
Available online at www.pelagiaresearchlibrary.com 
 

 
 

   
Pelagia Research Library 

 
Advances in Applied Science Research, 2012, 3 (6):3766-3787     

  
 

  
 

ISSN: 0976-8610  
CODEN (USA): AASRFC 

 

3766 
Pelagia Research Library 

Combined effects of Hall currents and radiation on MHD free convective  
Couette flow in a rotating system 

 
Bhaskar Chandra Sarkar1, Sanatan Das2 and Rabindra Nath Jana1 

 

1Department of Applied Mathematics, Vidyasagar University, Midnapore 721 102, India 
2Department of Mathematics, University of Gour Banga, Malda 732 103, India 

_____________________________________________________________________________________________ 
 
ABSRAECT 
 
Effects of Hall currents and radiation on MHD free convection of a viscous incompressible fluid confined between 
two vertical walls in a rotating system have been studied. We have considered the flow due to the impulsive as well 
as accelerated motion of one of the walls. The governing equations are solved analytically using the Laplace 
transform technique. The variations of the fluid velocity components and the fluid temperature are presented 
graphically. It is found that the velocity components decrease near the moving wall and increase away from the 
moving wall for both the impulsive as well as the accelerated motion of one of the walls with an increase in Hall 
parameter. There is an enhancement in fluid temperature as time progresses. The absolute value of the shear 
stresses at the moving wall due to the primary and the secondary flows for both the impulsive as well as the 
accelerated motion increase with an increase in either rotation parameter or radiation parameter. The rate of heat 
transfer at the moving wall increases with an increase in radiation parameter. 
 
Key words: MHD Couette flow, free convection, Hall currents, radiation, rotation, Prandtl number, impulsive 
motion and accelerated motion.  
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

Couette flow is one of the basic flow in fluid dynamics that refers to the laminar flow of a viscous fluid in the space 
between two parallel walls, one of which is moving and the other wall kepts at rest. The flow is driven by virtue of 
viscous drag force acting on the fluid. The radiative convective flows are frequently encountered in many scientific 
and environmental processes such as astrophysical flows, water evaporation from open reservoirs, heating and 
cooling of chambers and solar power technology. Heat transfer by simultaneous radiation and convection has 
applications in numerous technological problems including combustion, furnace design, nuclear reactor safety, 
fluidized bed heat exchanger, fire spreads, solar fans, solar collectors, natural convection in cavities, turbid water 
bodies, photo chemical reactors and many others. In an ionized gas where the density is low and/or the magnetic 
field is very strong, the conductivity normal to the magnetic field is reduced due to the free spiraling of electrons and 
ions about the magnetic lines of force before suffering collisions and a current is induced in a direction normal to 
both the electric and the magnetic fields. This current, well known in the literature, is called the Hall currents. Due 
to Hall currents the electrical conductivity of the fluid becomes anisotropic and this causes the secondary flow. Hall 
effects are important when the Hall parameter, which is the ratio between the electron-cyclotron frequency and the 
electron-atom-collision frequency, is high. This happens when the magnetic field is strong or when the collision 
frequency is low. Hall currents are of great importance in many astrophysical problems, Hall accelerator and flight 
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MHD as well as flows of plasma in a MHD power generator. The hydrodynamic rotating flow of an electrically 
conducting viscous incompressible fluid has gained considerable attention because of its numerous applications in 
physics and engineering. In geophysics, it is applied to measure and study the positions and velocities with respect 
to a fixed frame of reference on the surface of earth, which rotates with respect to an inertial frame in the presence of 
its magnetic field. The free convection in channels formed by vertical plates has received attention among the 
researchers in last few decades due to it’s widespread importance in engineering applications like cooling of 
electronic equipments, design of passive solar systems for energy conversion, design of heat exchangers, human 
comfort in buildings, thermal regulation processes and many more. Many researchers have worked in this field viz. 
Singh [1], Singh et. al. [2], Jha et.al. [3], Joshi [4], Miyatake et. al. [5], Tanaka et. al. [6] and many others. Hall 
currents and surface temperature oscillations effects on natural convection magnetohydrodynamic heat-generating 
flow have been considered by Takhar and Ram [7]. The transient free convection flow between two vertical parallel 
plates has been investigated by Singh et al. [8]. Jha [9] has studied the natural Convection in unsteady MHD Couette 
flow. Thermal radiation effect on fully developed mixed convection flow in a vertical channel has been studied by 
Grosan and Pop [10]. Jha and Ajibade [11] have studied the unsteady free convective Couette flow of heat 
generating/absorbing fluid. Al-Amri et al. [12] have discussed the combined forced convection and surface radiation 
between two parallel plates. The effects of thermal radiation and free convection on the unsteady Couette flow 
between two vertical parallel plates with constant heat flux at one boundary have been studied by Narahari [13]. 
Rajput and Pradeep [14] have presented the effect of a uniform transverse magnetic field on the unsteady transient 
free convection flow of a viscous incompressible electrically conducting fluid between two infinite vertical parallel 
plates with constant temperature and variable mass diffusion. Rajput and Kumar [15] have discussed the combined 
effects of rotation and radiation on MHD flow past an impulsively started vertical plate with variable temperature. 
Reddy et al. [16] have presented the radiation and chemical reaction effects on free convection MHD flow through a 
porous medium bounded by vertical surface. The unsteady MHD heat and mass transfer free convection flow of 
polar fluids past a vertical moving porous plate in a porous medium with heat generation and thermal diffusion has 
been studied by Saxena and Dubey [17]. The mass transfer effects on MHD mixed convective flow from a vertical 
surface with Ohmic heating and viscous dissipation have been investigated by Babu and Reddy [18]. Saxena and 
Dubey [19] have analyzed the effects of MHD free convection heat and mass transfer flow of visco-elastic fluid 
embedded in a porous medium of variable permeability with radiation effect and heat source in slip flow regime. 
Devi and Gururaj [20] have studied the effects of variable viscosity and nonlinear radiation on MHD flow with heat 
transfer over a surface stretching with a power-law velocity. The radiation effect on the unsteady MHD convection 
flow through a non uniform horizontal channel has been studied by Reddy et al. [21]. Singh and Pathak [22] have 
studied the effect of rotation and Hall current on mixed convection MHD flow through a porous medium filled in a 
vertical channel in the presence of thermal radiation. Das et. al. [23] have investigated the radiation effects on free 
convection MHD Couette flow started exponentially with variable wall temperature in presence of heat generation. 
Effects of radiation on transient natural convection flow between two vertical walls have been discussed by Mandal 
et al.[24]. Recently, Sarkar et. al. [25-26] have studied the effects of radiation on MHD free convective Couette flow 
in a rotating system.  Oscillatory MHD free convective flow between two vertical walls in a rotating system has 
been studied by  Sarkar et. al. [27]. 
 
In the present paper, we have studied the effects of radiation on free convective MHD Couette flow of a viscous 
incompressible electrically conducting fluid in a rotating system in the presence of an applied transverse magnetic 
field on taking Hall currents into account. It is observed that the velocity components decrease near the moving wall 
and increase away from the moving wall for both the impulsive as well as the accelerated motion of one of the walls 
with an increase in Hall parameter m. The fluid temperature decreases with an increase in radiation parameter R  
whereas it increases with an increase in time τ . The absolute value of the shear stress 

0xτ  due to the primary flow 

and the shear stress 
0yτ  due to the secondary flow at the wall ( 0)η =  for both the impulsive as well as the 

accelerated motion increase with an increase in either radiation parameter R  or rotation parameter 2K . Further, the 
rate of heat transfer (0, )θ τ′−  at the wall ( 0)η =  increases whereas the rate of heat transfer (1, )θ τ′−  at the wall 

( 1)η =  decreases with an increase in radiation parameter R . 

 
FORMULATION OF THE PROBLEM AND ITS SOLUTION 
Consider the unsteady free convection MHD Couette flow of a viscous incompressible electrically conducting fluid 
between two infinite vertical parallel walls separated by a distance h . Choose a Cartesian co-ordinates system with 
the x - axis along one of the walls in the vertically upward direction and the z - axis normal to the walls and the y -



Bhaskar Chandra Sarkar et al                                   Adv. Appl. Sci. Res., 2012, 3(6):3766-3787      
 _____________________________________________________________________________ 

3768 
Pelagia Research Library 

axis is perpendicular to xz-plane [See Fig.1]. The walls and the fluid rotate in unison with uniform angular velocity 
Ω  about z  axis. Initially, at time 0t ≤ , both the walls and the fluid are assumed to be at the same temperature hT  

and stationary. At time > 0t , the wall at ( 0)z =  starts to move in its own plane with a velocity ( )U t , and is heated 

with temperature ( )0
0

h h

t
T T T

t
+ − , 0T  being the temperature of the wall at ( 0)z =  and 0t  a constant. The wall at 

( )z h=  is stationary and maintained at a constant temperature hT . A uniform magnetic field of strength 0B  is 

imposed perpendicular to the walls. It is also assumed that the radiative heat flux in the x -direction is negligible in 
comparison with that in the z - direction. As the walls are infinitely long along x  and y  directions, the velocity and 

temperature fields are functions of z  and t  only. We assume that the magnetic Reynolds number for the flow is 
small so that the induced magnetic field can be neglected. This assumption is justified since the magnetic Reynolds 
number is generally very small for metallic liquid or partially ionized fluid.  
   

    
     Fig.1: Geometry of the problem.  
 
The generalized Ohm’s law on taking Hall currents into account is [see Cowling [28]]  

( ) ( )
0

,e ej j B E q B
B

ω τ σ+ × = + ×
r r rr r r

                                             (1) 

where q
r

, B
r

, E
r

, j
r

, σ , eω  and eτ  are respectively the velocity vector, the magnetic field vector, the electric field 

vector, the current density vector, the electric conductivity, the cyclotron frequency and electron collision time. In 
writing the equation (1), the ion-slip and the thermoelectric effects as well as the electron pressure gradient are 
neglected. 
 
The equation of continuity 0q∇ ⋅ =r

 with no-slip condition at the plate gives 0w =  everywhere in the flow where 

( , , )q u v w≡r
, u , v  and w  are respectively the velocity components along the coordinate axes. The solenoidal 

relation 0B∇ ⋅ =
r

 gives 0= constantzB B=  everywhere in the flow where (0,0, )zB B≡
r

. The conservation of electric 

current 0j∇ ⋅ =
r

 yields zj =  constant where ( ), ,x y zj j j j≡
r

. This constant is zero since 0zj =  at the plates which 

are electrically non-conducting. Hence, 0zj =  everywhere in the flow. As the induced magnetic field is neglected, 

the Maxwell’s equation 
B

E
t

∂∇ × = −
∂

r
r

 becomes 0E∇ × =
r

 which gives 0xE

z

∂
=

∂
 and 0yE

z

∂
=

∂
 where 

( ), ,x y zE E E E≡
r

. This implies that xE =  constant and yE =  constant everywhere in the flow. 

 
In view of the above assumption, equation (1) yields  
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0( ),x y xj mj E vBσ+ = +  (2) 

 

0( ),y x yj mj E uBσ− = −  (3) 

 
where e em ω τ=  is the Hall parameter. 

 
Further, we assume that 0E =  as there is no applied and polarization voltage exists. Hence, solving for xj  and yj  

from equations (2) and (3) we have 
 

( )0
2

,
1x

B
j v mu

m

σ
= +

+
 (4) 

 

( )0
2

,
1y

B
j mv u

m

σ
= −

+
 (5) 

 
where e em ω τ=  is the Hall parameter. 

 
Under the usual Boussinesq’s approximation, on the use of (4) and (5), the fluid flow be governed by the following 
system of equations: 
 

22
0

2 2
2 ( ) ( ),

(1 )h

Bu u
v g T T u mv

t z m

σν β
ρ

∗∂ ∂− Ω = + − − −
∂ ∂ +

 (6) 

 
22
0

2 2
2 ( ),

(1 )

Bv v
u v mu

t z m

σν
ρ

∂ ∂+ Ω = − +
∂ ∂ +

 (7) 

 
2

2
,r

p

qT T
c k

t zz
ρ ∂∂ ∂= −

∂ ∂∂
 (8) 

 
where g  is the acceleration due to gravity, T  the fluid temperature, hT  the initial fluid temperature, β ∗  the 

coefficient of thermal expansion, ν  the kinematic viscosity, ρ  the fluid density, k  the thermal conductivity, pc  the 

specific heat at constant pressure and rq  the radiative heat flux. 

 
The initial and the boundary conditions for velocity and temperature distributions are 

0 , for 0 and 0,hu v T T z h t= = = ≤ ≤ ≤  

( )0
0

( ), 0, at 0 for > 0,h h

t
u U t v T T T T z t

t
= = = + − =  (9) 

0 , at for > 0.hu v T T z h t= = = =  

It has been shown by Cogley et al.[29] that in the optically thin limit for a non-gray gas near equilibrium, the 
following relation holds 
 

0
4( ) ,pr

h
h

h

eq
T T K d

y T
λ

λ
λ

∗∞ ∗
∗

∂ ∂
 = −
 ∂ ∂
 

∫  (10) 

where Kλ
∗  is the absorption coefficient, λ∗  is the wave length, 

p
e

λ∗  is the Planck’s function and subscript 'h′  

indicates that all quantities have been evaluated at the temperature hT  which is the temperature of the wall at time 

0t ≤ . Thus, our study is limited to small difference of wall temperature to the fluid temperature. 
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On the use of the equation (10), the equation (8) becomes 

( )
2

2
4 ,p h

T T
c k T T I

t y
ρ ∂ ∂= − −

∂ ∂
 (11) 

where 

0
.p

h
h

e
I K d

T
λ

λ
λ

∗∞ ∗
∗

∂ 
 =
 ∂
 

∫  (12) 

Introducing non-dimensional variables 
2

1 1 0 0
0 0 0

( , )
, , ( , ) , , ( ) ( ), ,h

h

T Tz t u v h
u v U t u f t

h t u T T
η τ θ τ

ν
−

= = = = = =
−

 (13) 

 
equations (6), (7) and (11) become 

2 2
21 1

1 1 12 2
2 ( ),

1

u u M
K v Gr u mv

m
θ

τ η
∂ ∂

− = + − −
∂ ∂ +

 (14) 

2 2
21 1

1 1 12 2
2 ( ),

1

v v M
K u v mu

mτ η
∂ ∂

+ = − +
∂ ∂ +

 (15) 

2

2
,Pr R

θ θ θ
τ η

∂ ∂= −
∂ ∂

 (16) 

where 
2 2

2 0B h
M

σ
ρν

=  is the magnetic parameter, 
2

2 h
K

ν
Ω=  the rotation parameter, 

24I h
R

k
=  the radiation 

parameter, 
2

0

0

( )hg T T h
Gr

u

β
ν

∗ −
=  the Grashof number and pc

Pr
k

ρν
=  the Prandtl number. 

 
The corresponding initial and boundary conditions for 1u  and θ  are 

1 10 , 0 for 0 1 and 0,u v θ η τ= = = ≤ ≤ ≤  

1 1( ), 0, at 0 for > 0,u f vτ θ τ η τ= = = =  (17) 

1 10 , 0 at 1 for > 0.u v θ η τ= = = =  

 
Combining equations (14) and (15), we get 

2
2

2
,

F F
Gr Fθ λ

τ η
∂ ∂= + −
∂ ∂

 (18) 

where 
2 2

2 2
1 1 2 2

, 2 and 1.
1 1

M mM
F u iv i K i

m m
λ

 
= + = + + = − + + 

 (19) 

The corresponding boundary conditions for F  and θ  are 
0, 0 for 0 1 and 0,F θ η τ= = ≤ ≤ ≤  

( ), at 0 for > 0,F f τ θ τ η τ= = =  (20) 

0, 0 at 1 for > 0.F θ η τ= = =  

 
Taking the Laplace transformation, equations (18) and (16) become 

2
2

2
,

d F
sF Gr F

d
θ λ

η
= + −  (21) 

2

2
,

d
Prs R

d

θθ θ
η

= −  (22) 
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where 

0 0
( , ) ( , ) and ( , ) ( , ) .s sF s F e d s e dτ τη η τ τ θ η θ η τ τ

∞ ∞− −= =∫ ∫  (23) 

 
The corresponding boundary conditions for F  and θ  are 

2

1
(0, ) ( ), (0, ) ,F s f s s

s
θ= =  

(1, ) 0, (1, ) 0,F s sθ= =  (24) 

 
where ( )f s  is the Laplace transform of the function ( )f τ  . 

 
The solution of equations (21) and (22) subject to the boundary conditions (24) are given by 

2

2

sinh (1 )1
for 1

sinh

( , )

1 sinh (1 )
for 1,

sinh

sPr R
Pr

s sPr R

s

s R
Pr

s s R

η

θ η
η

 + −
≠

+
= 
 + − =
 +

 (25) 

2

2

2

2 2

2

2

2

2 2 2

sinh (1 )
( )

sinh

sinh (1 )sinh (1 )
for 1

( 1)( ) sinhsinh

( , )

sinh (1 )
( )

sinh

sinh (1 ) sinh (1 )
for 1

( ) sinhsinh

s
f s

s

sPr RGr s
Pr

Pr s b s sPr Rs

F s

s
f s

s

Gr s s R
Pr

R s s Rs

λ η
λ

ηλ η
λ

η

λ η
λ

λ η η
λ λ

+ −

+
 + −+ −+ − ≠ 

− + + + 

=

+ −

+
 + − + −+ − = 

− + + 
,


















 (26) 

where 
2

1

R
b

Pr

λ−=
−

. 

Now, we consider the following cases: 
 
(i) When one of the walls ( 0)η =  starts to move impulsively: 

In this case ( ) 1f τ =  , i.e. 
1

( )f s
s

= . The inverse Laplace transforms of equations (25) and (26) give the solution for 

the temperature and the velocity distributions respectively as 
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2

1

2
=0 1

2

1

2
=0 1

sinh (1 )
(1 )cosh (1 )sinh

sinh 2 sinh

sinh (1 )cosh 2 sin for 1

( , )

sinh (1 ) 1
(1 )cosh (1 )sinh

sinh 2 sinh

sinh (1 )cosh 2 sin for 1

s

n

s

n

R Pr
R R

R R R

e
R R n n Pr

s Pr

R
R R

R R R

e
R R n n Pr

s

τ

τ

ητ η η

η π πη

θ η τ

ητ η η

η π πη

∞

∞

− + − −

− − + ≠

=

− + − −

− − + =

∑

∑ ,

















 (27) 

2

1
=0 2

2

2
=0 2

sinh (1 )
2 sin ( , , , , ) for 1

sinh

( , )

sinh (1 )
2 sin ( , , , ) for 1,

sinh

s

n

s

n

e
n n F Pr R Pr

s

F

e
n n F R Pr

s

τ

τ

λ η π πη η τ λ
λ

η τ

λ η π πη η τ λ
λ

∞

∞

 − + + ≠

= 
 − + + =


∑

∑

 (28) 

where 

1 2

1 sinh (1 ) sinh (1 )
( , , , , ) ( 1)

1 sinh sinh

Gr R
F Pr R b

Pr b R

λ η ηη τ λ τ
λ

  − − = − −  −    
 

{ }2

1
(1 )cosh (1 )sinh sinh (1 )cosh

2 sinhb
η λ η λ λ η λ

λ λ
+ − − − −  

{2
(1 )cosh (1 )sinh

2 sinh

Pr
R R

b R R
η η− − − }sinh (1 )coshR Rη− −  

2 1

2 2
=0 2 2 1 1

2 sin ,
( ) ( )

s s

n

e e
n n

s s b s s b Pr

τ τ

π πη
∞   + −  + +    
∑  

2 2

sinh (1 ) sinh (1 )
( , , , )

sinh sinh

Gr R
F R

R R

λ η ηη τ λ τ
λλ

  − − = −  −    
 (29) 

{ }2

1
(1 )cosh (1 )sinh sinh (1 )cosh

2 sinh
η λ η λ λ η λ

λ λ
+ − − − −  

{2

1
(1 )cosh (1 )sinh

2 sinh
R R

R R
η η− − − }sinh (1 )coshR Rη− −  

2 1

2 2
=0 2 1

2 sin ,
s s

n

e e
n n

s s

τ τ

π πη
∞   + −  

    
∑  

2 2
2 2 2

1 2

( )
, ( ),

n R
s s n

Pr

π π λ+= − = − +  

λ  is given by (19). On separating into a real and imaginary parts one can easily obtain the velocity components 1u  

and 1v  from equation (28). 

 
For large time τ , equations (27) and (28) become 
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2

2

sinh (1 )
(1 )cosh (1 )sinh

sinh 2 sinh

sinh (1 )cosh for 1

( , )

sinh (1 ) 1
(1 )cosh (1 )sinh

sinh 2 sinh

sinh (1 )cosh for 1,

R Pr
R R

R R R

R R Pr

R
R R

R R R

R R Pr

ητ η η

η

θ η τ

ητ η η

η

 − + − − 

 − − ≠ 
= 
 − + − −


− − =

 (30) 

1

2

sinh (1 )
( , , , , ) for 1

sinh

( , )

sinh (1 )
( , , , ) for 1,

sinh

F Pr R Pr

F

F R Pr

λ η η τ λ
λ

η τ
λ η η τ λ

λ

− + ≠
= 
 −
 + =


 (31) 

where 

1 2

1 sinh (1 ) sinh (1 )
( , , , , ) ( 1)

1 sinh sinh

Gr R
F Pr R b

Pr b R

λ η ηη τ λ τ
λ

  − − = − −  −    
 

{ }2

1
(1 )cosh (1 )sinh sinh (1 )cosh

2 sinhb
η λ η λ λ η λ

λ λ
+ − − − −  

{ RR
RRb

Pr
sinh)(1cosh)(1

sinh2 2
ηη −−− }sinh (1 )cosh ,R Rη − −


 

2 2

sinh (1 ) sinh (1 )
( , , , )

sinh sinh

Gr R
F R

R R

λ η ηη τ λ τ
λλ

  − − = −  −    
 (32) 

{ }2

1
(1 )cosh (1 )sinh sinh (1 )cosh

2 sinh
η λ η λ λ η λ

λ λ
+ − − − −  

{2

1
(1 )cosh (1 )sinh

2 sinh
R R

R R
η η− − − }sinh (1 )cosh ,R Rη − −


 

and λ  is given by (19). 
 
(ii) When one of the wall ( 0)η =  starts to move accelerately: 

In this case ( )f τ τ=  , i.e. 
2

1
( )f s

s
= . The inverse Laplace transforms of equations (25) and (26) yield 

2

1

2
=0 1

2

1

2
=0 1

sinh (1 )
(1 )cosh (1 )sinh

sinh 2 sinh

sinh (1 )cosh 2 sin for 1

( , )

sinh (1 ) 1
(1 )cosh (1 )sinh

sinh 2 sinh

sinh (1 )cosh 2 sin for 1

s

n

s

n

R Pr
R R

R R R
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where λ  is given by (19), 1( , , , , )F Pr Rη τ λ , 2( , , , )F Rη τ λ , 1s  and 2s  are given by (29). On separating into a real 

and imaginary parts one can easily obtain the velocity components 1u  and 1v  from equation (34). 

For large time τ , equations (33) and (34) become 
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where λ  is given by (19), 1( , , , , )F Pr Rη τ λ  and 2( , , , )F Rη τ λ  are given by (32). 

In the absence of Hall currents ( 0)m = ,  equations (28) and (34) are identical with the equations (23) and (29) of 

Sarkar et. al. [19]. 
 

RESULTS AND DISCUSSION 
 
We have presented the non-dimensional velocity and temperature distributions for several values of magnetic 
parameter 2M , Rotation parameter 2K , Hall parameter m, radiation parameter R  and time τ  in Figs.2-14 for both 
the impulsive as well as the accelerated motion of one of the walls. It is seen from Fig.2 that the primary velocity 1u  
decreases for both impulsive as well as accelerated motions of one of the walls with an increase in magnetic 
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parameter 2M . The presence of a magnetic field normal to the flow in an electrically conducting fluid introduces a 
Lorentz force which acts against the flow. This resistive force tends to slow down the flows and hence the fluid 
velocities decrease with an increase in magnetic parameter 2M . This trend is consistent with many classical studies 
on magneto-convection flow. Fig.3 reveals that the primary velocity 1u  decreases in the region 0 < 0.43η≤  and 

then it increases for both the impulsive as well as the accelerated motions of one of the walls with an increase in 
rotation parameter 2K . The rotation parameter 2K  defines the relative magnitude of the Coriolis force and the 
viscous force in the regime, therefore it is clear that the high magnitude Coriolis forces are counter-productive for 
the primary velocity. It is seen from Fig.4 that the primary velocity 1u  decreases in the region 0 < 0.23η≤  and 

0 < 0.27η≤  respectively and then it increases for both the impulsive as well as the accelerated motions of one of 

the walls with an increase in Hall parameter m. It is seen from Fig.5 that an increase in radiation parameter R  leads 
to a decrease in primary velocity for both the impulsive and the accelerated motion of one of the walls. It indicates 
that radiation has a retarding influence on the primary velocity. It is revealed from Fig.6 that the primary velocity 1u  

decreases for the impulsive motion whereas it increases in the region 0 < 0.32η≤  and then decreases for the 

accelerated motion with an increase in time τ . It is noted from Figs. 2-6 that the primary velocity for the impulsive 
motion is greater than that of the accelerated motion near the wall ( 0)η = . It is observed from Fig.7 and Fig.8 that 

the secondary velocity 1v  increases near the wall ( 0)η =  while it decreases away from the wall ( 0)η =  for both the 

impulsive and the accelerated motions of one of the walls with an increase in either magnetic parameter 2M  or 
rotation parameter 2K . It means that the magnetic field and rotation tend to enhance the secondary velocity in the 
vicinity of the wall ( 0)η =  and to reduce it near the wall ( 1)η = . It is illustrated from Fig.9 that the secondary 

velocity 1v  decreases near the wall ( 0)η =  while it increases near the wall ( 1)η =  for both the impulsive as well as 

the accelerated motions of one of the walls with an increase in Hall parameter m. It means that Hall currents have a 
tendency to reduce the secondary velocity in the vicinity of the wall ( 0)η =  and to enhance it near the wall ( 1)η = . 

Fig.10 reveals that the secondary velocity 1v  increases for both the impulsive and the accelerated motion of one of 

the walls with an increase in radiation parameter R . It is observed from Fig.11 that the secondary velocity 1v  

decreases for the impulsive motion whereas it increases for the accelerated motion as time τ  progresses. From 
Figs.7-11, it is interesting to note that the secondary velocity for the impulsive motion is greater than that of the 
accelerated motion of one of the walls. Further, it is seen from Figs.2-11 that the value of the fluid velocity 
components become negative at the middle region between two walls which indicates that there occurs a reverse 
flow at that region. Physically this is possible as the motion of the fluid is due to the motion of the wall in the 
upward direction against the gravitational field. 
 
 Effects of radiation parameter R , Prandtl number Pr  and time τ  on the temperature distribution have been shown 
in Figs.12-14. It is observed from Fig.12 that the fluid temperature ( , )θ η τ  decreases with an increase in radiation 

parameter R . This result qualitatively agrees with expectations, since the effect of radiation decrease the rate of 
energy transport to the fluid, thereby decreasing the temperature of the fluid. Fig.13 shows that the fluid temperature 

( , )θ η τ  decreases with an increase in Prandtl number Pr . The Prandtl number Pr  is the ratio of the viscosity to the 

thermal diffusivity. An increase in thermal diffusivity leads to a decrease in Prandtl number. Therefore, thermal 
diffusion has a tendency to reduce the fluid temperature. It is revealed from Fig.14 that an increase in time τ  leads 
to rise in the fluid temperature distribution ( , )θ η τ . It indicates that there is an enhancement in fluid temperature as 

time progresses. 
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Fig.2: Primary velocity for 2M  with 3R = , 2 5K = , 0.03Pr = , 5Gr = , 0.5m =  and 0.5τ =  

 

 
Fig.3: Primary velocity for 2K  with 1R = , 2 15M = , 0.03Pr = , 5Gr = , 0.5m =  and 0.5τ =  
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Fig.4: Primary velocity for m  with 1R = , 2 15M = , 0.03Pr = , 5Gr = , 2 5K =  and 0.5τ =  

 

 
Fig.5: Primary velocity for R  with 15Gr = , 2 2M = , 0.03Pr = , 2 5K = , 0.5m =  and 0.5τ =  
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Fig.6: Primary velocity for τ  with 1R = , 2 15M = , 5Gr = , 2 5K = , 0.5m =  and 0.03Pr =  

 
 

 
Fig.7: Secondary velocity for 2M  with 3R = , 2 5K = , 0.03Pr = , 5Gr = , 0.5m =  and 0.5τ =  
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Fig.8: Secondary velocity for 2K  with 1R = , 2 = 15M , 0.03Pr = , 5Gr = , 0.5m =  and 0.5τ =  

 

 
Fig.9: Secondary velocity for m  with = 1R , 2 15M = , 0.03Pr = , 5Gr = , 2 5K =  and 0.5τ =  
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Fig.10: Secondary velocity for R  with 15Gr = , 2 2M = , 0.03Pr = , 2 5K = , 0.5m =  and 0.5τ =  

 

 
Fig.11: Secondary velocity for τ  with 1R = , 2 15M = , 5Gr = , 2 5K = , 0.5m =  and 0.03Pr =  
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     Fig.12: Temperature profiles for R  with 0.2τ =  and 0.03Pr =   
 

 
     Fig.13: Temperature profiles for Pr  with 0.2τ =  and 1R =   
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     Fig.14: Temperature profiles for τ  with 1R =  and 0.03Pr =   
 
For impulsive motion, the non-dimensional shear stresses at the walls ( 0)η =  and ( 1)η =  are respectively obtained 

as follows:  
 

0 0
0

x y

F
i

η

τ τ
η =

 ∂+ =  ∂ 
 

2
2 2

1
=0 2

2
2 2

2
=0 2

coth 2 (0, , , , ) for 1

coth 2 (0, , , ) for 1,

s

n

s

n

e
n G Pr R Pr

s

e
n G R Pr

s

τ

τ

λ λ π τ λ

λ λ π τ λ

∞

∞


− + + ≠

= 

− + + =


∑

∑

 (37) 

1 1
1

x y

F
i

η

τ τ
η =

 ∂+ =  ∂ 
 

2
2 2

1
=0 2

2
2 2

2
=0 2

cosech 2 ( 1) (1, , , , ) for 1

cosech 2 ( 1) (1, , , ) for 1,

s
n

n

s
n

n

e
n G Pr R Pr

s

e
n G R Pr

s

τ

τ

λ λ π τ λ

λ λ π τ λ

∞

∞


− + − + ≠

= 

− + − + =


∑

∑

 (38) 

where 

( )1 2

1
(0, , , , ) ( 1) coth coth

1

Gr
G Pr R b R R

Pr b
τ λ τ λ λ= − −− 

( )2

1
cosh sinh

2 sinhb
λ λ λ

λ λ
+ −  

( )2
cosh sinh

2 sinh

Pr
R R R

b R R
− −

2 1
2 2

2 2
=0 2 2 1 1

2 ,
( ) ( )

s s

n

e e
n

s s b s s b Pr

τ τ

π
∞   + −  + +  
∑  



Bhaskar Chandra Sarkar et al                                   Adv. Appl. Sci. Res., 2012, 3(6):3766-3787      
 _____________________________________________________________________________ 

3783 
Pelagia Research Library 

( )1 2

1
(1, , , , ) ( 1) cosech cosech

1

Gr
G Pr R b R R

Pr b
τ λ τ λ λ= − −− 

( )2

1
cosh sinh

2 sinhb
λ λ λ

λ λ
+ −  

( )2
cosh sinh

2 sinh

Pr
R R R

b R R
− −

2 1
2 2

2 2
=0 2 2 1 1

2 ( 1) ,
( ) ( )

s s
n

n

e e
n

s s b s s b Pr

τ τ

π
∞   + − −  + +  
∑  (39) 

( )2 2
(0, , , ) coth coth

Gr
G R R R

R
τ λ τ λ λ

λ
= −
−

( )2

1
cosh sinh

2 sinh
λ λ λ

λ λ
+ −  

( )2

1
cosh sinh

2 sinh
R R R

R R
− −

2 1
2 2

2 2
=0 2 1

2 ,
s s

n

e e
n

s s

τ τ

π
∞  

+ −    
∑  

( )2 2
(1, , , ) cosech cosech

Gr
G R R R

R
τ λ τ λ λ

λ
= −
−

( )2

1
cosh sinh

2 sinh
λ λ λ

λ λ
+ −  

( )2

1
cosh sinh

2 sinh
R R R

R R
− −

2 1
2 2

2 2
=0 2 1

2 ( 1) ,
s s

n

n

e e
n

s s

τ τ

π
∞  

+ − −    
∑  

λ  is given by (19), 1s  and 2s  are given by (29). 

 
For accelerated motion, the non-dimensional shear stresses at the walls ( 0)η =  and ( 1)η =  are respectively 

obtained as follows: 
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where λ  is given by (19), 1(0, , , , )G Pr Rτ λ , 1(1, , , , )G Pr Rτ λ , 2(0, , , )G Rτ λ  and 2(1, , , )G Rτ λ  are given by 

(39). 
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Numerical results of the non-dimensional shear stresses at the wall ( 0)η =  are presented in Figs.15-18 against Hall 

parameter m for several values of rotation parameter 2K  and radiation parameter R  when 2 10M = , 0.2τ = , 
5Gr =  and 0.03Pr = . Figs.15 and 16 show that the absolute value of the shear stress 

0x
τ  at the wall ( 0)η =  due 

to the primary flow increases with an increase in either rotation parameter 2K  or radiation parameter R  or Hall 
parameter m  for both the impulsive as well as the accelerated motion of one of the walls. It is observed from 
Figs.17 and 18 that the shear stress 

0yτ  at the wall ( 0)η =  due to the secondary flow increases with an increase in 

either rotation parameter 2K  or radiation parameter R  whereas it decreases with an increase in Hall parameter m  
for both the impulsive and the accelerated motion. Further, it is observed from Figs.15-18 that the shear stresses at 
the wall ( 0)η =  due to the primary and the secondary flow for the impulsive start is greater than that of the 

accelerated start one of the walls. 
  

 
Fig.15: Shear stress 

0x
τ  due to primary flow for 2K  when 1R =  

 

 
Fig.16: Shear stress 

0xτ  due to primary flow for R  when 2 5K =  
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Fig.17: Shear stress 

0yτ  due to secondary flow for 2K  when 1R =  

 

 
 

Fig.18: Shear stress 
0yτ  due to secondary flow for R  when 2 5K =  

 

The rate of heat transfer (0, )θ τ′  
0η

θ
η =

 ∂= 
 ∂ 

 at the wall ( 0)η =  and (1, )θ τ′  
1η

θ
η =

 ∂= 
 ∂ 

 at the wall ( 1)η =  are 

respectively given by  
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where 1s  is given by (29). 

Numerical results of the rate of heat transfer (0, )θ τ′−  at the wall ( 0)η =  and (1, )θ τ′−  at the wall ( 1)η =  against 

the radiation parameter R  are presented in the Table 1 and 2 for several values of Prandtl number Pr  and time τ . 

Table 1 shows that the rate of heat transfer (0, )θ τ′−  increases whereas (1, )'θ τ−  decreases with an increase in 

Prandtl number Pr . It is observed from Table 2 that the rates of heat transfer (0, )'θ τ−  and (1, )θ τ′−  increase with 

an increase in time τ . Further, it is seen from Table 1 and 2 that the rate of heat transfer (0, )θ τ′−  increases whereas 

the rate of heat transfer (1, )θ τ′−  decreases with an increase in radiation parameter R . 

 
   Table 1. Rate of heat transfer at the wall ( 0)η =  and at the wall ( 1)η =  

  
 (0, )θ τ′−  (1, )θ τ′−  

\R Pr 0.01 0.71 1 2  0.01 0.71 1 2  

0.5 
1.0 
1.5 
2.0 

0.23540 
0.26555 
0.29403 
0.32102 

0.44719 
0.46614 
0.48461 
0.50262 

0.52178 
0.53808 
0.55407 
0.56976 

0.72549 
0.73721 
0.74881 
0.76030 

0.18277 
0.16885 
0.15635 
0.14509 

0.08573 
0.08117 
0.07690 
0.07290 

0.05865 
0.05599 
0.05346 
0.05106 

0.01529 
0.01483 
0.01438 
0.01394 

 

 Table 2. Rate of heat transfer at the wall ( 0)η =  and at the wall ( 1)η =  

  
 (0, )θ τ′−  (1, )θ τ′−  

\R τ  0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 

0.5 
1.0 
1.5 
2.0 

0.12551 
0.14014 
0.15398 
0.16712 

0.24165 
0.27144 
0.29960 
0.32631 

0.35779 
0.40275 
0.44522 
0.48550 

0.47392 
0.53405 
0.59084 
0.64469 

0.08767 
0.08110 
0.07518 
0.06984 

0.17980 
0.16619 
0.15396 
0.14292 

0.27193 
0.25128 
0.23273 
0.21601 

0.36405 
0.33637 
0.31151 
0.28909 

  
CONCLUSION 

 
The radiation effects on MHD free convective Couette flow in a rotating system confined between two infinitely 
long vertical walls with variable temperature have been studied on taking Hall currents into account. Magnetic field 
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and radiation have a retarding influence on the primary velocity. On the other hand, magnetic field has an 
accelerating influence near the moving wall and a retarding influence away from the moving wall whereas radiation 
has an accelerating influence on the secondary velocity for both the impulsive as well as the accelerated motion of 
one of the walls. Hall currents and rotation have grate influence on the velocity field. It is noted that the velocity for 
the impulsive motion is greater than that of the accelerated motion near the wall ( 0)η = . An increase in either 

radiation parameter R  or Prandtl number Pr  leads to fall in the fluid temperature θ . There is an enhancement in 
fluid temperature as time progresses. Both the rotation and radiation enhance the absolute value of the shear stresses 

0x
τ  and 

0yτ  at the wall ( 0)η =  for both the impulsive as well as the accelerated motion. Further, the rate of heat 

transfer (0, )θ τ′−  at the wall ( 0)η =  increases whereas the rate of heat transfer (1, )θ τ′−  at the wall ( 1)η =  

decreases with an increase in radiation parameter R . 
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