBX2n+:LvABX 2n+1at) } ]

Again taking limit as A» , using (1) and (2) , we have

M(AZ1,Tz,t) > @ [Min{M(Sz4,Tz,t) .M(Tz,5z,t)}, ¥2 {M(AZ1,Tz,t) + M(Tz,Az,1)}]

M(Azy Tz;t) > M(Sz,Tzt)

It follows that Az= Sz (4)
Now by (iii) putting x = zand y= 27, we get

M(Az4, Bz,t) > @[min{M(Sz,Tzy,t). M(Bz,,Sz,t) }, Y2 {M(Az ,Tz,t) +M(Bz1,Az3,1)}]

M(Az1,Bz,t) > @ [min{M(Sz1,Sz,t) . M(Bz Azy,t)}, %2 {M(AZ ,Tzy,t) + M(Tz, Azy,D)}]

M(Az,,Bz;,t) > @ [ min {1.M(Bz;,Az;,1)},1}]

M(Az1,Bz;,t) > M(Bz1,Azy,t)
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It follows that Az = Bz (5)

Hence , from (3), (4) and (5) , we get

Az, =Bz =Sz =Tz (6)

Now , we have to show that Bzz

From (iii) putting x=%, and y =z we get

M(AX 2n,Bz1,t) = @ [Min{ M(SX2p, T21,t).M(Bz1,S¥on, 1)}, Y2{M(AX 2, TZ;,1)+M(Bz,AZ4,1)}]

Taking limit n—oo , and using (6), we get

M (z1,Bz,t) > @ [min{ M(z1,Bzy,t).M(Bzy,23,1)}, ¥ {M(z1,Bz1,t)+M(Bz1,Bzy,1)}]

M(z1,Bz,t) = M(z1,Bz,t)

And , hence we get 12 Bz,

Thus we have z=Az, =Bz, =Sz=Tz;

Hence z is a common fixed point of A,B,S and T.

Uniqueness -Let z be another fixed point of A,B,S and T. Then

M(Zl,ZZ,t) = M(AZ]_,BZz,t)

> @[ min{ M(Sz,,Tz,t) . M(B2,Sz,1)}, ¥2 { M(AZ1,T2,1)+M(Bz,,AZ,,1)}]

> @ [min {M(Z1,2,,t) .M(2;,2y,1) } %2 {M(zZ 1,25,0)+ M(z1,2,)}]

> M(Zl,ZZ,t)

Therefore by lemma 1.10 ,we get=z,

Hence zis the uniqgue common fixed point of AB ,Sand T.
CONCLUSION

In this paper we introduce the concept of compatibapping of typ€A-1) in fuzzy metric space .
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