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ABSTRACT 
 
The purpose of this paper is to obtain common fixed point theorem for compatible maps of type (A-1) on complete 
fuzzy metric space .Our result improves the result of Khan M.S. [ 7]. 
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INTRODUCTION 
 

The concept of fuzzy sets was first given by Zadeh [ 14] in 1965. Then Kramosil and Michalek[8]  introduced the 
concept of fuzzy metric space  and  George and Veeramani[4]  modified  the notion of fuzzy metric with help of 
continuous t-norms. 
 
The improving commutativity in fixed point theorems by using weakly commuting maps  in metric space was 
initiated by Sessa [10] .Later on , this method was enlarged to compatible maps by Jungck[5] . Cho[2,3] introduced 
the concept of compatible maps of type  (α) and compatible maps of type (β) in fuzzy metric space. Singhet.al.[12] 
proved fixed pointtheorems in a fuzzy metric space. Recently in 2012 Jain et.al.[6] proved various fixed point 
theorems using the concept of semi compatible mapping 
 
The concept of type A-compatible and S-compatible was given by Pathak and Khan [7]. Pathak et.al. [9] renamed 
A-compatible and S- compatible as compatible mappings of type (A-1) and compatible mappings of type (A-2) 
respectively. 
            
B.Singh et.al.[12]  proved fixed  point theorems in fuzzy metric space and Menger space using the concept of semi-
compatibility ,weak compatibility and compatibility of type (β) respectively. The idea of fuzzy 2- metric space and 
fuzzy 3- metric space were used by    
 
Sushil Sharma [11] and obtained some fruitful results.  
 
Preliminaries 
Definition 1.1 [13 ] Let X be any set . A Fuzzy set A in X is a function with domain X and  Values in [ 0,1]. 
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Definition 1.2[4] A Binary operation * : [0,1] ×[0,1] →[0,1] is called a continuous t-norms if an topological monoid 
with unit 1 such that a*b≤ c*d whenever a≤c and b≤d , for all a,b,c,d in  [0,1]. 
 
Definition 1.3[ 4]  The triplet ( X,M, *) is said to be a Fuzzy metric space if , X is an arbitrary set , * is a continuous 
t- norm and M is a fuzzy set on X2×(0,∞)  satisfying the following conditions; for all x,y,z in X and  s,t > 0, 
(i) M(x,y,0) = 0 , M(x,y,t)>0, 
(ii)  M(x,y,t) = 1 ,for all t > 0 if and only if x=y, 
(iii)  M(x,y,t)  =  M(y,x,t), 
(iv) M(x,y,t) * M( y,z,s) ≤  M( x,z, t+s), 
(v) M(x,y,t) : [ 0,∞ ) →[0,1] is left continuous. 
  
Definition 1.4 [4] A sequence {xn}    in a fuzzy metric space (X,M,*) is called a Cauchy    
Sequence if , lim n→∞ M ( Xn+p,Xn,t) = 1 for every t.>0 and for each p>0. 
A fuzzy metric space(X, M,*) is Complete  if ,every Cauchy sequence in X  converges in X. 
 
Definition 1.5 [4]  A sequence {Xn } in a fuzzy metric space ( X,M,*)  is said to be Convergent   to  x in X if , 
limn→∞M( Xn,X, t) = 1 , for each t>0. 
 
Definition 1.6 [4] Two self mappings P and Q of a fuzzy metric space (X,M,*)  are said to be Compatible , if 
limn→∞M(PQxn,QPxn,t) =1 whenever {xn} is a sequence such that 
limn→∞Pxn =   limn→∞ Qxn = z , for some z in X . 
 
Definition 1.7 [1]  Self mappings P and Q of a fuzzy metric space (X, M, *) are said to be Compatible of type (A)  if  
limn→∞ M ( PQxn, QQx , t)  = lim n→∞(QPxn, PPxn,t) = 1 for all 
 t>0, whenever {xn} is a sequence such that   limn→∞Pxn =   limn→∞ Qxn = z , for some z in X. 
 
Definition 1.8 [ 5] Self mappings P and Q of a fuzzy metric space are said to be compatible of   type (A-1) , if  lim 
n→∞(QPxn, PPxn,t) = 1 for all t>0, whenever {xn} is a sequence such that   limn→∞Pxn =   limn→∞ Qxn = z , for some z 
in X. 
 
Lemma 1.9[12 ]  Let  {yn} is a sequence in an FM- space . If there exists a positive number k<1 such that    M(yn+2, 
yn+1 , kt)  ≥  M( yn+1, yn,t) ,  t>0 , n � N,  then  {yn} is a  Cauchy sequence  in X . 
 
Lemma 1.10 [ 2]   If for two points x, y in X and a positive number k < 1 M(x,y,kt) ≥ M(x,y,t) , then x = y.  Next we 
give some properties of compatible mappings of type (A-1)  which will be  used in our main theorem. 
 
Proposition 1.11[7]  Let S and T be self maps of an FM- space X . If  the pair (S,T)  are Compatible  of  type (A-1)  
and Sz =  Tz for some z in X then STz = TTz. 
  
Proposition 1.12[7]  Let S and T be self maps of an FM –space X with t*t >t for all t in  [0,1] . If  the pair (S,T)  are 
compatible of type (A-1) and Sxn,Txn→z for some z in Xand  a sequence {xn} in X then TTxn →Sz if S is 
continuous at z. 
  
Proposition 1.13 [7]  Let S and T be self maps of an FM- space X . If  the pair (S,T)  are Compatible  of  type (A-1)  
and Sz =  Tz for some z in X then TSz = SSz . 
  
Main Result  
We prove the following theorem. 
  
Theorem 2.1 : Let A ,B, S and T be self maps on a complete fuzzy metric space (X, M, *) where * is continuous  t- 
norm defined  by  a*b = min {a,b}  satisfying the following conditions  
(i). A(X) ⊆ T(X)  and  B(X) ⊆ S(X) 
(ii). S and T are continuous. 
(iii). For each x,y �X  and t > 0 , 
 
M(Ax ,By,t)  ≥   �[ min{M(Sx, Ty,t) . M(By, Sx,t) }, ½{M(Ax,Ty,t ) +M(By, Ay ,t) } ] 
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Where 	� : [0,1]→[0,1] is a continuous function such that �(1) = 1 ,�(0) =0 
 
and   �(a) > a , for each  0<a<1 . 
 
If  (A,S) and (B,T)  are compatible mappings of type (A-1) , then A,B ,S and T have  a unique common fixed point 
in X. 
 
Proof : Let x0	�		�		��		
�			arbitary point.  Then there exist x1  and x2 ∈ � such  that Ax0 = Tx1 and  Bx1 = Sx2  
 
Thus , we can construct a sequence a sequence {yn} and {xn} in X such that 
 
y2n+1= Ax2n = Tx2n+1 , 
 
y2n+2 = Bx2n+1 = Sx2n+2 ,   for  n = 0,1,2 ,… 
 
Then, by (iii) , put x = x2n  and y = x2n+1 we get 
 
M( Ax2n , Bx2n+!, t) ≥ ∅	[ min { M (Sx2n, Tx2n+1, t) . M (Bx2n, Sx2n+1,t) }, 
 
½  { M(Ax2n, Tx2n+1,t)  +  M( Bx2n+1 , Ax2n+1, t) }] 
 
M(y2n+1,y 2n+2 , t)  ≥ 	∅	[ min {M ( y2n, y2n+1,t) . M(y2n+2 , y2n,t) }, 
 
½ { M( y2n+1, y2n+1,t) + M(y2n+2 ,y2n+2,t)}] 
 
M(y2n+1,y 2n+2 , t)  ≥ 	∅ [ min { M ( y2n, y2n+1,t) . M(y2n+2 , y2n,t) }, 1 }] 
 
Hence , by the definition of ∅ , we get  
 
M(y2n+1,y 2n+2 , t) ≥	M (y2n, y2n+1,t)  
 
Similarly , we  have  
 
M(y2n+2 , y2n+3 ,t)  ≥	M(y2n+1,y2n+2,t), 
 
In general  
 
M(yn+1,yn,t) ≥  M(yn, yn-1,t) 
 
Therefore, { M(yn+1,yn,t) } is an increasing sequence of positive real numbers , 
in [0,1] and tends to limit L ≤ 1 . If L <1 then  
 
M(yn+1,yn,t) ≥  M(yn, yn-1,t) . On letting n→∞  we get  
 
limn→∞ M(yn+1 ,yn,t)  ≥ 	∅	( limn→∞ M (yn, yn-1,t)  
 
L≥ 	∅	(�) = L ( Since ∅(	) > 		)	, a contradiction . 
 
Now for any positive integer m , 
 
M(yn,yn+m, ,t) ≥ M( yn,yn+1,t ⁄ m) * M(yn+1, yn+2 , t ⁄ m) * … *…* M(y n+m -1,yn+m, t ⁄ m) 
 
Letting  n→∞ ,we have 
 
limn→∞ M(yn, yn+m, t) = 1*1*1*…*1 =1. 
 



Vandana Gupta et al                                Adv. Appl. Sci. Res., 2016, 7(2):132-137        
 _____________________________________________________________________________ 

135 
Pelagia Research Library 

Thus , 
 
limn→∞ M(yn, yn+m, t) = 1 
 
This shows that {yn} is a Cauchy sequence in X , which is complete . 
 
Therefore , {yn} converges to a point z1  in X . Hence the subsequence {Ax2n},{Sx 2n}, 
 
{Tx 2n+!} and {Bx2n+1} also converges to z1. 
 
Since , (A,S) and (B,T) are Compatible mappings of type (A-1) , and  
 
From proposition 1.12 , we have 
 
AAx2n→  Sz1.                                                         (1) 
 
BBx2n+1 →Tz1                                                                                   (2) 
 
Now, by (iii), 
 
M(AAx 2n, BBx2n+1, t) ≥  ∅	[ min {M(SAx2n, TBx2n+!, t) . M(BBx2n,SAx2n,t) }, ½ { M(AAx 2n, TBx2n,t) + M(BBx2n+1, 
ABx2n+!,t)}] 
 
Now, letting n→∞ and using (1) ,(2) and proposition 1.11, we get  
 
M (Sz1, Tz1,t) ≥ ∅ [ min{M(Sz1 ,Tz1,t). M(Tz1, Sz1,t) }, ½ {M(Sz1,Tz1,t) + M(Tz1,Sz1,t) }]                                      
 
M (Sz1, Tz1,t) ≥ ∅ [ min { M(Sz1 ,Tz1,t) , 1 } ] 
 
M(Sz1 ,Tz1,t)  ≥  M(Sz1 ,Tz1,t) 
 
It follows that    Sz1= Tz1                                          (3) 
 
Now by (iii)  putting x = z1  and y = Bx2n+1 , we get 
 
M(Az1, BBx2n+1,t ) ≥ ∅ [ min { M(Sz1, TBx2n+1,t) . M(BBx2n+1, Sz1,t) }, ½ { M(Az1,TBx2n+!,t) + M( 
BBx2n+1,ABX2n+1,t) } ] 
 
Again taking limit as n→∞ , using (1) and (2) , we have 
 
M(Az1,Tz1,t)  ≥  ∅ [min{M(Sz1,Tz1,t) .M(Tz1,Sz1,t)}, ½ {M(Az 1,Tz1,t) + M(Tz1,Az1,t)}]                        
 
M(Az1, Tz1,t )  ≥    M(Sz1,Tz1,t)   
 
It follows that Az1= Sz1                                       (4) 
 
Now by (iii) putting  x = z1and  y= z1 , we get  
 
M(Az1, Bz1,t) ≥ ∅[min{M(Sz1,Tz1,t). M(Bz1,Sz1,t) }, ½ {M(Az 1,Tz1,t) +M(Bz1,Az1,t)}]  
 
M(Az1,Bz1,t) ≥ ∅ [min{M(Sz1,Sz1,t) . M(Bz1 Az1,t)}, ½ {M(Az 1,Tz1,t) + M(Tz1, Az1,,t)}] 
 
M(Az1,Bz1,t)  ≥ ∅ [ min {1.M(Bz1,Az1,t)},1}] 
 
M(Az1,Bz1,t)  ≥	 M(Bz1,Az1,t)  
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It follows that  Az1 = Bz1                                        (5) 
 
Hence , from (3), (4) and (5) , we get  
 
Az1 = Bz1 =Sz1 =Tz1                                                 (6) 
 
Now , we have to show that   Bz1 =z1 

 
From (iii) putting x=x2n  and y =z1 ,we get  
 
M(Ax2n,Bz1,t) ≥ ∅ [min{ M(Sx2n,Tz1,t).M(Bz1,Sx2n,t)},½{M(Ax 2n,Tz1,t)+M(Bz1,Az1,t)}] 
 
Taking limit n→∞ , and using (6), we get  
 
M (z1,Bz1,t)  ≥ ∅ [min{ M(z1,Bz1,t).M(Bz1,z1,t)}, ½ {M(z1,Bz1,t)+M(Bz1,Bz1,t)}] 
 
M(z1,Bz,t)  ≥ M(z1,Bz,t)   
 
And , hence we get   z1= Bz1 

 
Thus we have  z1 =Az1 =Bz1 =Sz1=Tz1. 

 
Hence z1  is a common fixed point of A,B,S and T. 
 
Uniqueness – Let z2 be another fixed point of A,B,S and T. Then  
 
M(z1,z2,t) = M(Az1,Bz2,t) 
 
≥ ∅[ min{ M(Sz1,Tz2,t) . M(Bz2,Sz1,t)}, ½ { M(Az 1,Tz2,t)+M(Bz2,Az2,t)}] 
 
≥ ∅ [min {M(z1,z2,t) .M(z2,z1,t) }, ½ {M(z 1,z2,t)+ M(z1,z2,t)}] 
 
≥ M(z1,z2,t) 
 
Therefore by lemma 1.10 ,we get z1 =z2. 

 
Hence z1 is the unique common fixed point of A,B ,S and T. 

 
CONCLUSION 

 
In this paper we introduce the concept of compatible mapping of type (A-1) in fuzzy metric space . 
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