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ABSTRACT  
 
In this paper, we concentrate on the study of heat transfer by natural convection in a saturated porous medium 
including Radiation confined in a vertical conical annular porous medium. In this study, Finite Element Method 
(FEM) has been used to solve the governing partial differential equations. Results are presented interms of average 

Nusselt number ( Nu ), streamlines and Isothermal lines for various values of Rayleigh number (Ra), Cone angle 
(CA) Radius ratio (Rr) and Radiation parameter (Rd). 
 
Keywords: Vertical conical annular porous medium, Natural convection, Streamlines and Isothermal Cone angle, 
Radius ratio, Radiation parameter. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

Study of buoyancy – induced convection flow and heat transfer in fluid – saturated porous medium has recently 
attracted considerable interest because of a number of important energy – related engineering and geophysical 
applications such as thermal insulation of buildings, geothermal engineering, and enhanced recovery of petroleum 
resources, filtration processes, ground water pollution and sensible heat storage beds. 
 
Free convection about a vertical flat plate embedded in a porous medium at high Rayleigh numbers was analyzed by 
Cheng and Minkowycz [1]. Na and Pop [2] studied free convection flow past a vertical flat plate maintained at a 
nonuniform surface temperature embemdded  in a saturated porous medium and presented numerical results by 
employing a two-point finite difference method. [3] studied the free convection from a vertical plate embedded in 
saturated porous mediums. 
 
In the aspect of vertical cylinder, Minkowycz and Cheng [4] were the first authors to present free convection about 
vertical cylinder embedded in a porous medium. Yücel [5] employed an implicit finite difference method to examine 
the free convection about a vertical cylinder in a porous medium.  [6] used finite difference method and improved 
perturbation solution for free convection on a vertical cylinder embedded in a saturated porous medium.   
 
Merkin [7] investigated the free convection from an isothermal vertical cylinder in a saturated porous medium. 
Bassom and Rees [8] extended the work of Merkin [7] to investigate the variable wall temperature case. The 
governing equations are also solved numerically using the Keller box method. The natural convection, the existence 
of the temperature difference between the surface and the ambient causes the radiation effect may become 
important. Hossain and pop [9] investigated the effect of radiation on Darcy’s buoyancy induced flow along an in 
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dined surface placed in porous media employing the implicit finite difference method together with Keller box 
elimination technique. Steady two – dimensional natural convection flow through a porous medium bounded by a 
vertical infinite porous plate in the presence of radiation is considered by Raptis [10]. 
 
Heat transfer by mixed convection in laminar boundary-layer flow has been analyzed extensively for flat plate 
geometry in saturated porous media in vertical, horizontal, and inclined orientations. Typical studies can be found, 
for example, in [11-14]. On the other hand, heat transfer by simultaneous natural convection and thermal radiation 
has not received as much attention. This is unfortunate because thermal radiation will play a significant role in the 
overall surface heat transfer in situations where convection heat transfer coefficients are small, as is the case of 
natural convection. Viskanta and Grosh [15] considered the effects of thermal radiation on the temperature 
distribution and the heat transfer in an absorbing and emitting media over a wedge by using the Rosseland diffusion 
approximation. Natural convection radiation over horizontal surfaces was presented by Ali et al. [16].  Bakier and 
Gorla [17] considered the effect of thermal radiation on the mixed convection from horizontal surfaces in saturated 
porous media. Hassain and Ress [18] investigated the natural convection, radiation interaction on boundary layer 
along an isothermal plate inclined at a small angle to the horizontal. Recently A.Y. Bakier [19] investigated the 
thermal radiation effect on mixed convection from vertical surfaces in saturated porous media. Srinadh et al [20] 
investigated the MHD Free convection flow of couple stress fluid in a vertical porous layer. Gorla and Zinalabedini. 
J. Girish kumar et al [21] investigated the Mass transfer effects on MHD flows exponentially accelerated 
isothermalvertical plate in the presence of chemical reaction through porous media. K.Chand et al [22] investigated 
the Hydromagnetic oscillatory flow through a porous medium bounded by twovertical porous plates with heat 
source and soret effect. . Kumari et al. Jyoti prakash et al [23] investigated the A mathematical theorem in 
magnetothermohaline convection in porousmedium. Sravan N. Gaikwad [24] investigated the The effect of Soret 
parameter on the onset of double diffusive convectionin a Darcy porous medium saturated with couple stress fluid.  
 
2 FORMULATION OF THE PROBLEM 
A vertical annular cone of inner radius ri and outer radius r0 as depicted by schematic diagram as shown in figure (A) 
is considered to investigate the heat transfer behavior. The co-ordinate system is chosen such that the r-axis points 
towards the width and z-axis towards the height of the cone respectively. Because of the annular nature, two 
important parameters emerge which are Cone angle (CA) and Radius ratio (Rr) of the annulus. They are defined as 
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where Ht is the height of the cone. 
 
The inner surface of the cone is maintained at isothermal temperature Th and outer surface is at ambient temperature 
T ∞. It may be noted that, due to axisymmetry, a section of the annulus is sufficient for analysis purpose. 
 
We assume that the flow inside the porous medium is assumed to obey Darcy law and there is no phase change of 
fluid. The properties of the fluid and porous medium are homogeneous, isotropic and constant except for variation of 
fluid density with temperature. The fluid and porous medium are in thermal equilibrium. 
 
Continuity equation: 
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The velocity in r and z directions can be described by Darcy law as velocity in horizontal direction  
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velocity in vertical direction 
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the permeability K of porous medium can be expressed as  
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The variation of density with respect to temperature can be described by Boussinesq approximation as 
 
ρ = ρ∞ [ 1 - βT (T - T∞) ]      (2.2.5) 
 
Momentum Equation :  
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Energy equation 
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The last term in the right hand side of the equation (2.2.7) represents radiation effect. 
 
The continuity equation (2.2.1) can be satisfied by introducing the stream function ψ as 
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       (2.2.8) 
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       (2.2.9) 

 
Rosseland approximation for radiation is  
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      (2.2.10) 

The corresponding dimensional boundary conditions are 
at  r = ri ,   T = Tw , ψ = 0    (2.2.11a) 
at  r = r0 ,   T = T∞ , ψ = 0    (2.2.11b) 
 (except at z = 0) 
The new parameters arising due to cylindrical co-ordinates system are 

Non-dimensional Radius  
L

r
r =     (2.2.12a) 

Non-dimensional Height  
L

z
z =     (2.2.12b) 

Non-dimensional stream function 
Lα

ψψ =    (2.2.12c) 

Non-dimensional Temperature 
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Rayleigh number   
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β TKLg
Ra T ∆=   (2.2.12e) 

Radiation parameter   
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c
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σ 324=   (2.2.12f) 

The non-dimensional equations for the heat transfer in vertical cone are 
Momentum equation: 
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Energy equation : 
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The corresponding non-dimensional boundary conditions are 
at r = ri  , T=1  , ψ = 0                        (2.2.15) 
 
3 SOLUTION OF THE PROBLEM 
 
Applying Galerkin method to momentum equation (2.2.13) yields: 
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where Re is the residue. Considering the individual terms of equation (2.3.2) 
 
The differentiation of following term results into 
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The first term on right hand side of equation (2.3.4) can be transformed into surface integral by the application of 
Greens theorem and leads to inter-element requirement at boundaries of an element. The boundary conditions are 
incorporated in the force vector. 
 
Let us consider that the variable to be determined in the triangular area as “T”. 
 
The polynomial function for “T” can be expressed as 
 
T = α1 + α2 r + α3z      (2.3.5) 
 
The variable T has the value Ti, Tj & Tk at the nodal position i, j & k of the element. The r and z co-ordinates at 
these points are ri, rj, rk and zi, zj, zk respectively. 
 
Since T = Ni Ti + Nj Tj + Nk Tk      (2.3.6) 
 
Where Ni, Nj & Nk are shape functions given by 
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Substitution of (2.3.7) into (2.3.8) gives 
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The third term of equation (2.3.2) gives 
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Since M1 = N1, M2 = N2, M3 = N3 
 
Where M1, M2 and M3 are the area ratios of the triangle and N1, N2 and N3 are the shape functions. 
 
Replacing the shape functions in the above equation (2.3.11) gives 
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Now the momentum equation (2.3.13) leads to 
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Which is in the form of the stiffness matrix 
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Similarly application of Galerkin method to Energy equation (2.2.14) gives 
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Considering the terms individually of the above equation (2.3.15) 
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Following the same above procedure 
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The remaining two terms of energy equation can be evaluated in similar fashion of Momentum equation gives 
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Thus the stiffness matrix of Energy equation (2.3.14) is given by: 
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at r = r0  , T=0  , ψ = 0    (2.2.16) 
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Fig: 2.4.1: Streamlines(left) and  Isotherms(Right) for Ra=50, Rr=1 , Rd=1 
a) CA =15  b) CA =45  c) CA =75 
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Fig (2.4.1.) shows the streamlines and isothermal lines inside porous medium for various values of Cone angle (CA) 
at Ra = 50, Rr = 1 and  Rd = 1. The fluid gets heated up near hot wall and moves up towards the cold wall due to 
high buoyancy force and then returns to hot wall of the vertical annular cone. The boundary layer thickness decrease 
with the increase of the Cone angle(CA). 
 
Fig (2.4.2) Shows the streamlines and isothermal lines distribution inside the porous medium for various values of 
Cone angle (CA) at Ra = 100, Rr = 1, and Rd = 1. With increase of the Rayleigh number (Ra) the thickness of the 
boundary layer decreases relatively with the Fig (2.4.1) as expected. 
 
 

Fig: 2.4.2: Streamlines(left) and  Isotherms(Right) for Ra=100, Rr=1 , Rd=1 
a) CA =15  b) CA =45  c) CA =75 
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Fig. 2.4.3 : Nu variations with Ra at hot surface for different values of CA at Rr=1, Rd=1 
 
Fig (2.4.3) shows the variation of average Nusselt number (Nu) at hot wall, with respect to Rayleigh number (Ra) 
of the vertical annular cone for various values of Cone angle (CA) at Rr =1, Rd = 1. It is found that the average 
Nusselt number (Nu) increases with increase in Rayleigh number (Ra). It can be seen that the average Nusselt 
number (Nu) increases with increase in Cone angle(CA) for a given Rayleigh number (Ra). The difference between 
the average Nusselt number at two different values of Cone angle (CA) increases with Cone angle (CA) for instance, 
the average Nusselt number(Nu) increased by 11.4% when Cone angle (CA) is increased from 15 to 45 Ra = 10. 
However the average Nusselt number (Nu) increased by 13.8%, when Cone angle (CA) is increased from 15 to 45 
at Ra = 100. This difference becomes more prominent as the Rayleigh number (Ra) increases for particular value of 
Cone angle (CA). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2.4.4: Nu variations with Ra at hot surface for different values of Rr at CA=75, Rd=1
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Fig: 2.4.5: Streamlines(left) and  Isotherms(Right) for Ra=50, CA =15 , Rd=1 
a) Rr=1  b) Rr=5  c) Rr=10 
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Fig:2.4.6: Streamlines(left) and  Isotherms(Right) for Ra=100, CA =15 , Rd=1 
a) Rr=1  b) Rr=5  c) Rr=10 
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Fig (2.4.4) depicts the average Nusselt number (Nu) at hot wall with respect to Rayleigh number (Ra), for various 
values of Radius ratio (Rr). This figure corresponds to the values CA = 75, Rd = 1. It is found that the average Nusselt 
number (Nu) increases with increase in Rayleigh number (Ra). It can be seen that the average Nusselt number 
(Nu) increases with increase in Radius ratio(Rr). For a given Rayleigh number (Ra), the difference between the 
average Nusselt number at two different values of Radius ratio (Rr) increase with increase in Radius ratio (Rr). For 
instance, the average Nusselt number (Nu) increased by 56%, when Radius ratio (Rr) is increased from 1 to 5 at 
Ra=10. However the average Nusselt number (Nu) increased by 57% when Radius ratio (Rr) is increased from 1 to 
5 at Ra = 100. This difference becomes more as the Rayleigh number (Ra) increases for particular value of Radius 
ratio(Rr). 
 
Fig (2.4.5) shows the streamlines and isothermal lines inside the porous medium for various values of  Radius ratio 
(Rr) at Ra = 50, CA = 15 and Rd = 1.  As the value of Radius ratio (Rr) increase the magnitude of the streamlines 
decreases. This is due to reason that the increased Radius ratio (Rr) promotes the fluid movement due to the higher 
buoyancy force, which in turn allows the convection heat transfer at lower portion of the hot wall of the vertical 
angular cone. The thermal boundary layer thickness decreases as the Radius ratio (Rr) increases. 
 
Fig (2.4.6) Shows the streamlines and isothermal lines inside the porous medium for various values of Radius ratio 
(Rr) at Ra = 100, CA = 15 and Rd= 1. With the comparison of the Fig (2.4.5) the boundary layer thickness of the Fig 
(2.4.6) decrease because of the increase of value of Rayleigh number (Ra=100). 
 

 
 
 

Fig.2.4.7:Nu variations with Rr at hot surface for different values of CA at Ra=50, Rd=1 
 
Fig (2.4.7) illustrates the variation of average Nusselt number (Nu) at hot wall, with respect to Radius ratio (Rr) of 
the vertical annular cone for various values of Cone angles (CA) at values Ra = 50, Rd = 1. It is found that the 
average Nusselt number (Nu) increases with increase in Radius ratio (Rr). It can be seen that the average Nusselt 
number (Nu) increases with increase in Cone angle(CA). For a given Radius ratio (Rr), the difference between the 
average Nusselt number (Nu) for two difference values of Cone angle (CA) increased with increase in Cone angle 
(CA). For instance, the average Nusselt number (Nu) increased 11.4%, when Cone angle (CA) is increased 15 to 45, 
at Rr = 1. However the average Nusselt number (Nu) increased 6.6% when cone angle is increased 15 to 45 at Rr = 
10. This difference becomes more as the Radius ratio (Rr) increase. 
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Fig:2.4.8: Streamlines(left) and  Isotherms(Right) for Ra=50, CA =75 , Rd=1 
a) Rr=1  b) Rr=5  c) Rr=10 
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Fig:2.4.9: Streamlines(left) and  Isotherms(Right) for Ra=100, CA =75 , Rd=1 
a) Rr=1  b) Rr=5  c) Rr=10 
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Fig (2.4.8) represents the streamlines and isothermal lines for various values of Radius ratio (Rr) at Ra = 50, CA = 75 
and Rd = 1. It is clear from the streamlines and isothermal lines that the thermal boundary layer thickness decreases 
as the Radius ratio (Rr) increases. The magnitude of the streamlines increases as Radius ratio (Rr) increases and 
tends to move towards the cold wall of the vertical annular cone. At low Radius ratio (Rr) the streamlines tend to 
occupy the half domain of the vertical annular cone as compared to the higher value, of Radius ratio (Rr). It is 
clearly seen that more convection heat transfer take place as the upper portion of the vertical annular cone. The 
streamlines and isothermal lines shifts from the left upper portion of the hot wall to the upper portion of the cold 
wall of vertical annular cone as the Radius ratio (Rr) increases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2.4.10: Nu variations with Rr at hot surface for different values of CA at Ra=100, Rd=1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2.4.11: Nu variations with Rr at hot surface for different values of  Rd at Ra= 50, CA=75 
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Fig (2.4.9) represents the streamlines and isothermal lines for various values of Radius ratio (Rr) at Ra = 100, CA = 
75 and Rd = 1. Almost connecting for Fig. 2.4.8 will hold good here also. 
 
Fig (2.4.10) shows the variation of average Nusselt number (Nu) at hot wall, with respect to Rayleigh number (Ra) 
of the vertical annular cone for various values of cone angle (CA) at Ra = 100, Rd = 1. It is found that the average 
Nusselt number (Nu) increases with increase in Radius ratio (Rr). It can be seen that the average Nusselt number 
(Nu) increases with increase in Cone angle (CA). For a given Radius ratio (Rr) the difference between the average 
Nusselt number (Nu) at two different values of Cone angles (CA) increases with increase in Cone angle (CA). For 
instance, the average Nusselt number (Nu) increases 11.8 %, when Cone angle (CA) increased 15 to 45 at Rr = 1. 
However the average Nusselt number (Nu) increased 6.2% when Cone angle (CA) is increased 15 to 45 at Rr = 10. 
This difference becomes more prominent as the Radius ratio (Rr) increase. The average Nusselt number (Nu) 
increases substantially when the Cone angle (CA) increases for 45o to 75o. 
 
Fig (2.4.11) depicts the average Nusselt number (Nu) at hot wall with respect to Radius ratio (Rr), for various 
values of Radiation parameter (Rd). This figure corresponds to the values Ra = 50, CA = 75. It is found that the 
average Nusselt number (Nu) increases with increase in Radius ratio (Rr). It can also be seen that the average 
Nusselt number (Nu) increases with increase in Radiation parameter (Rd). For a given Radius ratio (Rr), the 
difference between the average Nusselt number (Nu) at two difference values of Radiation parameter (Rd) increases 
with increase in Radiation parameter (Rd). For instance the average Nusselt number (Nu) increased by 128%, when 
Radiation parameter (Rd) is increased from 1 to 5, at Rr = 1. However the average Nusselt number (Nu) increased 
by 159%, when Radiation parameter (Rd) is increased from 1 to 5, at Rr = 10. This difference becomes more 
prominent as the Radius ratio (Rr) increase. 
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